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Medial Axis

2.1 Introduction

The medial axis [24] transform associates a skeleton-like structure to a shape,
which encodes its geometry. The medial axis itself (or skeleton) is the center
of discs of maximal radii inscribed in the shape. The medial axis transform
stores in addition the maximal radii.

More precisely, represent a shape by an open connected bounded set in
the plane, denoted Ω. Let B(p, r) denote the open disc of center p ∈ R

2 and
radius r > 0. One says that such a disc is maximal in Ω if and only if it is
included in Ω, and no disc in which it is (strictly) contained is included in
Ω. The skeleton of Ω, denoted Σ(Ω), is the set of all p such that B(p, r) is
maximal in Ω for some r > 0, i.e., Σ(Ω) is the set of loci of the centers of
maximal discs. We shall also denote Σ∗(Ω) as the set of pairs (p, r) such that
B(p, r) is maximal. This is the medial axis transform (MAT). We have the
following proposition.

Proposition 2.1. The medial axis transform, Σ∗(Ω), uniquely characterizes
Ω.

Proof. Let
Ω̃ =

⋃
(p,r)∈Σ∗(Ω)

B(p, r).

By definition ofΣ∗, we have Ω̃ ⊂ Ω and we want to prove the reverse inclusion.
For x ∈ Ω, let rx = dist(x,Ωc) so that b(x, rx) ⊂ Ω and define

Gx = {y ∈ Ω : B(y, ry) ⊃ B(x, rx)}

and r∗x = sup ry, y ∈ Gx. By definition, there exists a sequence (yn) such
that ryn → r∗x, and, since Ω is bounded, we can assume (replacing yn by a
subsequence is needed) that yn → y∗ ∈ Ω. Obviously, y∗ cannot belong to ∂Ω
since this would imply ryn → 0 and r∗x ≥ rx > 0 (since x ∈ Gx). Also, since
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B(yn, ryn) ⊂ Ω, we have at the limit B(y∗, r∗x) ⊂ Ω which implies B(y∗, r∗x) ⊂
Ω because Ω is open. Similarly, passing to the limit in the inclusion B(x, rx) ⊂
B(yn, ryn) implies x ∈ B(y∗, r∗x).

We now show that B(y∗, r∗x) is maximal, which will prove that Ω ⊂ Ω̃,
since we started with an arbitrary x ∈ Ω. But if B(y∗, r∗x) is included in
some ball B(y, r) ∈ Ω, it will be a fortiori included in B(y, ry) and since x ∈
B(y∗, r∗x), we see that y must be in Gx with ry > r∗x, which is a contradiction.

2.2 Structure of the Medial Axis

We assume that Ω is the interior of a piecewise smooth Jordan curve. Some
structural properties of the skeleton can be obtained under some assumptions
on the regularity of the curve [46]. The assumption is that the smooth arcs
are analytic, which means infinitely differentiable, and such for each t, m(t)
is the limit of its Taylor series, except at a finite number of points; for these
exceptional points, it is required that m has both left and right tangents. The
simplest example of a curve satisfying this assumption is a polygon.

For such a curve, it can be shown that all but a finite number of points
in the skeleton are such that the maximal disc B(p, r) meets the curve m at
exactly two points. Such points on the skeleton are called regular. Non-regular
points separate into three categories.

The first type is when the maximal disc, B(m, r), meets the curve in more
than two connected regions. Such points are bifurcation points of the skeleton.
The second possibility is when there is only one connected component; then,
there are two possibilities: either m is the center of an osculating circle to
the curve, or there exists a concave angle at the intersection of the curve
and the maximal disc. The third possibility is when there are two connected
components, but one of them is a sub-arc of the curve. This happens only
when the curve has circular arcs.

The skeleton itself is connected, and it is composed of a finite number of
smooth curves.

2.3 The Skeleton of a Polygon

There are at least two reasons for which the skeletons of polygons have prac-
tical interest. The first one is that digital shapes can always be considered
as polygons (because they are described by a finite number of points), and
numerical algorithms for skeleton computation rely on the description of the
skeletons of polygons. The second one is that truly polygonal shapes (not only
at the discretization level) are very common, because man-made objects often
are polyhedrons.

Consider a closed polygon, without self-intersections. Denote its vertices
m1, . . . ,mN ,mN+1 = m1. Let si denote the ith edge, represented by open line
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segments (mi,mi+1), for i = 1, . . . , N . A maximal disc within the polygon
has to meet the boundary at two points. We separate the cases depending on
whether these points are on edges or vertices.

Let B(m, r) be a maximal disc. Assume first that it is tangent to si at
some point p ∈ si. Denote Ti = (mi+1 −mi)/|mi+1 −mi| the unit tangent to
si and Ni the unit normal. We assume that the orientation is such that Ni
points inward. We must have

p = m− rNi and p = mi + tTi

for some t ∈ (0, |mi+1 −mi|). Taking the dot product of both equations with
Ti and computing the difference yields

t = (m−mi)TTi.

We therefore obtain the fact that B(m, r) is tangent to si if and only if

m− rNi = mi + ((m−mi)TTi)Ti
with 0 ≤ (m−mi)TTi ≤ |mi+1 −mi|.

We can distinguish three types of maximal discs: B(m, r).

1. Bitangents: there exists i �= j with

m = mi + ((m−mi)TTi)Ti + rNi = mj + ((m−mj)TTj)Tj + rNj and
0 ≤ (m−mi)TTi ≤ |mi+1 −mi|, 0 ≤ (m−mj)TTj ≤ |mj+1 −mj|.

2. Discs that meet the boundary at exactly one edge and one vertex: there
exists i �= j such that

m = mi + ((m−mi)TTi)Ti + rNi,

0 ≤ ((m−mi)T )Ti ≤ |mi+1 −mi|
and |m−mj | = r.

3. Discs that meet the boundary at two vertices: there exists i �= j such that
|m−mi| = |m−mj | = r.

Note that a maximal ball can meet a vertex only if this vertex points inward
(concave vertex). In particular, with convex polygons, only the first case can
happen.

The interesting consequence of this result is that the skeleton of a polygon
is the union of line segments and arcs of parabola. To see this, consider the
equations for the three previous cases. For bitangents, we have

r = (m−mi)TNi = (m−mj)TNj

which implies
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(m−mi)T (Nj −Ni) = (mj −mi)TNj .

If Ni �= Nj, this is the equation of a line orthogonal to Ni − Nj . The case
Ni = Nj can never occur because the normals have to point to the interior of
maximal balls and therefore coincide only if si = sj .

For the second case, we have

m−mi = ((m−mi)T )TiTi + |m−mj |Ni

which yields
(m−mi)TNi = |m−mj |.

This is the equation of a parabola. To see why, express m as m = mi +αTi +
βNi. The previous equations yield β ≥ 0 and

β2 = (α− (mj −mi)TTi)2 + (β − (mj −mi)TNi)2

or
2(mj −mi)TNiβ = (α− (mj −mi)TTi)2 + ((mj −mi)TNi)2.

Finally, in the last case, the skeleton coincides with the line of points which
are equidistant from the two vertices. We have therefore proved the following
fact (which comes in addition to the properties discussed in Section 2.2).

Proposition 2.2. The skeleton of a polygonal curve is a union of line seg-
ments and parabolas. For a convex polygon, the skeleton only contains line
segments.

2.4 Voronöı Diagrams

2.4.1 Voronöı Diagrams of Line Segments

The previous computation and the most efficient algorithms to compute skele-
tons are related by the theory of Voronöı diagrams. We start with their defi-
nition:

Definition 2.3. Let F1, . . . FN be closed subsets of R
2. The associated Voronöı

cells are the sets Ω1, . . . , ΩN defined by

x ∈ Ωi ⇔ d(x, Fi) < min
j �=i

d(x, Fj).

The union of the boundaries,
⋃N
i=1 ∂Ωi, forms the Voronöı diagram associated

to F1, . . . , FN .
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In the case of a polygonal curve, the skeleton is included in the Voronöı
diagram of the closed line segments that form the curve. A point of the skele-
ton has indeed to meet at least two segments (sometimes at their common
vertices), and is at a strictly larger distance from the ones it does not inter-
sect. It therefore belongs to the boundary of the cells. The converse is false:
a point from the diagram is not necessarily in the skeleton (some points may
correspond to external balls).

There exist very efficient algorithms to compute these diagrams. We shall
not detail them here, but references can be found in [166, 159].

The notion of Voronöı diagrams for a polygon can be extended to a gen-
eral curve. The question is to find sub-arcs F1, . . . , FN of the curve with the
property that their diagram contains the curve’s skeleton. What we have said
concerning polygons applies, except in one case: when a maximal disc meets
an arc at two distinct points. This could not happen with straight lines, and
a condition ensuring that this does not happen for a given arc is as follows
[126]. Recall that a vertex of a smooth curve m is a local extremum of the
curvature.

Theorem 2.4. A sub-arc of a C2 closed curve which has two points belonging
to a maximal disc necessarily contains a vertex.

Therefore, it suffices to cut the curve at vertices to be sure that the ob-
tained arcs cannot hold two contacts with maximal discs.

2.4.2 Voronöı Diagrams of the Vertices of Polygonal Curves

The medial axis can, in some sense, also be interpreted as the skeleton of the
infinite family of points in the curve. This leads to the question of whether
the Voronöı diagram of the sequence of points in a discrete curve is a good
approximation of the skeleton when the discretization step goes to 0. The
answer is: not at all, and almost yes.

The cells of the Voronöı diagram of a finite family of points are polygons,
which makes them even simpler than the diagram of line segments. Moreover,
there is an extensive literature on their computation, which is one of the basic
algorithms in discrete and computational geometry [166, 162].

In the diagram of a polygonal curve, there are essentially two types of
segments: those containing points which are equidistant to two consecutive
vertices, and the rest. When the discretization is fine enough, the first type
of segments cannot belong to the skeleton, and have to be pruned out of the
Voronöı diagram. They are easily detectable, since they contain the midpoint
of the two consecutive vertices, and therefore cross the curve. The compu-
tation of the skeleton of a discrete curve can therefore be done as follows:
first compute the Voronöı diagram of the vertices. Then remove the segments
that are not entirely in the interior of the curve. Figure 2.1 illustrates how
discretization affects the skeleton in a simple example.
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Fig. 2.1. Comparison of medial axes computed using Voronöı diagrams with dif-
ferent degrees of discretization.

2.5 Thinning

Thinning algorithms create their own kind of skeleton which does not neces-
sarily correspond to the centers of maximal discs. They are, however, quite
efficient and generally easy to implement. The principle is to progressively
“peel” the boundary of the region until only a skeletal structure remains. One
of the first methods is the Hilditch algorithm [111], in which a sequence of
simple tests are performed to decide whether a pixel must be removed or not
from the region. Another similar point of view uses the erosion operation in
mathematical morphology [182]. We briefly describe the latter.

Define a structuring elementB to be a symmetric subset of R
2 (for example

a small disc centered at 0). Using B, we define a sequence of operators that
apply to a set X and creates a new set:

EB(X) = {x : x+B ⊂ X} (erosion),
DB(X) = {x : x+B ∩X �= ∅} (dilation),
OB(X) = DB ◦EB(X) (opening),
LB(X) = X \OB(X).

Erosion is like peeling X with a knife shaped like B. Dilation spreads matter
around X , with a thickness once again provided by B. Opening is an erosion
followed by a dilation, which essentially puts back what the erosion has re-
moved, except the small structures which have completely been removed and
cannot be recovered (since there is nothing left to spread on). The last oper-
ation, LB, precisely collects these lost structures (called linear parts), and is
the basic operator for the morphological skeleton which is defined by

S(X) = ∪Nn=1LB(EnB(X)).

This is the union of the linear parts of X after successive erosions.

2.6 Sensitivity to Noise

One of the main issues with the medial axis transform is its lack of robust-
ness to noise. Figure 2.2 provides an example of how small variations at the
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Fig. 2.2. Effect of a small shape change in the boundary on the skeleton of a
rectangular shape.

boundary of a shape can result in dramatic changes in the skeleton. In fact, we
have seen in our discussion of polygons that the addition of a convex vertex
automatically results in a branch in the skeleton reaching to it.

Because of this, many skeletonization algorithms come with a way to prune
the skeleton of spurious branches. There are two ways to do this.

• Prior smoothing of the curve. Curve smoothing algorithms have been de-
scribed in Section 6. For polygons, smoothing can be done by removing
small structures of flattening vague angle. It is interesting to note that
smoothing curves does not always result in simplifying the skeleton (see
[16] for a discussion).

• Pruning. Branches can be removed after the computation of the skeleton.
This can be based on several principles, since branches resulting from small
incidents at the boundary can be detected on the skeleton [93].

2.7 Recovering the Initial Curve

Given a parametrized sub-arc of the medial axis transform, one can explicitly
reconstruct the part of the boundary ∂Ω which is associated to it (the contact
points of the maximal balls with ∂Ω). Assume that a C1 function γ, from (a, b)
to Σ∗(Ω) is given. Denote γ(u) = (m(u), r(u)).

Without loss of generality, assume that u �→ m(u) is arc length (|ṁu| = 1).
Assume also that B(m(u), r(u)) has exactly two contacts with ∂Ω (this is
typically true on Σ∗(Ω) except at a finite number of points).

If x ∈ ∂Ω ∩ B(m(u), r(u)), then |x − m(u)| = r(u) and, for all ε �= 0,
|x−m(u+ ε)| ≥ r(u+ ε) (because B(m(u+ ε), r(u+ ε)) ⊂ Ω). Thus, letting
f(ε) = |x−m(u+ ε)|2 − r(u + ε)2, we have f(0) = ∂εf(0) = 0, with

∂εf(0) = −2
〈
x−m(u) , ṁu(u)

〉
+ 2r(u)ṙu(u).

Solving this equation, we obtain two solutions for x, given by
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x+(u) = m(u) + r(u)
[
−ṙu(u)ṁu(u) +

√
1 − ṙu(u)2q(u)

]
,

x−(u) = m(u) + r(u)
[
−ṙu(u)ṁu(u) −

√
1 − ṙu(u)2q(u)

]
,

with q(u) ⊥ ṁu(u), |q(u)| = 1. Note that this computation shows that |ṙu| < 1
is a necessary condition for the existence of two distinct solutions.

The curvature of the boundary can also be related to the medial axis via
an explicit formula. Let ρ+ (resp. ρ−) be the vector −ṙuṁu+

√
1 − ṙ2uq (resp.

−ṙuṁu−
√

1 − ṙ2uq) so that x+ = m+ rρ+ and x− = m+ rρ−. The following
discussion holds for both arcs and we temporarily drop the + and − indices
in the notation.

We have x = m + rρ; ρ is a unit vector, and since the maximum disc is
tangent to the curve at x, ρ is normal to the curve. Since r is positive and ρ is
a radial vector for a maximal disc, ρ points outward from the curve at point
x and therefore is oriented in the opposite direction to the normal (assuming
that the curve is positively oriented). Introduce the vector h = ṁu + ṙuρ. We
have hTρ = −ṙu + ṙu = 0 so that h is orthogonal to ρ. Since |ρ| = 1, ρ̇u is
also orthogonal to ρ and there exists a number c such that ρ̇u = −ch (we have
|h|2 = 1 − ṙ2u > 0 so that h �= 0). Since ρ = −N , we also have

ρ̇u = ρ̇s
ds

du
= κ

ds

du
T

where κ is the curvature of the considered arc of curve. Likewise, ẋu =
(ds/du)T so that ρ̇u = κẋu. We now use this relation to compute κ: we
have ẋu = ṁu + ṙuρ+ rρ̇u = (1 − cr)h. This implies

κ = −c/(1 − cr)

which provides a very simple relation between c and the curvature.
To be complete, it remains to compute c. From ρ̇u = −c(ṁu + ṙuρ), we

get
ρ̇Tu ṁu = −c(1 + ṙuρ

T ṁu) = −c(1 − ṙ2u).

We also have

−r̈uu = ∂u(ρT ṁu) = ρ̇Tu ṁu + ρT m̈uu = ρ̇Tu ṁu +KρT q

where K is the curvature of the skeleton. Writing ρT q = ε
√

1 − ṙ2u with
ε = ±1, we get the equation:

ρ̇Tu ṁu = −r̈uu − εK
√

1 − ṙ2u

which yields (reintroducing the + and − subscripts for each contact) c+ =
r̈uu/(1 − ṙ2u) +K/

√
1 − ṙ2u and c− = r̈uu/(1 − ṙ2u) −K/

√
1 − ṙ2u.
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2.8 Generating Curves from Medial and Skeletal
Structures

The previous section described how to retrieve a curve once its medial axis
transform has been computed. We want here to discuss the issue of specifying
a curve by providing the medial axis transform.

This is a more difficult problem, because not any combination of curves
and radii is a valid medial axis. Even when the skeleton consists of only one
curve, we have already seen conditions in the above section, like |ṙu| < 1 at
all points in the interior of the medial curve, that are required in the skeletal
representation. We must also ensure that the specified curve is regular on both
sides of the axis, which, since ẋu = (1−cr)h, must ensure that 1−cr does not
vanish along the curve. In fact, 1− cr must be positive. To see this, note that
we have proved that 1 − cr = (1 − rκ)−1. At a convex point (κ > 0), r must
be smaller than the radius of curvature 1/κ so that 1−rκ > 0. Since points of
positive curvature always exist, we see that 1− cr must remain positive along
the curve in order to never be zero. Using the expression for c found in the
previous section, this provides a rather complex condition:

1 − rr̈uu
1 − ṙ2u

>
|K|r√
1 − ṙ2u

. (2.1)

To ensure continuity of the reconstructed curve when branches meet at
the extremities of the axis, we need |ṙu| = 1 there. Also, if the medial axis has
multiple branches, the corresponding parts of the curve must have the same
limits on both sides. More conditions are needed to ensure that the contacts at
these points are smooth. This provides a rather complicated set of constraints
that must be satisfied by a generative medial axis model. This can be made
feasible, however, in some simple cases, as shown in the following examples.

2.8.1 Skeleton with Linear Branches

Let’s consider the situation in which each branch of the medial axis is a line
segment, i.e., K = 0. The constraints on r are then r > 0, ṙ2u < 1 and
rr̈uu + ṙ2u < 1. The last inequality comes from the fact that cr < 1 ⇔ rr̈uu <
1 − ṙ2u. Introducing z = r2/2, this can also be written z̈uu < 1.

Let’s assume that z̈uu = −f with f > −1 and see what happens with the
other conditions in some special cases.

Integrating twice, we find

żu(u) = żu(0) −
∫ u

0

f(t)dt

z(u) = z(0) + użu(0) −
∫ u

0

(u− t)f(t)dt. (2.2)
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Shapes with a Single Linear Branch

Start with the simplest situation in which the medial axis is composed of a
single segment, say m(u) = (u, 0), u ∈ [0, 1]. Since |ṙu| = 1 at the extremities
and the medial axis cannot cross the curve, we need ru(0) = 1 and ṙu(1) = −1.
Denote

M0(u) =
∫ u

0

f(t)dt

M1(u) =
∫ u

0

tf(t)dt.

Using the identities żu(0) = r(0), żu(1) = −r(1), z(0) = r(0)2/2 and z(1) =
r(1)2/2, we can solve (2.2) with respect to r(0) and r(1) to obtain:

r(0) =
M0(1) +M0(1)2/2 −M1(1)

1 +M0(1)

r(1) = M0(1) − r(0) =
M0(1)2/2 +M1(1)

1 +M0(1)
.

These quantities must be positive, and we will assume that f is chosen with
this property (note that the denominator is always positive since f > −1).
These equations imply that z, and therefore m, are uniquely determined by f .
Of course, this does not imply that the remaining constraints, which are (in
terms of z) z > 0 and ż2

u < 2z are satisfied on (0, 1). Since the latter implies
the former, we can concentrate on it, and introduce the function h(u) =
2z(u) − żu(u)2. We have h(0) = r(0)2 and h(1) = r(1)2. Moreover,

ḣu = 2żu(1 − z̈uu) = 2żu(1 + f).

Since 1 + f > 0, ḣu vanishes for zu = 0, or M0(u) = r(0). Note that ḣu(0) =
2r(0)(1 + f) > 0 and ḣu(1) = −2r(1)(1 + f) < 0 so ḣu changes signs over
(0, 1).

Also, since the extrema of h only occur when żu > 0 (and h = 2z at these
points), h will be positive under any condition that ensures that z > 0 when
żu = 0, which reduces to r(0)2/2 +M1(u) > 0 whenever M0(u) = r(0).

There is an easy case: if f > 0, then M1(u) > 0 and the condition is
satisfied. Moreover, if f > 0, then M1(1) ≤ M0(1) also so that r(0) and r(1)
are positive. However, as Figure 2.3 shows, interesting shapes are obtained
when f < 0 is allowed.

Shapes with Three Intersecting Linear Branches

Let’s now consider a slightly more complex example with one multiple point
and three linear branches. So we have three lines, �1, �2, �3, starting from a sin-
gle point p0. Let �i = {p0 + uwi, u ∈ [0, si]} where w1, w2, w3 are unit vectors.
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Fig. 2.3. Shapes with horizontal medial axes. The shapes are obtained with
∂2

uu(r2) = −2f ; f is in the left column and the curves are in the right one.

Let qi be a unit vector completing wi in a positively oriented orthonormal
frame. Finally, let r(1), r(2) and r(3) be the radii along each of these lines and
z(i) = (r(i))2/2. Assume that z̈(i)

uu = −fi(u/si) for u ∈ (0, si), where fi > −1
as before, and is defined over [0, 1].

We need to work out the compatibility conditions for the r(i) at the
intersection point, u = 0. Assume that the branches are ordered so that
(w1, w2), (w2, w3) and (w3, w1) are positively oriented. The compatibility con-
ditions are

x
(1)
+ (0) = x

(2)
− (0), x(2)

+ (0) = x
(3)
− (0), x(3)

+ (0) = x
(1)
− (0).

Identifying the norms, we see that the radii must coincide: r(1)(0) = r(2)(0) =
r(3)(0) := r0. So, defining h1, h2, h3 by
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h1 = ρ
(1)
+ (0) = ρ

(2)
− (0), h3 = ρ

(2)
+ (0) = ρ

(3)
− (0), h2 = ρ

(3)
+ (0) = ρ

(1)
− (0),

we see that the triangle (p0 +h1, p0 +h2, p0 +h3) has p0 as circumcenter, and
the lines defining the axis are the perpendicular bisectors of its edges.

Given these remarks, it is easier to organize the construction by first
specifying p0 and the three directions h1, h2, h3. This specifies the vectors
w1, w2, w3: given i ∈ {1, 2, 3}, denote the other two indices by j and j′ . Then

wi = (hj + hj′)/|hj + hj′ |

and, from the expression of ρ, we see that this also specifies ṙ(i)u (0), with

ṙ(i)u (0) = −zTi hj = − 1√
2

√
1 + hTj hj′ = − cos(θi/2)

where θi is the angle between hj and h′j .
This gives, for u ∈ [0, si]

ż(i)
u (u) = ż(i)

u (0) −
∫ u

0

f (i)(t/si)dt = −r0 cos
θi
2

− siM
(i)
0 (u/si)

and

z(i)(u) =
r20
2

− r0u cos
θi
2

− siuM
(i)
0 (u/si) + s2iM

(i)
1 (u/si).

Since we need ṙ
(i)
u (si) = −1, we have z(i)(si) = r(i)(1)2/2 and ż

(i)
u (si) =

−r(i)(1). Identifying r(i)(1)2 in the two equations above yields

r20 cos2
θi
2

+ 2r0si cos
θi
2
M

(i)
0 (1) + s2iM

(i)
0 (1)2

= r20 − 2r0si cos
θi
2

− s2iM
(i)
0 (1) + s2iM

(i)
1 (1)

or

(
M

(i)
0 (1)2 + 2M (i)

0 (1) − 2M (i)
1 (1)

)s2i
r20

+ 2 cos
θi
2
(
1 +M

(i)
0 (1)

) si
r0

− (1 − cos2
θi
2

) = 0. (2.3)

Assuming that f (i) satisfies

M
(i)
0 (1)2/2 +M

(i)
0 (1) −M

(i)
1 (1) > 0,

which a condition already encountered in the previous case, this equation
has a unique solution, specifying si. The curve is then uniquely defined by
p0, h1, h2, h3, f

(1), f (2), f (3), with constraints on the f (i)’s similar to those ob-
tained in the one-branch case. Examples are provided in Figure 2.4.
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Note that this construction does not really specify the medial axis, but only
the orientation of its branches (since the si’s are constrained by the rest of
the parameters). One possibility to deal with this is to relax the specification
of the f ′

is by adding a factor αi, using

z̈(i)
uu = −αif (i).

This implies that M (i)
0 and M (i)

1 must be replaced by αiM
(i)
0 and αiM

(i)
1 in

the computation above, and equation (2.3), with fixed si, becomes a second-
degree equation in αi. The consistency conditions (existence of a solution to
this equation, requirement that αif (i) > −1, etc.) are, however, harder to
work out in this case.

Fig. 2.4. Shapes generated from a medial axis with three linear branches.

Shapes with Generic Linear Branches

Conceptually, the above construction can be generalized to any skeleton with
a ternary tree structure and linear branches. Indeed, the derivative ṙu is
uniquely specified at the extremities of any branch: it is −1 if the branch
ends and − cos θ/2 at an intersection, where θ is specified by the branch ge-
ometry as above. Also, the radii at all branching points are uniquely specified
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as soon as one of them is (the constraint propagates along the tree). Of course,
as before, the fact that the solution is uniquely defined does not guarantee
consistency, which become harder to specify when the structure gets more
complex. Finally, it is important to note that, for all the previous methods,
even if the consistency conditions are satisfied, there is still a possibility for
the shape to self-intersect non-locally (without singularity).

2.8.2 Skeletal Structures

One way to simplify the construction of a shape from a skeleton is to relax
some of the conditions that are associated to medial axes. Skeletal structures,
which we briefly describe now, have been introduced in [57, 58, 59] with this
idea in mind.

There are two parts in Damon’s skeletal structure. The first one is the
skeletal set (the skeleton), which is a union of smooth open curves that meet
at singular points (branching points or end-points) with well-defined tangents
at their extremities.

The second part of the skeletal structure is the vectors which correspond
to rρ in our previous notation, with some smoothness and consistency condi-
tions; referring to [57] for details, here are the most important ones. Like with
the medial axis, each point in the smooth curves of the skeletal set carries
two of these vectors (one on each side of the curve), and singular points can
carry one vector (end-points) or more than two at branching points. When
one continuously follows one of these vectors along a smooth branch until a
branching point, it must have a limit within the set of vectors at this point,
and all vectors at this point can be obtained by such a process. At end-points,
there is a unique vector which is tangent to the curve.

To summarize, a skeletal structure requires a skeletal set, say S, and, at
each point p in the skeletal set, a set U(p) of vectors that point to the generated
curve, subject to the previous conditions. The generated curve itself is simply

C = {p+ U(p), p ∈ S} .

The medial axis transform does induce a skeletal structure, but has additional
properties, including the facts that, at each p, all vectors in U(p) must have
the same norm, and if p is on a smooth curve, the difference between the two
vectors in U(p) must be perpendicular to the curve. These properties are not
required for skeletal structures.

Most of the analysis done in the previous section on the regularity of the
generated curve with the medial axis transform can be carried over to skeletal
structures. Along any smooth curve in the skeletal structure, one can follow
a smooth portion of the generated curve, writing

x(u) = m(u) + r(u)ρ(u)

and assuming an arc-length parametrization in m(u). Letting c = −ṁT
u ρ̇u, we

can write, for some α ∈ R,
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ρ̇u = −cṁu + αρ

because ρ is assumed to be non-tangent to the skeletal set (except at its end-
points). This definition of c generalizes the one given for the medial axis, in
which we had ρ̇u = −ch = −cṁu+cρ̇uρ. Since we have ẋu = (1−cr)ṁu+(α+
ṙu)ρ, we see that cr < 1 is here also a sufficient condition for the regularity of
the curve.

We need to check that different pieces of curves connect smoothly at
branching points. With the medial axis, a first-order contact (same tangents)
was guaranteed by the fact that the generated curve was everywhere perpen-
dicular to ρ. With skeletal structures, we have (since ρ̇Tu ρ = 0)

ẋTu ρ = ṁT
uρ+ ṙu.

So, a sufficient condition for smooth contacts at branching points and at end-
points is that ṙu+ṁT

uρ vanishes at the extremities of the smooth curves (while
this quantity vanishes everywhere with the medial axis transform).

Obviously, these conditions are much less constraining than those associ-
ated to the medial axis transform. One can start fixing ρ, which defines c, then
r such that rc < 1, with a few end-point conditions that must be satisfied.
This simplification that is brought to curve generation, however, comes with
a price, which is that a skeletal structure is not uniquely specified by a given
curve, as the medial axis transform was. It cannot really be qualified as a
“curve representation” like the ones we have considered so far.




