Contents

1	Intro Gabr	pduction	1
Pa	rt I Ca	arrier dynamics in quantum dots	
2	Deco	herence of intraband transitions in InAs quantum dots	9
	Thon	nas Grange, Robson Ferreira and Gérald Bastard	
	2.1	Introduction	9
	2.2	Electronic states of self-organized quantum dots	10
	2.3	Magneto-polaron states in charged QDs	12
	2.4	Anharmonic decay of polaron states	14
	2.5	Time resolved studies of pure dephasing in QDs	16
	2.6	Conclusion	22
	Refe	rences	23
3	Spec	tral diffusion dephasing and motional narrowing in single	
	semi	conductor quantum dots	25
	Guill	aume Cassabois	
	3.1	Introduction	25
	3.2	Theory	26
		3.2.1 Random telegraph noise	27
		3.2.2 Gaussian stochastic noise	28
	3.3	Experiments	29
		3.3.1 Unconventional motional narrowing	30
		3.3.2 Voltage-controlled conventional motional narrowing	32
	3.4	Conclusion	34
	Refe	rences	35

Part II Optically-induced spin coherence in quantum dots

4	Carri Edmu	er spin (nd Clark	dynamics in self-assembled quantum dots	39
	4.1	Introdu	ction	40
	4.2	Growth	and optical properties of In(Ga)As/GaAs ODs	41
	43	Snin ge	prevention and detection	46
	4.4	Spin ge	lavation and dephasing mechanisms in ODs	48
	т. т 45	Outlool		54
	Refere	ences	κ	55
5	Optic	ally indu	uced spin rotations in quantum dots	61
	Sophi	a E. Eco	nomou and Thomas L. Reinecke	
	5.1	Introdu	ction	61
	5.2	Useful	concepts	63
		5.2.1	Spin state as vector on Bloch sphere	63
		5.2.2	Composite rotations	63
	5.3	rf contr	ol of spin in quantum dots	64
	5.4	Optical	control of spin in quantum dots	65
		5.4.1	Energy levels and selection rules	66
		5.4.2	Optical spin rotations	67
	5.5	Optical	spin rotation proposals	69
		5.5.1	Optical Stark effect based rotation	69
		5.5.2	Adiabatic approaches to spin rotation	69
		5.5.3	Hyperbolic secant based rotations	70
	5.6	Outlool	k	77
	Apper	ndix		77
		5.6.1	Fidelity	77
		5.6.2	Coherent Population Trapping	78
	Refere	ences		80
6	Enser	nble spi	n coherence of singly charged InGaAs quantum dots	83
	Alex (Greilich,	Dmitri R. Yakovlev and Manfred Bayer	
	6.1	Introdu	ction	83
	6.2	Experir	nental technique	86
	6.3	Excitor	i fine structure	89
		6.3.1	Fine structure of heavy-hole exciton	89
		6.3.2	Linear dichroism in longitudinal magnetic field	91
		6.3.3	Circular dichroism in transverse magnetic field	92
		6.3.4	Spectral dependence of the electron <i>g</i> -factor	93
		6.3.5	Anisotropy of electron <i>g</i> -factor in quantum dot plane	94
	6.4	Genera	tion of spin coherence	95
	6.5	Mode-1	ocking of spin coherence	98
		6.5.1	Spin coherence time of an individual electron	99
		6.5.2	Mechanism of spin synchronization	100
		6.5.3	Tailoring of ensemble spin precession	102

	6.5.4 Temperature dependence of electron spin coherence time 106
6.6	Nuclei induced frequency focusing 107
6.7	Collective single-mode precession 113
6.8	Ultrafast optical spin rotation
6.9	Conclusions 122
Refere	ences

Part III Novel systems for coherent spin manipulation

quantum dot129Doris E. Reiter, Tilmann Kuhn and Vollrath M. Axt1307.1Introduction1307.2Model System of a single dot doped with a single Mn atom1317.3Spin flip in the heavy hole exciton system using π and 2π pulses1347.4Switching into all Mn spin states1387.4.1Switching into spin eigenstates1387.4.2Measurement by pump probe spectroscopy1417.4.3Switching into superposition states1437.5Magnetic field in Voigt configuration1447.6Conclusions147References1478Coherent magneto-optical activity in a single carbon nanotube149Gabriela Slavcheva and Philippe Roussignol1508.1Introduction1508.2Problem Formulation1528.2.1Dielectric response function of an isolated SWCNT1558.2.2Optical dipole matrix element for circularly polarised light1568.3Theoretical framework for the natural optical activity1578.4Simulation results for the natural optical activity1618.5Magneto-optical activity of a chiral SWCNT in an axial magnetic field1698.5.1Theoretical model of the nonlinear Faraday rotation in an axial magnetic field1698.6Conclusions173	7	Optic	ally controlled spin dynamics in a magnetically doped	
Doris E. Reiter, Tilmann Kuhn and Vollrath M. Axt7.1Introduction1307.2Model System of a single dot doped with a single Mn atom1317.3Spin flip in the heavy hole exciton system using π and 2π pulses.1347.4Switching into all Mn spin states1387.4.1Switching into spin eigenstates1387.4.2Measurement by pump probe spectroscopy1417.4.3Switching into superposition states1437.5Magnetic field in Voigt configuration1447.6Conclusions147References1478Coherent magneto-optical activity in a single carbon nanotube149Gabriela Slavcheva and Philippe Roussignol1508.1Introduction1508.2Problem Formulation1528.2.1Dielectric response function of an isolated SWCNT1558.2.2Optical dipole matrix element for circularly polarised light1568.3Theoretical framework for the natural optical activity1578.4Simulation results for the natural optical activity1618.5Magneto-optical activity of a chiral SWCNT in an axial magnetic field1698.5.1Theoretical model of the nonlinear Faraday rotation in an axial magnetic field1698.6Conclusions173		quant	tum dot	29
7.1Introduction1307.2Model System of a single dot doped with a single Mn atom1317.3Spin flip in the heavy hole exciton system using π and 2π pulses1347.4Switching into all Mn spin states1387.4.1Switching into spin eigenstates1387.4.2Measurement by pump probe spectroscopy1417.4.3Switching into superposition states1437.5Magnetic field in Voigt configuration1447.6Conclusions147References1478Coherent magneto-optical activity in a single carbon nanotube149Gabriela Slavcheva and Philippe Roussignol1508.1Introduction1528.2.1Dielectric response function of an isolated SWCNT1558.2.2Optical dipole matrix element for circularly polarised1568.3Theoretical framework for the natural optical activity1578.4Simulation results for the natural optical activity1618.5Magneto-optical activity of a chiral SWCNT in an axial1698.5.1Theoretical model of the nonlinear Faraday rotation in an axial magnetic field1698.5.2Simulation results for Faraday rotation1738.6Conclusions173		Doris	E. Reiter, Tilmann Kuhn and Vollrath M. Axt	
7.2Model System of a single dot doped with a single Mn atom1317.3Spin flip in the heavy hole exciton system using π and 2π pulses1347.4Switching into all Mn spin states1387.4Switching into spin eigenstates1387.4.1Switching into spin eigenstates1387.4.2Measurement by pump probe spectroscopy1417.4.3Switching into superposition states1437.5Magnetic field in Voigt configuration1447.6Conclusions147References1478Coherent magneto-optical activity in a single carbon nanotube149Gabriela Slavcheva and Philippe Roussignol1508.1Introduction1508.2Problem Formulation1528.2.1Dielectric response function of an isolated SWCNT1558.2.2Optical dipole matrix element for circularly polarised1618.5Magneto-optical activity of a chiral SWCNT in an axial1698.5Magneto-optical activity of a chiral SWCNT in an axial1698.5.2Simulation results for the nonlinear Faraday rotation in an axial magnetic field1698.5.2Simulation results for Faraday rotation in an axial magnetic field1698.5.2Simulation results for Faraday rotation in an axial magnetic field1698.5.2Simulation results for Faraday rotation in an axial magnetic field1738.6Conclusions173		7.1	Introduction	30
7.3 Spin flip in the heavy hole exciton system using π and 2π pulses 134 7.4 Switching into all Mn spin states 138 7.4.1 Switching into spin eigenstates 138 7.4.2 Measurement by pump probe spectroscopy 141 7.4.3 Switching into superposition states 143 7.5 Magnetic field in Voigt configuration 144 7.6 Conclusions 147 References 147 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 141 8.1 Introduction 150 8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 156 8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial magnetic field 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation		7.2	Model System of a single dot doped with a single Mn atom 13	31
7.4 Switching into all Mn spin states 138 7.4.1 Switching into spin eigenstates 138 7.4.2 Measurement by pump probe spectroscopy 141 7.4.3 Switching into superposition states 143 7.5 Magnetic field in Voigt configuration 144 7.6 Conclusions 147 References 147 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 150 8.1 Introduction 150 8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised light 156 8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial magnetic field 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 <t< th=""><th></th><th>7.3</th><th>Spin flip in the heavy hole exciton system using π and 2π pulses13</th><th>34</th></t<>		7.3	Spin flip in the heavy hole exciton system using π and 2π pulses13	34
7.4.1 Switching into spin eigenstates 138 7.4.2 Measurement by pump probe spectroscopy 141 7.4.3 Switching into superposition states 143 7.5 Magnetic field in Voigt configuration 144 7.6 Conclusions 147 References 147 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 140 8.1 Introduction 150 8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised 166 8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176		7.4	Switching into all Mn spin states	38
7.4.2 Measurement by pump probe spectroscopy 141 7.4.3 Switching into superposition states 143 7.5 Magnetic field in Voigt configuration 144 7.6 Conclusions 147 References 147 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 147 8.1 Introduction 150 8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised 161 8.3 Theoretical framework for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 173			7.4.1 Switching into spin eigenstates	38
7.4.3 Switching into superposition states 143 7.5 Magnetic field in Voigt configuration 144 7.6 Conclusions 147 References 147 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 147 8.1 Introduction 150 8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised 166 8.3 Theoretical framework for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 173			7.4.2 Measurement by pump probe spectroscopy	41
7.5 Magnetic field in Voigt configuration 144 7.6 Conclusions 147 References 147 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 147 8.1 Introduction 150 8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised 156 8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176			7.4.3 Switching into superposition states	43
7.6 Conclusions 147 References 147 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 147 8.1 Introduction 150 8.2 Problem Formulation 150 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised 156 8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176		7.5	Magnetic field in Voigt configuration	44
References 147 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 149 8.1 Introduction 150 8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised 156 8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176		7.6	Conclusions 14	47
 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 8.1 Introduction		Refer	ences	47
 8 Coherent magneto-optical activity in a single carbon nanotube 149 Gabriela Slavcheva and Philippe Roussignol 8.1 Introduction	_			
Gabriela Slavcheva and Philippe Roussignol 8.1 Introduction 150 8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised 156 8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176	8	Cohe	rent magneto-optical activity in a single carbon nanotube 14	49
8.1 Introduction 150 8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised 156 8.3 Theoretical framework for the natural optical activity 156 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176		Gabri	ela Slavcheva and Philippe Roussignol	
8.2 Problem Formulation 152 8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised 156 8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173		8.1	Introduction	50
8.2.1 Dielectric response function of an isolated SWCNT 155 8.2.2 Optical dipole matrix element for circularly polarised light		8.2	Problem Formulation	52
8.2.2 Optical dipole matrix element for circularly polarised light			8.2.1 Dielectric response function of an isolated SWCNT 15	55
light 156 8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial magnetic field 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176			8.2.2 Optical dipole matrix element for circularly polarised	
8.3 Theoretical framework for the natural optical activity 157 8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial magnetic field 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176			light	56
8.4 Simulation results for the natural optical activity 161 8.5 Magneto-optical activity of a chiral SWCNT in an axial magnetic field 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176		8.3	Theoretical framework for the natural optical activity	57
 8.5 Magneto-optical activity of a chiral SWCNT in an axial magnetic field		8.4	Simulation results for the natural optical activity	51
magnetic field 169 8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176		8.5	Magneto-optical activity of a chiral SWCNT in an axial	
8.5.1 Theoretical model of the nonlinear Faraday rotation in an axial magnetic field 169 8.5.2 Simulation results for Faraday rotation 173 8.6 Conclusions 176			magnetic field	59
an axial magnetic field			8.5.1 Theoretical model of the nonlinear Faraday rotation in	
8.5.2 Simulation results for Faraday rotation			an axial magnetic field16	59
8.6 Conclusions 176			8.5.2 Simulation results for Faraday rotation	73
		8.6	Conclusions 17	76
References		Refer	ences	76
9 Exciton and spin coherence in quantum dot lattices	9	Excit	on and spin coherence in quantum dot lattices	79
Michal Grochol, Eric M, Kessler, and Carlo Piermarocchi	-	Micha	al Grochol. Eric M. Kessler, and Carlo Piermarocchi	
9.1 Introduction		9.1	Introduction	80
9.2 Theory		9.2	Theory	81
9.2.1 Neutral quantum dot lattice		=	9.2.1 Neutral quantum dot lattice	81
9.2.2 Charged quantum dot lattice			9.2.2 Charged quantum dot lattice	89

	9.2.3	Neutral quantum dots in lattice of optical cavities 192
9.3	Results	and discussion
	9.3.1	Neutral quantum dot lattice
	9.3.2	Charged quantum dot lattice
	9.3.3	Neutral quantum dots in lattice of cavities
9.4	Conclus	sions
Refere	ences	

Part IV Coherent light-matter states in semiconductor microcavities

10	Quan	tum optics with interacting polaritons	213
	Stefan	o Portolan and Salvatore Savasta	
	10.1	Introduction	214
	10.2	Electronic excitation in semiconductor	215
	10.3	Linear and nonlinear dynamics	220
	10.4	Entangled photon pairs from the optical decay of biexcitons	227
	10.5	The picture of interacting polaritons	229
	10.6	Noise and environment: Quantum Langevin approach	232
	10.7	Quantum complementarity of cavity polaritons	241
	10.8	Coherent Trapping	245
	10.9	Spin-entangled cavity polaritons	247
	10.10	Emergence of entanglement out of a noisy environment: The	
		case of microcavity polaritons	249
		10.10.1 Coherent and incoherent polariton dynamics	250
		10.10.2 Results	253
	10.11	Outlook	257
	Refere	ences	258
11	G (1 ·/1· · · · · · ·	
11	Spont	aneous concrence within a gas of exciton-polaritons in	262
	Tenur	The microcavilies	203
	Maxin	Later duction	261
	11.1	Example in and stands state of a malaritan and	204
	11.2	Formation and steady state of a polariton gas	203
	11.5	Similarities and differences between polariton condensation	207
	11.4	Similarities and differences between polariton condensation,	260
	115	Polariton lasing and conventional photon lasing	208
	11.5	11.5.1 Cross Ditervalitie equation	270
		11.5.1 Gross-Pridevskii equation	270
		11.5.2 Siliali size condensate in disordered environment	212
	11.6	Vertices in relative and enotes	213
	11.0	vortices in polariton condensates	270
		11.6.1 Quantized vortices	277
	117	11.6.2 Half-quantized vortices	2/9
	11./	Correlations within a degenerate polaritons gas	281
		11.7.1 Spatial first order correlations	281
		11.7.2 Number fluctuations in a polariton condensate	283

Keldy	ysh Gree	n's function approach to coherence in a non-
equili	ibrium st	eady state: connecting Bose-Einstein condensation
and I	asing	
Jonati	nan Keeli	ng, Marzena H. Szymańska and Peter B. Littlewood
12.1	Introduc	
12.2	Polarito	n system Hamiltonian, and coupling to baths
12.3	Modelli	ng the non-equilibrium system
	12.3.1	Non-equilibrium diagram approach
12.4	12.3.2 Effects	Mean-field condition for concretin state
12.4		Decay both and $\langle \mathcal{U}\mathcal{U} \rangle$
	12.4.1	Decay bath and $\langle \Psi_p \rangle$
125	12.4.2 Maan fi	Pumping bain and $G_{a^{\dagger}b}^{-}$
12.3	12.5.1	Equilibrium limit of Moon field theory
	12.3.1	High temperature limit of Mean field theory simple less
	12.3.2	General properties of mean field theory away from
	12.3.3	extremes
	1254	Low density limit: recovering complex Gross Pitaevskii
	12.3.4	equation
12.6	Fluctuat	tions and instability of the normal state
12.0	1261	Photon Green's functions in the non-equilibrium model
	12.0.1	Normal-state Green's functions and instability
	12.0.2	Normal-state instability for a simple laser
12.0.5 INORMAI-State Instability for 12.7 Eluctuations of the condensed system		tions of the condensed system
12.7	1271	Finite-size effects – lineshape of trapped system
12.8	Summa	rv
12.0 Rofor	ances	· J · · · · · · · · · · · · · · · · · ·