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Summary. We construct a central extension of the group of automorphisms of a
2-Tate vector space viewed as a discrete 2-group. This is done using an action of
this 2-group on a 2-gerbe of gerbal theories. This central extension is used to define
central extensions of double loop groups.
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1 Introduction

In this chapter we study the question of constructing central extensions of
groups using group actions on categories.

Let G be a group. The basic observation is that the category of Gm central
extensions of G is equivalent to the category of Gm-gerbes over the classifying
stack of G. This is in turn equivalent to the category of Gm-gerbes over a
point with an action of G. Thus by producing categories with a G action we
get central extensions.

We then take this observation one category theoretic level higher. We want
to study central extensions of 2-groups. Here a 2-group is a monoidal groupoid
such that its set of connected components is a group with the induced product.
We look at the case of a discrete 2-group, that is, we can think of any group G
as a 2-group with objects the elements of the group, morphisms the identities,
and monoidal structure the product.

We see that Gm-central extensions of a discrete 2-group are the same as
2-gerbes over the classifying stack of the group. This also can be interpreted
as a 2-gerbe with G-action. Thus to get extensions as a 2-group we should
find 2-categories with G-action.

These observations are used to define central extensions of automorphism
groups of 1-Tate spaces and discrete automorphism 2-groups of 2-Tate spaces.

The category of n-Tate spaces is defined inductively. 0-Tate spaces are
finite dimensional vector spaces. (n+1)-Tate spaces are certain indpro objects
of the category of n-Tate spaces. To a 1-Tate space we can associate a 1-gerbe
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of determinant theories. This 1-gerbe has a natural action of the automor-
phism group of the 1-Tate space. This gives the central extension of the
group.

Similarly, to a 2-Tate space we can associate a 2-gerbe of gerbal theories
with an action of the automorphism group of the 2-Tate space. This action
gives a central extension of the discrete 2-group.

If G is a finite dimensional reductive group and V is a finite dimen-
sional representation we get an embedding of the formal double loop group
G((s))((t)) into the automorphism group of the 2-tate space V ((s))((t)). Thus
we can restrict the central extension to the double loop group. These central
extensions of the double loop group as a 2-group will be used in the future
to study the (2-)representation theory of these groups and relating it to the
2-dimensional Langlands program.

The idea of constructing the higher central extension in categorical terms
belongs essentially to Michael Kapranov. S.A would like to thank him for
sharing the idea in 2004.

After writing this chapter we found out that a similar result was obtained
by Osipov in his unpublished Preprint. S.A. would like to thank Osipov for
sharing the manuscript with him.

K.K. was supported in part by NSF grant DMS-0602007. S.A. was sup-
ported in part by NSERC.

2 Group actions on gerbes and central extensions

2.1 Gm-gerbes and central extensions

Let’s recall the notion of a group acting on a category.

Definition 1 An action of a group G on a category C consists of a functor
Fg : C → C for each g ∈ G and a natural transformation τg,h : Fgh →
FgFh s.t.

Fg1g2g3
τg1,g2g3 � Fg1Fg2g3

Fg1g2Fg3

τg1g2,g3

� τg1,g2Fg3 � Fg1Fg2Fg3

Fg1 (τg2,g3)

�

(1)

commutes for any g1, g2, g3 ∈ G.
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We also require that F1 = Id and that τ1,g = Id and τg,1 = Id.

Suppose that C is a Gm-gerbe (over a point). By this we mean that:

• C is a groupoid.
• C is connected (there exists an arrow between any two objects)
• For any object A of C, Aut(A) � Gm in a coherent way.

Note that this implies that all the Hom spaces are Gm-torsors.
Remark If C and D are 1-gerbes then their product C×D is also a 1-gerbe.

This will be used below.
In this case we have the following theorem [5]:

Theorem 1 Let G act on a Gm-gerbe C. For each object A of C we get a
Gm-central extension G̃A. These central extensions depend functorially on A
(hence are all isomorphic). If there exists an equivariant object this extension
splits.

Proof: Let A ∈ obC. Define

G̃A =
{
(g, φ) : g ∈ G, φ ∈ Hom(Fg(A), A)} (2)

with product given by

(g1, φ1)(g2, φ2) = (g1g2, φ1 ◦ Fg1 (φ2)) (3)

Associativity follows from Definition 1.
Another way of interpreting this theorem is as follows: An action of G on

a gerbe C over a point is the same (by descent) as a gerbe over BG. By taking
the cover

pt

BG

�

(4)

we get that such a gerbe gives (again by descent) a Gm-torsor L over G with
an isomorphism

p∗1(L) ⊗ p∗2(L) → m∗(L) (5)

Hence we get

Theorem 2 The category of Gm-central extensions of G is equivalent to the
category of Gm-gerbes over BG.

Remark 1 In the above discussion we have used the notion of a gerbe over
BG. For this we could either use the theory of gerbes over stacks or treat BG

as a simplicial object and pt as the universal fibration EG. The same remark
would apply later when we talk about 2-gerbes over BG.
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2.2 Central extension of the automorphism group
of a 1-Tate space

Let V be a 1-Tate space. Recall (or see section 4) that this is an ind-pro object
in the category of finite dimensional vector spaces, thus equivalent to V having
a locally linearly compact topology. Any such is isomorphic to V ((t)) (formal
loops into V ) but non-canonically. Recall also the notion of a lattice L ⊆ V
(pro-subspace or linearly compact subspace) and that if L1 ⊆ L2 are two
lattices then L2/L1 is finite dimensional.

Definition 2 A determinant theory is a rule that assigns to each lattice L a
one-dimensional vector space ΔL and to each pair L1 ⊂ L2 an isomorphism

ΔL1L2 : ΔL1 ⊗ Det(L2/L1) → ΔL2 (6)

such that for each triple L1 ⊂ L2 ⊂ L3 the following diagram commutes

ΔL1 ⊗ Det(L2/L1) ⊗ Det(L3/L2) � ΔL1 ⊗ Det(L3/L1)

ΔL2 ⊗ Det(L3/L2)
�

� ΔL3

�

(7)

We have the obvious notion of a morphism between two determinant theories
and it is easy to see that the category of determinant theories is in fact a
Gm-gerbe.

Let GL(V) be the group of continuous automorphisms of V . This group
acts on the gerbe of determinant theories and hence we get using Theorem 1
a central extension G̃L(V)Δ for each choice of determinant theory Δ. Unless
V itself is a lattice, this central extension does not split.

3 Group actions on 2-gerbes and central extensions
of 2-groups

3.1 2-Groups

Definition 3 A 2-group is a monoidal groupoid C s.t. its set of connected
components π0(C) with the induced multiplication is a group.

The basic example is the discrete 2-group associated with any group G:
the set of objects is G itself and the only morphisms are the identities. The
monoidal structure comes from the group multiplication. We will denote this
discrete 2-group by G.

Note that 2-groups can be defined in any category with products (or better
in any topos) so we have topological, differential, and algebraic 2-groups.

One can define a general notion of extensions of 2-groups but we are only
interested in the following case:
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Definition 4 Let G be a group (in a topos) and A an abelian group (again
in the topos). A central extension G̃ of the discrete 2-group associated to G by
A is a 2-group s.t.:

• π0(G̃) � G

• π1(G̃, I) � A

Here I is the identity object for the monoidal structure and π1 means the
automorphism group of the identity object.

3.2 Action of a group on a bicategory

Lets recall first the notion of a bicategory (one of the versions of a lax
2-category) [3].

Definition 5 A bicategory C is given by:

• Objects A, B, ..
• Categories C(A, B) (whose objects are called 1-arrows and morphisms are

called 2-arrows)
• Composition functors C(A, B) × C(B, C) −→ C(A, C)
• Natural transformations (associativity constraints)

C(A, B) × C(B, C) × C(C, D) � C(A, B) × C(B, D)

⇐==
==

==
==

==
==

==

C(A, C) × C(C, D)
�

� C(A, D)
�

(8)

This data should satisfy coherence axioms of the MacLane pentagon form.

Remark As a bicategory with one object is the same as a monoidal category
the coherence axioms should become clear (though lengthy to write).

Definition 6 Let C and D be two bicategories. A functor F : C → D
consists of:

• For each object A ∈ Ob(C) an object F(A) ∈ Ob(D)
• A functor FAB : C(A, B) → D(F(A),F(B)) for any two objects A, B ∈

ObC
• A natural transformation
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C(A, B) × C(B, C) � C(A, C)

⇐==
==

==
==

==
==

==

D(F(A),F(B)) ×D(F(B),F(C))

FAB ×FBC

�
� D(F(A),F(C))

FAC

�

(9)

This natural transformation should be compatible with the associativity con-
straints.

Again the comparison with monoidal categories should make it clear what are
the compatibilities.

Definition 7 Let F and G be two functors between C and D. A natural
transformation (Ξ, ξ) is given by:

• A functor ΞAB : D(F(A),F(B)) → D(G(A),G(B)) for each pair of objects
• A natural transformation

C(A, B)
FAB � D(F(A),F(B))

⇐==
==

==
==

==
==

=

ξA
B

G
A
B

�
D(G(A),G(B))

ΞAB

�

(10)

These should be compatible with the structures.

Definition 8 Given two natural transformations (Ξ1, ξ1), (Ξ2, ξ2) : F → G
a modification is a natural transformation φAB : Ξ1

AB → Ξ2
AB such that

Ξ1
ABFAB ===

ξAB⇒ GAB

Ξ2
ABFAB

φABFAB
�

��������

===
ξAB⇒ GAB

Id
�

��������� (11)

commutes for all A and B and is compatible with all the structures.
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Now we can define an action of a group on a bicategory:

Definition 9 Let G be a group and C a bicategory. An action of G on C is
given by a functor Fg : C → C for each g ∈ G and a natural transformation
(Ξ, ξ)g,h : Fgh → FgFh such that there exists a modification

Fg1g2g3
(Ξ, ξ)g1,g2g3 � Fg1Fg2g3

⇐==
==

==
==

==
==

==

φ g
1
,g

2
,g

3

Fg1g2Fg3

(Ξ, ξ)g1g2,g3

� (Ξ, ξ)g1,g2Fg3 � Fg1Fg2Fg3

Fg1((Ξ, ξ)g2,g3)

�

(12)

for any g1, g2, g3 ∈ G satisfying a cocycle condition.

3.3 2-gerbes and central extensions of 2-groups

Let A be an abelian group.

Definition 10 A 2-gerbe (over a point) with band A is a bicategory C such
that:

• It is a 2-groupoid: every 1-arrow is invertible up to a 2-arrow and all
2-arrows are invertible.

• It is connected: there exists a 1-arrow between any two objects and a
2-arrow between any two 1-arrows.

• The automorphism group of any 1-arrow is isomorphic to A.

In other words all the categories C(A, B) are 1-gerbes with band A and the
product maps are maps of 1-gerbes.

Theorem 3 Suppose G acts on a 2-gerbe C with band A. To this we can
associate a central extension G̃ of the discrete 2-group associated to G by A.

The construction is the same as in 1 (with more diagrams to check). A better
way of presenting the construction is using descent: a 2-gerbe with an action
of G is the same as a 2-gerbe over BG (we haven‘t defined 2-gerbes in general.
See [4]). Using the same cover as before pt → BG we get a gerbe over G which
is multiplicative. That means that we are given an isomorphism

p∗1(F) ⊗ p∗2(F) → m∗(F) (13)
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satisfying a cocycle condition on the threefold product (here m : G×G → G is
the multiplication). This gerbe gives in turn an A-torsor over G×G giving the
Hom-spaces of the 2-group and the multiplicative structure gives the monoidal
structure.

This construction also works in the other direction. Suppose we have a
central extension of the discrete 2-group G associated to the group G by the
abelian group A. Then the Hom spaces define an A-torsor HOM over G×G
and the existence of composition means that over G×G×G we are given an
isomorphism:

p∗12(HOM) ⊗ p∗23(HOM) → p∗13(HOM) (14)

satisfying a cocycle condition over the fourfold product (associativity). Here
pij are the projections. Thus we have a gerbe over G with band A. Let’s
denote this gerbe by F .

The existence of the monoidal structure implies that we are given an
isomorphism over G × G

p∗1(F) ⊗ p∗2(F) → m∗(F) (15)

satisfying a cocycle condition on the threefold product. Hence the gerbe is
multiplicative. In other words we have:

Lemma 1 A central extension of the discrete 2-group associated to G by A
is the the same as a 2-gerbe over BG with band A.

Actually also here we have an equivalence of categories.

Remark 2 Today’s technology ([8])enables one to define n-gerbes with nice
descent theory. So we can generalize the whole discussion to:

Theorem 4 The category of n-gerbes with band A and with action of G is
equivalent to that of central extensions by A of the discrete n-group associated
to G.

This will be done in another paper.

4 2-Tate spaces and 2-groups

In this section we introduce the notion of a locally compact object introduced
by Beilinson and Kato [2, 7].

4.1 Locally compact objects in a category

Definition 11 Let C be a category. The category of locally compact objects
of C is the full subcategory of Ind(Pro(C)) consisting of functors that are iso-
morphic to diagrams of the following sort: Let I, J be linearly directed orders.
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Let F : Iop×J → C be a diagram such that for all i, i′ ∈ I and j, j′ ∈ J i ≤ i′

and j ≤ j′ the diagram:

F (i′, j) � F (i′, j′)

F (i, j)
�

� F (i′, j)
�

(16)

is both cartesian and cocartesian and vertical arrows are surjections and hor-
izontal arrows are injections. A compact object is a locally compact object
isomorphic to one which is constant in the Ind direction.

The following statement follows easily from set-theory and the Yoneda
lemma:

Lemma 2 If F is locally compact then the functors lim← lim→ F and lim→ lim← F are
naturally isomorphic.

From now on we will assume that the indexing sets I, J are countable.
Suppose C is an exact category. Say a sequence of locally compact objects

is exact if it can be represented by a map of diagrams F1 → F2 → F3 :
Iop × J → C where all the arrows are exact in C. A routine check shows :

Lemma 3 The category of locally compact objects of C is exact.

Remark 3 Note that if C is Abelian (and nontrivial) the category of locally
compact objects is not Abelian.

Using the standard reindexing trick (Appendix of [1]) we also get

Lemma 4 Let F1 → F2 be an admissible injection (w.r.t. the exact structure)
of compact objects then coker(F1 → F2) is also a compact object.

Lemma 5 Let F1 and F2 be two admissible compact subobjects of F , then
F1 ×F F2 is also compact.

Now we can define inductively n-Tate spaces (we still assume that the indexing
sets are countable):

Definition 12 A 0-Tate space is a finite dimensional vector space. Suppose
we have defined the category of n-Tate spaces. A n + 1-Tate space is a locally
compact object of n-Tate spaces. A lattice of an (n + 1)-Tate space is an
admissible compact subobject.

Note that any 2-Tate space is of the form V((t)) where V is a 1-Tate space.
An example of a lattice in this case is V [[t]].
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4.2 Some facts on 1-Tate spaces

We have from the previous section that:

Lemma 6 The category of 1-Tate spaces is an exact category with injections
set-theoretic injections and surjections dense morphisms.

Recall also the notion of the determinant grebe associated to a Tate space V .
From now on we will denote it by DV .

Lemma 7 Let
0 → V ′ → V → V ′′ → 0 (17)

be an admissible exact sequence of Tate spaces. Then we have an equivalence
of Gm-gerbes

DV′ ⊗DV′′ → DV (18)

such that if V1 ⊂ V2 ⊂ V3 then we have a natural transformation

DV1 ⊗DV2/V1 ⊗DV3/V2
� DV1 ⊗DV3/V1

⇐==
==

==
==

==
==

==

DV2 ⊗DV3/V2

�
� DV3

�

(19)

and if we have V1 ⊂ V2 ⊂ V3 ⊂ V4 then the cubical diagram of natural
transformations commutes.

4.3 2-Tate spaces and gerbal theories

It follows from the previous discussion that:

Lemma 8 Let V be a 2-Tate space.

1. If L′ ⊂ L are two lattices then L/L′ is a 1-Tate space.
2. For any two lattices L and L

′ there exists a third lattice L
′′ ⊂ L ∩ L

′.

Now we can define a gerbal theory.

Definition 13 Let V be a 2-Tate space. A gerbal theory D is

• For each lattice L ⊂ V a Gm-gerbe DL

• If L′ ⊂ L are two lattices then we have an equivalence

DL

φLL′ � DL′ ⊗DL/L′ (20)
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• For V1 ⊂ V2 ⊂ V3 we have a natural transformation

DV1 ⊗DV2/V1 ⊗DV3/V2
� DV1 ⊗DV3/V1

⇐==
==

==
==

==
==

==

DV2 ⊗DV3/V2

�
� DV3

�

(21)

Given V1 ⊂ V2 ⊂ V3 these natural transformations should commute on a
cubical diagram.

Now we have

Theorem 5 gerbal theories on a given 2-Tate space V form a Gm 2-gerbe
GERBV.

Let’s denote GL(V) the group of continuous automorphisms of a 2-Tate
space V. This group acts naturally on the 2-gerbe GERBV. Remark the action
is actually a strict one. We get:

Theorem 6 Let V be a 2-Tate space. Given a lattice L ⊂ V we get a Gm

central extension of the discrete 2-group associated to GL(V).

Remark 4 Using Theorem 4 we can go on and define central extensions of
discrete n-groups of automorphism of n-Tate spaces.

Application: central extension of a double loop group

Let G be a finite dimensional reductive group over a field. Let V be a finite
dimensional representation of G. From this data we get a map

G((s))((t)) → GL(V ((s))((t))) (22)

where G((s))((t)) is the formal double loop group of G. From this embedding
we get a central extension of the discrete 2-group G((s))((t)).

A variant

There is another way to think about Gm-gerbes.

Definition 14 Let Pic be the symmetric monoidal groupoid of 1-dimensional
vector spaces. A Gm-gerbe is a module category over this monoidal cate-
gory equivalent to Pic as module categories (where Pic acts on itself by the
monoidal structure).



34 S. Arkhipov and K. Kremnizer

This definition is equivalent to the definition given before. Now, following
Drinfeld [6] we define a graded version of a Gm-gerbe.

Definition 15 Let PicZ be the symmetric monoidal groupoid of Z-graded
1-dimensional vector spaces with the super-commutativity constraint (a⊗ b →
(−1)deg(a)deg(b)b ⊗ a). A Z-graded Gm-gerbe is a module category over PicZ

equivalent to it as module categories.

We have a map from PicZ to the discrete 2-group Z which sends a
1-dimensional graded vector space to its degree. This map induces a func-
tor between graded Gm-gerbes and Z-torsors. We can now repeat the entire
story with Z-graded gerbes. For instance, instead of a determinant theory we
will get a graded determinant theory. The Z-torsor corresponding to it will be
the well known dimension torsor of dimension theories. A dimension theory
for a 1-Tate space is a rule of associating an integer to each lattice satisfying
conditions similar to those of a determinant theory.

In this way we will get for a 2-Tate space an action of GL(V) on the
Gm-gerbe of dimension torsors. This action will give us a central extension
of the group GL(V) (not the 2-group!). And similarly we can get central
extensions of groups of the form G((s))((t)). Thus we see that if we work
with graded determinant theory we get a central extension of the discrete
2-group GL(V) which induces the central extension of the group GL(V) (For
this central extension see [9]).

Remark 5 Another reason to work with graded theories is that they behave
much better for the direct sum of 1-Tate spaces. It is true that the determinant
gerbe of the direct sum of 1-Tate spaces is equivalent to the tensor product of
the gerbes but this equivalence depends on the ordering. If one works with
graded determinant theories this equivalence will be canonical.
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