
Chapter 2
High Assurance Software Lessons and
Techniques

Abstract To understand the principles needed to manage security in FPGA designs,
this chapter presents lessons learned from the development of high assurance sys-
tems. These principles include risk assessment, threat models, policy enforcement,
lifecycle management, assessment criteria, configuration control, and development
environments.

2.1 Background

Since the early 1960s system developers have been concerned with problems caused
by unspecified functionality. This can include errors introduced in the development
process and extra features added by industrious engineers. Sometimes extra features
are relatively benign. In other cases, the unspecified functionality is malicious.

Engineers tend to trust hardware more than software. Sometimes engineers as-
sume the hardware to be trusted; however, most malware can be implemented in
hardware. The objective of this chapter is to introduce some of the lessons learned
about avoiding mistakes in system implementations.

2.2 Malicious Software

Malicious software is functionality intended to violate the security policy of the sys-
tem. The taxonomy of malicious software and the vulnerabilities such software ex-
ploits is vast: a 2007 report from the Common Vulnerabilities and Exposures project
listed 41 different system vulnerabilities ranging from weak authentication to cross-
site scripting attacks [18]. The focus of this chapter is on high assurance software
lessons learned, and the discussion will be limited to two types of malicious soft-
ware: that which executes in unprivileged domains and that which executes in priv-
ileged domains.
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2.2.1 Trojan Horses

School children know the story of the fall of Troy to the Greeks [37]. Despite nine
years of fighting, the Greeks were unable to breach the walls of Troy and conquer
the city. Odysseus devised a plan to give the Trojans a present and pretend to retreat.
Taking their gift, a large wooden horse, within the city walls, the Trojans celebrated
until the Greeks emerged from the horse to sack and burn the city. The Trojan Horse
was the vehicle for violation of the Trojan security policy: no Greeks within the city
walls. When the Trojans found the Horse, it was on the beach: it was the Trojans
who dragged it into the city and then “activated” it by celebrating.

In terms of computer systems, a Trojan Horse is hidden functionality within soft-
ware, where the latter provides some other desired service. So if a user downloads
or otherwise installs an application or functionality of unknown provenance, a Tro-
jan Horse may accompany it. When a Trojan Horse executes in the context of a user
application, it is generally constrained by the privileges granted to that executable,
which are derived from the privileges accorded the user. The adversary has no con-
trol over when the malware will execute: if the user never invokes the application
that contains the Trojan Horse, then it may never execute.

Despite these constraints, in most systems a Trojan Horse can wreak havoc on
confidentiality, integrity and availability objectives. Consider the situation illus-
trated in Fig. 2.1. Kathy has a file containing information that Sean should not
access. She has set the access controls on her file so that Sean will not be able
to access the information directly. Unfortunately, Kathy is executing an application
that contains a Trojan Horse devised by Sean and his nefarious gang. Although the
legitimate application may make legitimate use of Kathy’s file, the Trojan Horse
writes her information into Sean’s file. She has no idea that this is occurring.

Modern Trojan Horses may not exhibit behavior as simplistic as that illustrated
in Fig. 2.1. Instead they may send information to remote sites. The activities of these
applications are often rather complex, and the mechanism used to transmit may not
be visible to kernel-level auditing mechanisms.

As will be seen in Sect. 2.5.1.2, the activities of Trojan Horses can be confined
when mandatory policies are enforced.

Fig. 2.1 Although Sean has no access to Kathy’s file, the Trojan Horse in Kathy’s process can
write all of her information to Sean’s file
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2.2.2 Subversion

A well known example of subversion is the simple flight simulator in early ver-
sions of the Excel spreadsheet [100]. It was activated by a set of conditions that
were highly unlikely to occur during typical use of the spreadsheet. It allowed the
user to fly around over a gloomy landscape that featured a tombstone upon which
credits scrolled, presumably containing the names of members of the development
team. A less benign example of unspecified functionality is a hypothetical backdoor
inserted into an operating system by its compiler [53, 101]. Anderson provides a
worked example of system subversion [4]. Although no attempt is made to obfus-
cate the artifact, it consists of a total of eleven lines of code and allows the attacker
undetected access to the entire Linux file system. Because the attacker may not know
the exact nature of the ideal attack when a trapdoor is installed, it may be prudent
to develop a chained subversion that consists of a toehold for subsequent system
exploitation, a loader for putting the malicious payload in place, and the payload
itself for the attack du jour [58, 72, 81].

Subversion differs from a Trojan horse in the following ways. First, a subver-
sion can be activated by the adversary at will, whereas a Trojan horse requires the
cooperation of the victim. A corollary is that the adversary can choose the time of
activation, usually via triggered activation and deactivation, but, for a Trojan Horse,
the time of activation depends upon the victim’s use of the software. Third, a low-
level subversion will bypass the security controls, and, in contrast, a Trojan horse
will be constrained by the controls placed upon the victim executing it. Finally, Tro-
jan Horses generally execute in the application domain, whereas the ideal execution
domain for a subversion is the operating system.

Attackers can choose a number of system lifecycle phases, both developmen-
tal and operational, during which to target a subversion attack. The objective is to
implant an artifice in the system that can execute with unlimited privileges. My-
ers identifies a number of lifecycle opportunities for subversion [74]. A system’s
lifecycle can be divided into three major stages: development, operation, and retire-
ment. Developmental threats result in the incorrect construction of the system such
that the high level policy and specifications are not faithfully reflected in the system
implementation. Both unintentional errors and intentionally inserted or unspecified
functionality fall into this category.

Operational threats can expose information assets to a variety of attacks. Im-
precise interface specifications involving groundless assumptions can be exploited.
Exploitable flaws may result from poor design and implementation. Chained attacks
may allow attackers access to critical information. If the system is constructed in a
way that permits its operational state to be manipulated, covert channels [60] may
be possible. In the case of hardware, it may be possible to extract information using
side channel attacks involving power or timing analysis, e.g. [56].

After further subdividing these phases, Myers identifies subversion threats for
each phase and recommends rigorous design and development methodologies ap-
plied to people, processes and tools, accompanied by lifecycle assurance as a holis-
tic approach to the mitigation of these threats. Table 2.1 extends this analysis to
include system retirement.
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Table 2.1 Lifecycle opportunities for subversion

Phase Threat

Design Inclusion by high-level designers of exploitable design elements

Implementation Introduction of flaws and artifices in code base

Distribution Additions to product and bogus updates

Installation Untrusted installers insert artifices or misconfigure the system

Operation Exploit flaws to install trap doors

Retirement Analyze system and media to extract information

Subversion of an FPGA can occur at many levels ranging from developmental
attacks on the hardware and software to operational attacks. Of course, the devices
can be subverted at the IC level; however, given that the IC manufacturer does not
know the use to which the base array will be applied, such attacks are probabilistic
and lack the guarantees desired for a well designed subversion. As posited by both
Karger and Schell [53] and Thompson [101], the tools used to construct the FPGA
offer a vector for developmental subversion. Trimberger [102] describes some of the
challenges associated with non-destructive validation of the equivalence between
the original design and the implemented design. He recommends the use of layout-
versus-schematic (LVS) comparison tools as a means to detect subversion. Despite
the finite nature of the systems, such detection schemes are extremely challenging.
Techniques that may be considered for countering subversion in FPGAs include:
testing and validation of design tools, verification of design flows, and static analysis
of HDL code.

2.3 Assurance

A system’s functional security mechanisms are those that implement the access con-
trol rules, the login mechanism, the audit trail, and various security administrator
functions. In contrast, assurance relates to the trustworthiness of the system. Just
because a user might trust a system does not mean that it merits that trust: it must be
trustworthy. This maps to a confidence that the system is doing what it is supposed
to do and nothing extra. If the system contains errors or is implemented in a way that
permits unintended use of its interfaces, then it contains unspecified functionality.
In addition, a system might contain functionality that is intentionally inserted by a
malicious adversary.

It is up to system owners to determine the adequate amount of assurance. The
trustworthiness or assurance of systems is elevated through careful lifecycle man-
agement from the elicitation of requirements through retirement. At any step along
the way, an adversary may try to enter the system to add some special functional-
ity. Careful system security engineering, configuration management, trusted deliv-
ery mechanisms, testing, both internal and external reviews, and the application of
formal methods contribute to system trustworthiness.
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Design Tip: Assurance Requirements. Security is not for free. Spend
your security dollars wisely. Your analysis should consider the assets that
require protection and the resources available to the adversary. A higher
level of trustworthiness requires greater effort to properly design, imple-
ment, test, deliver, configure, operate, and audit. While formal methods
may be necessary for high assurance, they are not sufficient, in and of
themselves.

2.4 Commensurate Protection

In early work with shared computer systems, when various conceptual models for
computer processing (e.g., processes and scheduling) and information protection
were formed, vendors presented different approaches as secure, and the comput-
ing community in ad hoc or organized [53] efforts would discover and report the
incompleteness or incorrectness of the system’s protection features. Today, the rela-
tionship between computer vendors and their customers remains largely the same,
although many vendors may no longer assert that their systems are “fit” for security
purposes [119], lest they be held liable for the product’s adequacy [27]. A vendor
releases a product; users discover and report some of its vulnerabilities; the vendors
patch the vulnerabilities and add new features; and the vendor releases the product
anew. The patches and new features, especially in combination, may add new vul-
nerabilities. While this penetrate-and-patch approach is not a satisfactory process, it
avoids the up-front cost of building in security. Since vendors have found that users
are willing to put up with vulnerable products, the cycle continues.

Security is expensive to build into a product, as it increases the design, documen-
tation, configuration management, and testing efforts. While this careful approach
to development (see Sect. 2.3) may reduce the overall cost of product maintenance,
those long-term savings may not be persuasive to vendors who compete on a “first-
to-market” basis. In any event, since security is not free, the question arises for data
owners as to how much security is enough.

Common wisdom about the protection of any property is that one should not
spend more on protection than the value of that which is protected. Another maxim
is to not gamble (i.e., leave unprotected) that which you cannot afford to lose. Cost-
benefit and risk analysis methods can be used to quantify the level of protection
required based on the value of the information: i.e., the damage to the owner if the
information is violated (compromised, corrupted, or made unavailable [61]). FEMA
[50] uses the following generic formula to calculate financial risk, assuming that
threat and vulnerability ratings range from 0 to 1:

Risk = Asset Value × Threat Rating × Vulnerability Rating

With respect to information protection, other risk factors may include the pro-
portion of the Asset Value that will be lost if the information is violated, the value



32 2 High Assurance Software Lessons and Techniques

of the information to potential attackers (which may be different than the value to
the owner), and mitigations to vulnerabilities. The combination of a computing sys-
tem’s vulnerabilities and its mitigations to those vulnerabilities can be viewed as
the inverse of the protection it provides with respect to defined assets and threats.
Various approaches have been presented for measuring the protection provided by
IT systems, including different evaluation criteria [14, 110].

Assets protected by IT systems may include people, the valuation of which can
include factors such as life and liberty, which may have a subjective relationship
to their monetary value. The threats to assets can also be difficult to quantify, as
discussed next.

2.4.1 Threat Model

Looking at the FEMA risk formula, enough protection (i.e., mitigation to vulner-
ability) must be provided to keep risk to the assets within acceptable limits, given
the perceived or defined threats. If there is no threat (e.g., if one has assets that no
one else wants to attack), or the protection system has no vulnerability (assets are
protected completely and continuously), there is no risk. However, a conservative as-
sumption is that attackers’ motivation and resources are proportional to the value of
the information resources: highly valued information requires high assurance of pro-
tection. A threat model provides a more systematic evaluation of threat [57, 66, 73],
including factors such as:

• The nature of the asset—whether its value derives from its confidentiality, in-
tegrity, and/or availability; and if there is a temporal quality to the value (e.g.,
some intellectual property or strategic military data may need to be secured for
decades).

• The potentially vulnerable components or interfaces of the system through which
assets can be accessed; and the attacks known to be pertinent to each type of the
component or interface throughout the product life-cycle (e.g., design, develop-
ment, delivery, and maintenance).

• The adversary’s motivations, including monetary, competitive advantage, indus-
trial espionage, revenge, prestige, and notoriety. This can be related to the nature
of the assets.

• The adversary’s capabilities—technical expertise, access to the protected system,
and the availability of funding and other resources such as computer time and
exploitation tools.

In addition to the primary IT access control features, potential attack surfaces
include the procedural as well as the automated instantiation of various design as-
sumptions and supporting policies, including: identification, authentication, audit,
physical security, and the education and vetting of users. For example, the most cost
effective means of attacking a system could be through the use of social engineering
and bribes.
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A threat model is useful for the assessment of components and products as well
as for system deployment environments, which can be more specific regarding the
characterization of threats, assets and adversaries. The following relates threats to
components and products.

2.4.1.1 FPGA Interfaces

For FPGA components, a threat model should consider both internal and external
interfaces. Cores may be connected directly or by a bus. Network interfaces may
include malicious traffic. The FPGA reconfiguration interface must be considered—
e.g., some FPGAs can be remotely updated in the field—as well as interfaces to
shared computing resources such as system and cache memory.

2.4.1.2 FPGA Assets

General classes of information assets on FPGAs include: cryptographic keys, private
information, and proprietary logic designs.

2.4.1.3 FPGA Attacks

For systems that allow untrusted modules or applications to share the processing en-
vironment, it must be assumed that they are malicious. Attack analysis must include
those attacks related to system design vulnerabilities (if any) that are described in
the product security evaluation and the open literature. Other potential FPGA attacks
include:

• Uploading a malicious design through the FPGA reconfiguration interface. A ma-
licious design could actually melt parts of the FPGA by causing a short-
circuit [41].

• Exploiting the effects of using or contending for shared resources. For example,
if one core can measure the effects caused by the use of a computing resource
(e.g., delay in access to cache memory, change in temperature of the device, or
change in the use of electrical power) by another core, a covert channel or side
channel can result.

2.4.1.4 Other Threat Model Elements

Physical attacks, e.g., to read or destroy cryptographic keys, may require tamper
protection, detection, and response techniques at the system, board, or chip level,
depending on the value of the assets protected. Also, FPGA manufacturing and de-
velopment tools are an attack vector in which the tools are subverted to weaken the
FPGA designs they produce, as a second order effect. Chapter 3 discusses physical
attacks in greater detail.



34 2 High Assurance Software Lessons and Techniques

2.5 Security Policy Enforcement

Security requires the specification of a policy for a system and the translation of that
policy to a system implementation that enforces the policy.

2.5.1 Types of Policies

When constructing a secure system it is essential to establish what secure means.
Assuming that resources managed by the system must be protected, it is necessary
to understand the kinds of protection that should be established. Security is always
understood with respect to a policy. Information assurance is generally defined as a
set of measures intended to protect and defend information and information systems.
The five pillars of information assurance provide a way to categorize overarching
objectives:

• Confidentiality—information is accessible only to those who need it and pro-
tected from unauthorized disclosure.

• Integrity—information is modified only by those with appropriate authorization
and is protected from corruption.

• Availability—information is usable when needed in a reliable and consistent
form.

• Authenticity—the recipient of information has knowledge of its genuine sender
or source.

• Non-repudiation—irrefutable evidence of message transmission from its sender
and receipt by its receiver can be provided.

The first three can be associated with system resources, whereas the last two are
related to communications and are supported by well-designed protocols and the
enforcement of some combination of the first three. For this reason we will focus
only on the first three objectives. Sterne [99] describes an organizational security
policy as one that may be stated in very general terms. Its translation to a system
implementation results in an automated security policy. The automated policy is
usually a subset of the overall policy, since policies related to physical and personnel
security are beyond the scope of the computer system implementations.

We understand IT systems to be secure in the context of the policies regarding
the confidentiality, integrity, and availability of the information resources. Different
system security policies may combine confidentiality, integrity, and availability in
different ways. For example, in a real-time control system the availability of high-
priority events will be paramount, and the confidentiality of information may be
secondary. A system intended to manage corporate financial records may focus on
integrity and associated accountability controls. Finally, a system designed to pro-
tect state secrets will ensure that confidentiality policies are enforced. Other exam-
ples include voting systems, health record systems, and employee payroll systems.
Security engineers often find a tension in the CIA triad: all three policies cannot
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be perfectly enforced simultaneously! The existence of a tension between availabil-
ity and both confidentiality and integrity is most evident, for example in military
real-time systems that must manage both classified and unclassified information.

Before continuing with a more detailed discussion of policy enforcement, it
is necessary to introduce certain terminology that has proved useful for several
decades.

The underlying policy enforcement mechanism controls resources, and a subset
of those resources will be exported at the mechanism interface in the form of abstract
data types. These may include both active and passive entities. Those resources that
can be read from or written to contain information and are called objects. The active
entities in the system are called subjects and may be surrogates for typical users or
for system owners. A typical example of the former might be an ordinary application
process, and an example of the latter might be a service process [59].

Early pioneers in system security developed models to characterize policy en-
forcement mechanisms. For example, Graham and Denning [40] developed a tabular
model that described the rights of each subject to objects. As depicted in Fig. 2.2,
each cell in the matrix contains the access modes with which the corresponding
subject is permitted to access the corresponding object.

The parameters used in these checks come from policy-relevant metadata asso-
ciated with both the subjects and the objects. The nature of the metadata will be
determined by the kind of policy being enforced. Any policy can fall into one of
two major categories: discretionary and mandatory. So, in some systems enforcing
discretionary access controls, user names or groups may be bound to subjects, and
some metadata, such as a list of allowed users, may be associated with the object.
In a system enforcing mandatory access control policies, the metadata may consist
of sensitivity labels associated with both the subjects and objects. The most familiar
types of labels are those used by the military to classify information, e.g. CONFI-
DENTIAL, SECRET, etc.

An interesting consequence of access control systems with interfaces that per-
mit policy modification is that it is impossible to develop an algorithm to decide
for an arbitrary protection system whether or not information will leak in an unin-
tended manner [42]. Considerable research has explored the precise characterization
of protection models that are decidable [2, 86, 87].

2.5.1.1 Discretionary Policies

A discretionary policy is dynamic and can be modified by unprivileged subjects
during runtime, whereas a mandatory policy is immutable to those subjects. A non-
technical example of each can be found in sentencing guidelines of the criminal
justice system. For many crimes, the presiding judge is able to weigh a variety of
factors associated with a particular case and can determine a punishment that fits the
crime. Alternatively, judicial discretion might be constrained through the passage of
a variety of sentencing mandates, such as three strikes laws. Where such constraints
are in place, the sentencing judge has no choice regarding the punishment: there is
no discretion.
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Fig. 2.2 The Graham-Denning model described access control in terms of a matrix where the
rights of a subject to an object were given in the cell associated with the subject and object

In systems that enforce discretionary policies, an interface is provided that allows
applications or users to modify the policy. Figure 2.3 illustrates how this can be a
problem. Kathy’s subject is executing a program that contains a Trojan Horse. As
the Trojan Horse code is executed, Kathy’s subject will use the runtime API to
change the Access Control List (ACL) on her file to grant access to Sean. At this
point, Sean’s subject can read her information and store it for later use. Because the
discretionary policy is ad hoc, it is impossible for Kathy to protect her information
from access by Sean.

2.5.1.2 Mandatory Policies

In addition to being immutable, a mandatory policy is one that is both global and
persistent: the policy is the same everywhere, and it does not change depending upon
various conditions. If Jim’s secret barbeque sauce is secret in Texas, it is also secret



2.5 Security Policy Enforcement 37

Fig. 2.3 A change to the ACL on Kathy’s file permits Sean to read and store her information

in Berlin. In addition, Jim does not allow the recipe for the sauce to be available on
Tuesdays from nine to ten o’clock in the morning: once the recipe is available, it
is impossible to make it secret again. These global and persistent policies separate
information and those who can access them into a lattice of partially ordered equiva-
lence classes [30]. A well-understood mandatory policy is that of the military, which
requires the classification of information based upon the harm its disclosure would
cause to the nation. Typical military information classifications are: TOP-SECRET,
SECRET, and UNCLASSIFIED. Individuals cleared for TOP-SECRET may access
TOP-SECRET, SECRET, and UNCLASSIFIED; those cleared for SECRET may
access SECRET and UNCLASSIFIED; and uncleared individuals may only read
UNCLASSIFIED information. Because these classifications can be hierarchically
ordered, this is called a multilevel security policy. However, as Denning pointed
out, a partial ordering may have non-comparable equivalence classes, so sets of in-
formation may be organized in a MLS policy as well, as illustrated in Fig. 2.4. The
arrows show the direction of information flow. Thus the reader must possess either
a label of {b, c} or {a, b, c} to read information labeled b, c.

Two state machine models capture the intent of mandatory confidentiality and
integrity policies respectively. The Bell and LaPadula model [7, 8] describes the
secure state of a system and includes three properties: the simple security property,
the *-property, and the discretionary property. In this chapter, only the first two
properties are of interest. If a system exhibits the simple security property, then an
entity will only be able to read information at and below its confidentiality level.
Another way of stating this is that it reflects typical confidentiality policies that
prohibit individuals from reading information at a higher classification level than
that for which they are cleared. The second property that must hold for the system is
the *-property, which accidentally has this unfortunate name. It is often also referred
to as the confinement property to reflect the notion of information confinement [60],
and accounts for the challenge posed by Trojan Horses in user applications. As a
result of confinement, it is impossible for an entity at a high confidentiality level to
write to an information repository at a lower confidentiality level.

In the context of mandatory policies, integrity forms a dual of confidential-
ity. High integrity information should only be modified by high integrity entities,
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Fig. 2.4 A hierarchical
ordering is shown in the
lattice on the left, and a lattice
of sets is shown on the right

whereas high integrity information should be accessible to entities at all integrity
levels, even the lowest. Thus the Biba model [9] includes properties that constrain
observation, modification and invocation.

2.5.1.3 Least Privilege and Its Policies

The Principle of Least Privilege is one of the cornerstones of secure system design,
implementation, and management. It appeared in a codified form in the seminal pa-
per by Saltzer and Schroeder [85] in which they described eight design principles
that can guide the construction of secure systems. Their definition of least privi-
lege stated that “every program and every user of the system should operate using
the least set of privileges necessary to complete the job. Primarily, this principle
limits the damage that can result from an accident or error. It also reduces the num-
ber of potential interactions among privileged programs to the minimum for correct
operation, so that unintentional, unwanted, or improper uses of privilege are less
likely to occur.” Hardware mechanisms can create protection modes within a sys-
tem that limit the privileges of applications with respect to those of the kernel (see
Sect. 2.5.2.1).

Least privilege will be reflected in system design and implementation through
the use of layering, modularity, and information hiding, all of which are constructive
techniques that, when applied to the internal architecture of a system, improve the
system’s resistance to penetration. The system interface can export access control
and fine-grained execution domains such that subjects may only perform authorized
tasks.
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2.5.2 Policy Enforcement Mechanisms

To enforce an access control policy, a mechanism must be in place that checks the
access of the subjects to objects.

Since its introduction, the Reference Monitor Concept [3] has served as a useful
abstract model for systems enforcing security policies. As an idealization of such
systems, it can be used as a standard of perfection against which those designing
protection mechanisms can measure their implementations.

The Reference Monitor Concept does not refer to any particular policy to be
enforced by a system, nor does it address any particular implementation. Instead it
articulates three properties of an ideal access mediation mechanism:

• The access mediation mechanism is always invoked: every access is mediated.
If this were not the case, then it would be possible for an entity to bypass the
mechanism and violate the policy.

• The access mediation mechanism is tamperproof. Thus, it is impossible for a
penetrator to attack this ideal access mediation mechanism so as to disable the
required access checks.

• The access mediation mechanism itself “must be small enough to be subject to
analysis and tests, the completeness of which can be assured” [3]. This means that
the mechanism must be understandable. It is necessary to ensure that it is doing
what it is supposed to do and no more.

This articulation of a mechanism has met the test of time and continues to be
an effective tool for describing the abstract requirements that drive secure system
design and implementation. No viable alternative has been introduced, and it has
proven effective, even under close scrutiny.

The minimal requirements for protecting the most privileged system elements
from less privileged applications were described by Saltzer and Schroeder [85].
They include privilege bits, a memory management mechanism, controlled entry
points to privileged functions, and a trusted way to bind user attributes to those of
the active entities executing on behalf of the user. Each of these requirements will
be discussed in greater detail in the next sections.

2.5.2.1 Privileged Instructions, Rings, and Gates

Systems are organized in terms of privilege. Hardware resources are managed by
the most privileged software components, which organize and export abstract data
types at an interface used by the next less privileged components. The simplest
privilege hierarchy is that of a two-state processor that provides two privilege do-
mains. The privileged domain is used by the operating system or kernel, and ap-
plications occupy the unprivileged domain. More elaborate hardware architectures
support several hierarchical privilege domains, such as those of the Intel x86 family
of processors, which has four hardware privilege levels [47].
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Fig. 2.5 Hardware instructions may be exported directly at the kernel interface, virtualized and
exported as new abstract data types, or reserved for the exclusive use of the kernel

The ability of the processor to check the privilege level of an active entity within
a task when attempts are made to access resources, transfer to a different privilege
domain, or execute selected instructions, is an essential element of the overall pro-
tection mechanism provided by the hardware. Privileged instructions will only be
executable by entities in the most privileged domain; if an application attempts to
execute a privileged instruction, the hardware will issue a protection exception, and
processing may be forced into an exception handler. Instructions that affect the state
of the processor such as those to manage hardware memory resources, manage con-
trol and other registers, halt the processor, and perform a limited number of other
critical functions will be privileged.

For performance reasons, most instructions are directly accessible by all privilege
domains. Certain privileged instructions may be virtualized such that abstract data
types are exported at the kernel interface. For example, the kernel may export an
abstraction of the memory subsystem in the form of files, segment handles, or other
objects. Finally, certain instructions will be reserved for kernel use alone, e.g. the
halt instruction. Figure 2.5 illustrates these instruction differences.

2.5.2.2 Memory Protection, Process Address Space and Virtual Memory

To protect itself and protect processes from each other, the kernel must manage
memory. Exclusive access to the memory management instructions ensures that the
kernel can allocate memory for its own use and for the processes it creates. Depend-
ing upon the processor, this may involve management of segments, page tables,
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or both. Obviously, the address space accessible to the kernel is that of the entire
processor, whereas that of the non-kernel applications is limited. When memory is
accessed, the hardware checks the privilege level associated with the memory with
that of the executing entity. For the memory access to be valid, the address must be
within the address space of the process and must be accessible by the privilege level
making the access. A kernel handler can return an exception if the address is not
part of the valid address space.

Virtual memory adds another level of complexity to address space management.
Virtual memory allows processes to have the appearance of an address space larger
than the physical memory resources available in hardware. The virtual memory of
each process is divided into small, equal-sized pages. Secondary storage, called
swap space, is used to maintain the pages while the process is executing, and pages
are swapped into and out of primary memory as needed. A process may only ac-
cess pages that have been allocated to it. To maximize performance, this virtual-to-
physical address space mapping is managed using combinations of hardware and
software support. Detailed descriptions of virtual memory can be found in many
articles, texts and manuals [29, 43, 47, 95].

2.5.2.3 Object Reuse Mechanisms

One way for adversaries to obtain information is through data scavenging. Although
rummaging through the garbage to find papers that might contain sensitive informa-
tion is a classic form of scavenging in the real world, digital data scavenging is
an attractive corollary. Thus, no matter what policy is enforced, it is necessary to
ensure that resources that may be reallocated to different processes are purged of
information associated with their previous usage.

Objects encompass all information containers in a system, and the general term
for this aspect of secure system implementation is object reuse. Because objects
are pervasive elements in systems and are often shared, many techniques for ensur-
ing their reusability have been developed [76]. Examples of memories that must be
purged between use by different processes include primary memory, caches, sec-
ondary storage, buffers used by I/O devices, and various registers: essentially any-
thing that could contain residual information from its use by a different process.

Ensuring that the objects to be purged are identified and managed correctly re-
quires a systematic methodology, such as that discussed by Wichers [116]. Consid-
eration must be given to how information objects are implemented in terms of com-
binations of initialization, allocation, deallocation and protection of the resource
pool from which objects are created. For example, purging can be systematically
performed before each new allocation of a resource, or after each deallocation. To
determine the completeness of the object reuse implementation, a careful study of
the system should be conducted. It should be noted that object reuse analysis differs
from covert channel analysis because objects exported by and directly accessible via
the system interface are intended as containers for information that must be shared
or confined according to the security policy, whereas the system metadata used to
establish covert channels are not intended to be accessible information containers.
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2.5.2.4 Controlled Entry Points

If applications could invoke kernel functions arbitrarily, then the resource manage-
ment services provided by the kernel would be obviated. Chaos would ensue: pro-
cess isolation could not be guaranteed, and the kernel’s internal resources could not
be protected from manipulation by applications. Any hope of security policy en-
forcement would evaporate. To encapsulate the kernel and ensure that the use of
the function is allowed and that only intended kernel functions are invoked by non-
kernel entities, the kernel must provide a mechanism so that all calls to it can be
controlled.

Hardware support is needed to accomplish this task. In the simplest case, a spe-
cial instruction is invoked by the application layer that causes control to transfer to
a special location in the kernel. There, the kernel will examine a predefined location
for the parameter list. In addition to the usual parameters, an identifier for the de-
sired function will be provided. The kernel should validate the parameters to ensure
that pointers and address ranges are associated with the domain of the application
and not that of the kernel. The kernel may then transfer control to the function that
will process the call.

The mechanisms just described are sufficient for systems that have only two priv-
ilege domains, but a problem arises if the system has multiple privilege domains. If
all the kernel can tell is that it has been invoked from a less privileged domain, then
it is impossible to determine whether intermediate privilege domains are being pro-
tected from accidental or intentional abuse by even less privileged domains. An ele-
gant solution to this problem of controlling inward calls is to use a gate mechanism
[77], e.g. call gates [47]. These gates are placed at the boundary of each domain and
control the transfer of execution from a less privileged domain to a more privileged
one. They can be set up so that all calls into more privileged domains must cascade
through a series of gates or so that a call can skip intermediate domains. This allows
each domain to export its functions to selected lower privilege layers in the system.
For example, the kernel may export certain kernel management functions only to
the next most privileged layer and not to those with lesser privilege, thus providing
the capability for the system builder to provide trusted code external to the kernel
for management activities. In contrast, less trusted applications would be unable to
invoke the kernel management functions. Intermediate domains may export abstract
data types and the gates needed to invoke the type managers at the domain interface.

2.5.2.5 User Attribute Binding: The Trusted Path

Since the attributes bound to subjects acting on behalf of users are the basis for
access control decisions, it is clear that a well-defined user identification and au-
thentication policy is essential for secure systems. It was this observation that led
Saltzer and Schroeder to include a trustworthy technique for identification and au-
thentication in their list of fundamental requirements for protection [85].

Assuming that both the user and the identification and authentication mechanism
are trustworthy, how can the user be sure that security-critical information being
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entered is not captured between the human interface and the I&A mechanism by a
man-in-the-middle or some other malicious entity? An unforgeable connection that
assures protected user communication with a trusted system mechanism is required.
This is called a trusted path. Users invoke the trusted path using a secure attention
key: a single key or special combination of keys or other input device intended solely
for the purpose of establishing a trusted path. The secure attention key signal is
received by the system’s trusted mechanisms, and the I&A interface is displayed in
a trustworthy manner to the user. Subsequent interaction is protected, and users have
confidence that passwords and other critical authentication information is protected.

It is worth noting that a trusted path need not be restricted to the input of pass-
words: other critical information might require similar protection. The entry of bank
account and credit card numbers, on-line confirmation of large financial transac-
tions, electronic access to certain health records, or other high-value activities con-
stitute examples where a trusted path provides enabling technology to organizations.

On a single platform, a trusted path requires that the interface presented to the
user be constructed such that it depends only upon trustworthy mechanisms. This
means that the use of large graphical user interface libraries of unknown or ques-
tionable provenance should not be within the dependency hierarchy of the trusted
path mechanism. As a part of the system’s overall security architecture, the trusted
path must be as trustworthy as the components enforcing critical security policies.

A trusted path always refers to the interface between the user and the machine.
Of course, in distributed systems, trusted communications between systems is also
necessary. The term trusted channel is used to describe the protection of inter-
system communications. In distributed systems, both trusted paths and trusted chan-
nels may require the use of cryptography. Care must be taken to ensure that the
cryptographic functions and key management mechanisms are trustworthy.

User authentication to the system can be based upon any of three types of at-
tributes: physical characteristics of the individual, something the individual knows,
or something the individual has. Biometrics encompasses the use of physical char-
acteristics for user authentication based upon physical characteristics. These include
a number of modalities, common examples of which include fingerprints, voice
recognition, retinal scans, iris scans, and facial recognition. Use of biometrics for
access control requires that an initial biometric be enrolled. The template of the
biometric of a claimant is compared to the enrolled template. Because of variations
associated with biometric collection, an exact match of the two is extremely im-
probable, and statistical methods are used to determine whether to accept or reject
a match. A number of significant research challenges, such as security, scalability,
privacy, interoperability, and social aspects, need to be addressed to enable confident
use of biometric technology for verifying identities [35, 49]. Passwords are some-
thing that the user knows and presents to the system to obtain access. Passwords do
not suffer from the variations in collection described above, but they are vulnera-
ble to guessing and brute-force attacks. A balance between the complexity of the
password and user acceptability must be achieved. An example of an authentica-
tion mechanism involving something a user has is a physical token such as an ID
card that may be presented to the system. Because tokens are susceptible to loss or
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theft, their use is often coupled with a second authentication mechanism. To provide
higher confidence that only valid authentications occur and to limit the complexity
of the individual mechanisms used, organizations often choose to combine authen-
tication techniques. When two different methods are used to authenticate users, this
is called dual-factor authentication, which naturally leads to multi-factor authenti-
cation, where the number of attributes is further expanded.

A wide range of authentication mechanisms is available, so system developers
need to consider the effectiveness of the technical mechanisms against their usabil-
ity, the context in which they will be employed, their cost, and their maintainability
from both a physical and technical perspective.

If a user has one password for access to all systems, then the compromise of
that single password renders the information being protected in all of the sys-
tems vulnerable. To mitigate this threat, it is recommended that users have differ-
ent passwords for each different account. As the number of accounts proliferates,
users must memorize an increasing number of passwords. A second problem may
be encountered in enterprise systems where users may have to authenticate many
times to access various services during a given session. In such cases, user frustra-
tion can be addressed through the implementation of single sign-on mechanisms.
However, single sign-on has both advantages (e.g., fewer passwords to remem-
ber and enter) and disadvantages (e.g., greater damage if credentials are compro-
mised).

2.5.2.6 Discretionary Policy Enforcement Mechanisms

Discretionary access controls are enforced by two kinds of mechanisms: access con-
trol lists and capabilities.

Access control lists (ACLs) itemize the access permissions of subjects to ob-
jects, such as files, directories, or devices. Each ACL entry consists of the name
representing an entity, such as an individual user or group, and the rights accorded
to that entity. Groups are convenient because access control lists for a large num-
ber of similar users (for example, all students enrolled in Psychology 101) can be
simplified, thus reducing the possibility of administrator error. The largest possi-
ble group is everyone, which in many systems is termed public. Extremely simple
ACLs are found in UNIX [5] and its descendant systems, such as Linux, where
only a short set of permission bits are used to determine access to a file: owner,
group, and public. For decades, systems intended for commercial use have had more
sophisticated ACLs in which the permissions of particular individuals may be de-
fined.

Not only can ACLs be used to permit access, but they may support the ability
to deny access to particular subjects. Consider a file that provides answers to the
exam to students following an exam. If Andy was out of town and must take the
exam this week, the professor can explicitly deny Andy access to the answers until
after he has completed the test. Thus the ACL may contain read permission for the
group consisting of all members of the class and an additional entry that denys Andy
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access. The astute reader may have noticed that Andy as a member of the group class
has been given access to the answers, so rules must be established regarding the
precedence of the ACL permissions. In this case, the intent of the instructor is met
if the ACL entries associated with individuals take precedence over the permissions
accorded groups. Issues to be considered when determining ACL precedence rules
are discussed by Lunt [68].

The simplest permissions found in ACLs may be merely read, write, and execute.
Thus various users and groups will have one or more of these access rights to the
object. Because discretionary access controls are often implemented for sophisti-
cated applications, other types of access permission may be created. For example,
it may be useful to allow certain users only append access to a file, for example a
log file. In this case, writes are restricted to the end of the file. To implement ap-
pend access, the underlying protection system will use a combination of both read
and write. Without the user’s knowledge, the system will open the log file, set the
write pointer to the end of the file, and then write the next log record to the file. It
is possible that the system or application programming interface will allow neither
read nor write access explicitly to the user.

If ACLs contain the permissions to the objects, how are the permissions to the
ACLs managed? This question is important because the runtime interface that per-
mits modification of ACLs is what distinguishes them as elements of a discretionary
access control mechanism. It is possible to associate control access rights with
ACLs. The users or groups with control access to the object may be designated
and will determine who can grant or deny permission for other access rights. These
control access rights may be highly granular; for example, a particular individual
might be given the ability to control a particular access right, e.g. read, within the
ACL. Furthermore, the concept of control can be extended upward one more level so
that certain individuals have control-of-control access rights. This rich set of access
rights allows organizations to tailor discretionary access controls to meet specific
requirements.

When new objects are created, it is important to ensure that the initial value of
each ACL reflects the intended security policy. In some systems a template may
be used to associate a default ACL with each new object. Such defaults may be
system-wide or may be determined with higher granularity, for example, in the case
of files, on a per-directory basis. Lunt [68] provided an analysis of discretionary
control defaults, which can range from no access (i.e., minimized access) to com-
plete access. In the context of least privilege, a default of limited or no access is a
wise choice.

ACLs are attractive because all permissions associated with a particular object
are localized. This allows policies to be managed easily. It is worth noting, how-
ever, that policy changes are not effective immediately. ACLs are used to check
access permissions once the object is opened, prior to the actual read or write.
The results of the access check are cached, and as long as the subject keeps the
object open, the rights obtained at that first access are retained. Thus, revoca-
tion of access is not immediate and will only be effective the next time the user
attempts to first access the object unless more sophisticated mechanisms are in
place.
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2.5.2.7 Capability Systems

Capabilities provide another way to implement discretionary access controls. In
capability-based systems, which were first described by Dennis and van Horn [32],
the list of access rights to objects are associated with the subjects, rather than the
objects. In addition to defining access rights, capabilities provide a way to name
objects, thus providing the basis for capability-based addressing [36]. For example,
when a user logs onto the system, an initial set of capabilities is bound to the subject
executing on the user’s behalf. As execution progresses, subjects may accumulate
additional capabilities. When a subject attempts to access an object, the RVM checks
the access rights in the capability, and permission is granted if the requested access is
included in those rights. Thus, once a subject possesses a capability for a particular
object, that object may be accessed with the rights specified in the capability; all
the subject needs to do is present the capability. A detailed discussion of capability
systems is provided by Levy [65]. A notable implementation of a highly granular
capability mechanism in an operating system was found in the CAP system [117].

Because a capability-based system distributes the access rights to each object
among the subjects and since the rights may be stored as initialization data for each
subject, revocation presents challenges. In addition, if subjects are able to copy and
store capabilities, the revocation problem is further exacerbated. Also, there is no
central location that can be inspected to determine which subjects have potential
access to a particular object. Instead, the capability list for each subject must be
inspected. If one decided to revoke access to an object, potentially every capability
list in the system would require inspection to ensure that the revocation was com-
plete. Again, as with ACLs, revocation would not take effect if the subject were
already actively accessing the object. An approach to solve the revocation problem
was proposed by Redell [80]. Capabilities can be particularly troubling in systems
where mandatory policies are to be enforced because, in typical capability systems,
no distinction is made between the access right and the ability to grant that access
right [10]. The extension of capability systems to support lattice-based security poli-
cies was explored by Karger and Herbert [51, 52].

Although capability systems can be implemented, they are notoriously complex,
and their lack of a conceptually simple policy-enforcement mechanism caused this
approach to be eclipsed in terms of high assurance approaches. However, capability
systems continue to be of interest, e.g. [92, 118].

2.5.2.8 Mandatory Security Policy Enforcement Mechanisms

Separation of domains requires the isolation of subsystems as well as mechanisms
to allow controlled sharing between these domains.

2.5.2.9 Types of Mandatory Mechanisms

A security kernel binds internal sensitivity labels to exported resources and me-
diates access by subjects to other resources according to a partial ordering of the
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labels defined in an internal policy module [88]. The label space may support con-
fidentiality and integrity policies as well as non-hierarchical categories [69]. A se-
curity kernel usually provides a hardware-supported ring abstraction [91, 93] and
can host trusted subjects [89]. The rings can separate processes within a privilege
level. Thus, a subject is a process-ring pair. All high assurance security kernels to
date have utilized segmented memory, which provides persistent hardware based
process-local memory-protection attributes [33, 38, 89, 90] as opposed to dynamic,
global, hardware attributes based on memory paging mechanisms.

The security kernel mediates external communication via network devices that
are each dedicated to a given sensitivity level, or via multilevel devices, in which a
sensitivity label is bound to each network protocol data entity (e.g., datagram). Se-
curity kernels generally support full resource and resource-allocation configurability
during runtime.

A separation kernel [83], which is sometimes referred to as a partitioning ker-
nel [67], maps its set of exported resources onto partitions:

resource_map : resource → partition

Multiple subject resources and object resources may be mapped to a given par-
tition, but a partition is an abstraction and is not itself a subject. Resources in a
given partition are treated equivalently with respect to the inter-partition flow pol-
icy, and subjects in one partition can be allowed to access resources in another par-
tition. Separation kernels enforce the separation of partitions and allow subjects in
those partitions to cause flows, each of which, when projected to partition space
(per the resource_map function), comprises a flow between partitions (which may
be between different or identical partitions). The allowed inter-partition flows can
be modeled as a partition flow matrix whose entries indicate the mode of the flow,
similar to that of Fig. 2.2, discussed earlier

partition_ flow : partition × partition → mode

The mode indicates the direction of the flow, so that

partition_ flow(P1,P2) = W

means that subjects in P1 are allowed to write to any resource in P2. The assign-
ment of resources to partitions and the access control or flow rules are passed to the
separation kernel in the form of configuration data that the kernel interprets during
system initialization. Since configuration data correctness is critical for the enforce-
ment of the intended security policy, a configuration tool is often described for the
construction of flow rules. Although not part of the kernel itself, this tool can help
the security administrator or system integrator to organize and visualize complex
data. This helps to ensure that user inputs reflect the intended policy.

Least privilege separation kernels (LPSKs) provide two important enforcement
benefits beyond basic partitioning kernels. First, LPSKs increase the granularity of
privileges accorded subjects as described in the Separation Kernel Protection Profile
(SKPP) [46]. Second, unlike a partitioning kernel, an LPSK extends reference mon-
itor features so that it is the locus of control for all inter-partition flows. In addition
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to the resource_map and partition_ flow functions of a partitioning kernel, an LPSK
supports the principle of least privilege in a manner than can be represented as a
subject-resource flow matrix,

subj_res_ flow : subject × resource → mode

It is possible to allow the subject-resource flow matrix to override the rules of the
partition flow matrix [46]; however, a more restrictive interpretation, where a given
flow is allowed by the LPSK only if both matrices allow it, is more intuitive and
ultimately more likely to be correctly configured in system implementations [63]:

allow_ flow(subject, resource,mode)

→ mode ∈ subj_res_ flow(subject, resource) &

mode ∈ partition_ flow(subject.partition, resource.partition)

The SKPP requires that

1. each secure configuration include an identification of a base partial ordering of
flows between partitions to identify the strict MLS policy, and

2. subjects allowed to cause flows between partitions in addition to those base flows
are treated as trusted subjects.

Figure 2.6 shows how the granularity of an MLS security policy can be refined
through the application of the two policies. The baseline partial ordering appears
in (a) and illustrates the partial ordering of the partitions: information may flow,
as shown by the heavy arrows, from P1 to P2 and from P2 to P3, where the sub-
jects within a partition are the entities that cause the flow. Least privilege is illus-
trated in (b). In this context, only certain subjects may cause flows, designated by
lightweight arrows, to and from particular resources. For example, S2,2 can only
read from both O21 and O22. A trusted subject, perhaps a specialized tool that down-
grades only certain information, is shown in (c). It is permitted to cause a flow from
O32 to O12. As is the case for all trusted subjects, it is trusted to honor the intent of
the system security policy and is thus shaded and has a dashed arrow to indicate a
flow in opposition to those articulated in the base policy. Depending on the policy,
an explicit partition rule allowing flow from P3 to P1 may be required for the S32 to
O12 flow to be allowed.

A review of the relative merits of these three approaches is provided by Levin
et al. [64].

2.5.2.10 Audit Mechanisms

A record of security-relevant events can be provided by an audit mechanism. If it
includes dynamic rule-checking, the audit mechanism may provide alerts of im-
pending security violations. Policies must be established to determine what should
be audited. For example, audit might include: only accesses to a particular object;
all activity on the system; the activities of subjects at a particular sensitivity level;
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Fig. 2.6 SKPP policies. The partition_ flow policy is shown in (a), the more granular sub-
ject_resource policy in (b), and (c) illustrates a trusted subject

the use of selected system calls; etc. Because the security administrator and other
trusted individuals engage in security-critical activities, an audit of their activities
should be maintained. Also, good audit reduction tools are needed, otherwise volu-
minous audit records are not likely to be particularly useful.

Intrusion detection systems (IDS) constitute a dynamic form of auditing. Sug-
gested by Anderson in 1980 [19], the next work on intrusion detection systems,
published in 1987, provides a general IDS model [31]. Since that time, a wide vari-
ety of systems have been developed for network intrusion detection, e.g. Snort [96]
and Bro [79], as well as host-based intrusion detection, e.g. Tripwire [55]. In the
Snort and Bro systems, network traffic is closely monitored for patterns that would
indicate the prelude to or initial steps of an intrusion, whereas the latter systems
introspectively observe the activities on a single platform in an attempt to catch
malicious activity prior to the completion of an attack. A fundamental limitation
associated with intrusion detection systems is that they detect only what they are
encoded to look for. Thus, however artful the encoding, the adversary can find a
way around it. Security administrators are often presented with a choice between
the reduction of false positives and the reduction of false negatives. IDSs can be
thought of in terms of the following dichotomies: host-based vs. network based;
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after-the-fact vs. real-time vs. predictive; and modeling misbehavior/detecting sim-
ilarities vs. modeling good behavior/detecting deviations.

2.5.3 Composition of Trusted Components

To reduce costs in the construction of large systems, it is desirable to use existing
commercial components as much as possible. In the parlance of FPGAs, this trans-
lates to the reuse of exiting IP. Composing secure embedded systems from multiple
components presents several challenges.

2.5.3.1 Composition Problems

A classic example of problems introduced by composition is illustrated by the cas-
cade problem [71]. The problem can be described as follows. Consider an MLS
system where labels are linearly ordered by a comparison operator (≥), and two
labels are adjoining if there is not a label between them in the ordering. If a compo-
nent enforces the security policy sufficiently to keep separate the information in two
adjoining sensitivity levels, Si and Sj , but no more, the component is said to have a
level of trustworthiness of Ttwo. Let there be two Ttwo components, C1 and C2. Sup-
pose that the organizational security policy requires the separation of three adjoining
sensitivity levels: S1, S2 and S3. The trustworthiness required for this separation is
Tthree. If C1 separates S1 and S2 and C2 separates S2 and S3, the architecture can
be considered sufficiently trustworthy. However, if the components C1 and C2 are
subsequently connected at the S2 level as shown in Fig. 2.7, their combination forms
a system—a virtual component—that spans three levels and yet has only Ttwo trust-
worthiness. Trustworthiness is not additive, so two serially linked Ttwo components
are insufficient for a network policy that requires the separation of three sensitivity
levels with a Tthree level of trustworthiness.

Fig. 2.7 The cascade problem. Separately the components are sufficiently trustworthy, yet when
combined, their level of trustworthiness is insufficient
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Analysis of the cascade problem shows that the algorithmic identification of a
cascade within a network involves a time complexity of O(an3) and space com-
plexity of O(an2), where a is the number of security levels and n is the number of
nodes in the network [45]. Furthermore, the cost of calculating a correction (i.e., a
policy-preserving reorganization of the network) is NP-Complete [45]. While reor-
ganizing a network may only be a one-time cost, the conclusion to be drawn from
this analysis is that it is better to avoid cascades in the first place.

An approach to avoiding the ad hoc nature of the composition problem is to pro-
vide a framework of rules under which pre-analyzed conjunctions of components
may safely occur. For example, under TCB subsets [94], the system security pol-
icy is decomposed into a set of monitors, each of which enforces a subset of the
overall policy. For example, one monitor might enforce the mandatory confidential-
ity policy, another the mandatory integrity policy, and yet another the discretionary
confidentiality policy. A subject’s access to objects is granted only when access is
permitted by all three of the monitors. If the system can be subdivided such that
separate components contain the monitors, then through appropriate engineering of
a strict set of design and interface requirements, it may be possible to construct an
architecture of these subset components that will generally satisfy the overall system
policy. The goal, here, is to make it possible to construct the TCB subsets such that
they may be evaluated independently, yet their composition results in enforcement
of the larger system policy [75]. The result has been called a partitioned TCB.

Design Tip: Composition. Trustworthiness is not additive and may in
certain circumstances be degenerative. Two components that are individ-
ually trustworthy are not necessarily trustworthy when put together. The
TCB subset abstraction involves decomposing the security policy into
a set of enforcement mechanisms, each of which enforces a subset of
the overall policy. All subpolicies must be in agreement for access to be
granted. However, the general result of evaluation by parts is still a hard
problem because unintended behavior can seep out of the box.

2.6 Assurance of Policy Enforcement

Software and configurable hardware have many similarities as one examines assur-
ance and lifecycle management practices employed for each class of technologies
over a product’s lifecycle.

An FPGA contains a set of logic elements that perform a specific function, and
the programmable nature of an FPGA requires a means to specify the logic that
defines the FPGA’s behavior. Just as in software, which is defined in terms of a pro-
gram expressed in a programming language, logic elements of the FPGA are typ-
ically expressed in a hardware description language. Furthermore, common FPGA
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logic elements may be expressed in libraries that are combined to produce progres-
sively more complex functions. In this regard, an FPGA image may be considered
a persistent and statically loaded program. Such a program can and should be sub-
ject to all the same analysis and assurance practices that are routinely applied to
software.

Not unlike the offensive line on a football team, assurance is an often overlooked,
but vital, element of maintaining a product through its entire lifecycle. Just as the
line consistently performs the complex and unglamorous dirty work that allows the
quarterback, running backs and receivers to be lauded for advancing the team down
the field, the consistent, rigorous and successful application of sound assurance
practices that result in a successful development effort is rarely recognized. Con-
versely, just as the offensive line often receives attention only when the quarterback
gets sacked, assurance and configuration management practices typically receive the
most scrutiny when flaws are uncovered.

But those knowledgeable about the sport know that the offense’s success starts
with the ability of the line to consistently open holes in the defense and provide
the pass protection that allows the team to advance. The same is true of the assur-
ance and configuration management processes that must be applied throughout the
lifecycle of a robust and sound product.

2.6.1 Life Cycle Support

Life cycle management is an indispensable set of development and maintenance dis-
ciplines that helps define the assurance of a product, and thus the core competency
of the manufacturer. Well-defined and efficiently managed life cycle models are the
cornerstone to achieving design security for large and complex software projects.
The actual life cycle processes vary among different organizations and depend on
the product type (hardware versus software) and desired level of protection (high
assurance versus low assurance). Nevertheless, these processes should apply the
cradle-to-grave security principles during the entire life cycle of a product, viz. re-
quirements engineering, design, development, manufacturing, testing, distribution,
remediation and end-of-life disposal [108]. Although it is not a traditional focus of
life cycle management and is often neglected, requirements engineering is an im-
portant aspect of security. Both functional and assurance (non-functional) security
requirements must be correctly defined to avoid providing the wrong functionality
or protecting the right functionality wrongly.

2.6.1.1 Assessment Criteria

The Common Criteria (CC), an internationally-recognized security evaluation
framework, emphasizes the fundamental aspect of requirements engineering and
prescribes a security requirements derivation methodology that is centered on a
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thorough analysis of both real and perceived threats to be mitigated by the end
product [23]. Life cycle support plays an important role in the CC paradigm as
evidenced by the large number of requirements devoted to life cycle modeling,
configuration management (CM), secure delivery, developmental security, and flaw
remediation [25]. Life cycle security issues related to programmable integrated cir-
cuits (e.g., FPGAs) are further addressed in a CC supplementary document [22]
which provides guidance on how to apply the base CC evaluation methodology to
hardware IC products that must be evaluated under the CC. In the US, all national
security systems are mandated to be evaluated in accordance with the CC or NIST
Federal Information Processing Standard (FIPS) validation program by the over-
arching National Security Telecommunications and Information Systems Security
Policy No. 11 [20]. These systems often include programmable circuitry.

In the case of commercially available hardware cryptographic modules to be used
in sensitive but unclassified environments, FIPS Publication 140-2 [104] is presently
the official evaluation criteria which levies similar life cycle (albeit somewhat mis-
labeled as design assurance) requirements, i.e., configuration management, secure
delivery and installation, developmental evidence, and operational guidance. FIPS
140-2 defines four hierarchical levels of security and explicitly refers to the CC for
security requirements levied on trusted software used in the target crypto modules.
This tie to the CC has been removed in the current draft FIPS 140-3 [107] which
has been in a public review phase since July 2007. In this draft, design assurance
was renamed to life cycle assurance, which includes additional requirements on the
use of an automated CM system, vendor testing, and more rigorous development
processes, e.g., the use of a high-level HDL for custom ICs starting at Security
Level 2 [107].

2.6.1.2 Use of Trustworthy Tools

The draft FIPS 140-3 also requires that if software is included in the crypto module
then information about the compilers, configuration settings, and methods used to
generate the executable code must be provided, even at the lowest Security Level 1.
This relates to the vexing trustworthy tools problem, i.e., how users can ascertain the
correctness of the tools used to create executable code or to fabricate hardware cir-
cuits. For FPGAs, the problem is exacerbated due to the complexity of the tools used
to design, manufacture, assemble, test, and distribute FPGA products. These tools
are typically made by different vendors (both foreign and domestic), and there are
no standardized metrics or criteria to assess the integrity of their implementation.
In theory, formally verifying every tool would provide a high level of confidence
that the end product is not subverted by the tools, but in practice, doing so would
be prohibitively expensive. These challenges and other issues related to the trust-
worthiness of integrated circuits (both ASIC and FPGA) have been investigated and
documented in the Defense Science Board study on High-Performance Microchip
Supply [113]. This report had prompted DARPA to issue the Trust in Integrated
Circuits research solicitation in 2007 [114], which focuses on “developing tech-
nologies that offer rigorous validation of IC hardware and its design regardless of
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where the design or manufacturing processes take place.” The article entitled The
Hunt for the Kill Switch [1] highlights the Trojan Horse attack and summarizes
myriad vulnerabilities that are inherent in today’s highly sophisticated hardware.

For secure software development, a best practices approach includes the follow-
ing steps: (1) carefully selecting the tools based on common empirical analyses of
quality factors such as provenance, maturity, stability and wide use, (2) performing
a thorough black-box testing and security analysis of the tools’ functional inter-
faces, and (3) maintaining the tools under strict configuration control. This process,
if implemented properly, can help mitigate the threats of malicious subversion and
accidental misuse. The testing and analysis results provide evidence to support the
assertion that the selected tools do not introduce malicious functionality. Chapter 8
discusses as future work the application of this idea to the FPGA design, using
a similar process to pick and manage the tools used in the different stages of the
FPGA design flow (e.g., logic synthesis, place & route, etc.).

2.6.1.3 Applying Security Principles to Life Cycle Process

An effective life cycle methodology should incorporate the following high assurance
software security principles as part of a defense-in-depth strategy:

• Audit
• Least privilege
• Separation of duties

Audit is a discipline of continuous inspection and assessment for accountabil-
ity purposes. To detect security violations and deter penetration attempts, an audit
framework should include both automated technical measures and manual actions.
When applied to life cycle management, audit can ensure that all design and manu-
facturing activities conform to the life cycle control policies and procedures which
can subsequently help offset the impacts of security breaches committed by mali-
cious insiders. Deterrence is an effective risk management mechanism, and employ-
ing an audit policy that requires both random and periodic audit actions in all phases
of a system’s life cycle can also discourage potential adversaries from launching
attacks. Configuration management (discussed below) is one form of auditing. It
addresses the control of developmental and operational configuration changes that
could affect the assurance disposition of a system.

Adherence to security principles such as least privilege and separation of duties
that were suggested by Saltzer and Schroeder in their seminal work on protection
of information [85] also affords additional protection and damage control. They de-
fined least privilege as a design restriction that can limit the damages caused by
both programmatic and operational errors, and separation of privileges (i.e., duties)
as a protection mechanism that can reduce the risk of being compromised by collud-
ing and maligned entities. The FPGA design and manufacturing flow is a complex
series of different activities involving many actors and interdependencies, and veri-
fying that the implementation of various components (e.g., netlist) has not deviated
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from the intended design (e.g., HDL design files) is a daunting task. While the use
of cryptographic techniques can protect some parts of this flow [102], procedural
safeguards based on the principles of least privilege and separation (i.e., isolating
critical steps, enforcing distinct roles, and restricting privileges to the task at hand)
can help strengthen the assurance posture of the end product.

2.6.2 Configuration Management

Technology is constantly evolving, and changes are unavoidable. Configuration
management (CM) is a well-established practice to control changes that should be
assimilated early in the life cycle for both software and hardware products. CM
retrofitting (viz. adding CM as an after-thought) is costly and can severely impact a
product’s integrity since maintaining a complete and unmodified change history for
traceability purposes is the bedrock of CM. CM can be viewed as an active defense
mechanism that, when implemented properly, can help to mitigate inherent security
risks associated with evolutionary changes.

Most developers are aware of CM, mostly as a versioning control mechanism,
but they often choose to either ignore or marginalize the importance of CM for fear
of being burdened by the CM controls and procedures. It is exactly those rigorous
safeguards that, if properly practiced, could enable the establishment of the initial
baselines of hardware and software components and the subsequent change control
of those components. Change control plays a critical role in CM as its main objective
is to prevent unauthorized modifications (including accidental errors) to the baseline
configuration items. For high assurance software development, a thorough security
analysis of the proposed changes (e.g., modifications of existing components and
additions of new components) to assess the security impact on other parts of the
system must be performed and reviewed prior to the approval of the change request.
A system of checks and balances must be employed to deter collusion, e.g., clear
separation of CM and the development environment, and to ensure the validity of the
security analysis, e.g., to ensure that the analysis is performed by a trained security
analyst and that the review is done by a Change Control Board. For FPGA devel-
opment, the same CM objectives and requirements apply, especially for complex
FPGA implementations that contain a large amount of code developed and main-
tained by a multitude of principals (core designer, system developer, manufacturer,
etc.).

Configuration change control is important but is not enough. NIST has defined a
set of CM requirements (i.e., security controls) that addresses a wide range of con-
cerns ranging from establishing CM policy and procedures to maintaining a current
inventory of the components used in a system [106]. Different combinations of these
requirements are levied on information systems based on the system’s potential im-
pacts on an organization in the event of a security compromise. FIPS Publication
199 defines three levels of potential impacts—low, moderate, and high—based on
the severity of the effect on the operations and assets of the organization, i.e., limited
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for low impact, serious for moderate impact, and severe or catastrophic for high im-
pact [105]. NIST Special Publication 800-53 recommends the following eight CM
requirement categories for moderate-impact and high-impact systems [106]:

• Configuration Management Policy and Procedures
• Baseline Configuration
• Configuration Change Control
• Monitoring Configuration Changes
• Access Restrictions for Change
• Configuration Settings
• Least Functionality
• Information System Component Inventory

These requirements cover all life cycle phases, i.e., planning, development and
deployment, and they apply to all components of a system, including FPGAs. In
other words, besides its effect on the developmental assurance of individual prod-
ucts, CM also contributes to a system’s mission assurance if its use is included in
the system’s security strategy and plans. The security posture of a system is par-
tially based on a set of approved configuration settings that, if changed without
proper analysis and traceability, would invalidate the system’s accreditation, i.e.,
license to operate. This is also true for FPGA-based embedded systems. Changes
to a bitstream file in the field may have detrimental effects on both performance
and security of a system; thus, CM policy and processes should be established and
enforced to minimize the risks associated with bitstream reconfiguration.

2.6.3 Independent Assessment

Accountability and transparency are central elements in building and sustaining
trust. Juvenal’s poignant observation about trust1 has been used over the years to
emphasize the need for having external oversight to provide greater accountability
in governance. It is easy to draw a parallel between this need for transparency and
the need for security evaluation in secure product development since the security
posture of a product could be strengthened if the product underwent an independent
security assessment.

To be credible, the security evaluation of a product should be performed by an ob-
jective third party, preferably a government-sanctioned organization. This is because
impartiality and independence are essential to guard against bias and collusion, re-
spectively. In general, user confidence will increase if a vendor could demonstrate
that their product passed the scrutiny of official organizations with legal oversight
responsibility. For example, doctors and patients in the US would feel safer if the
prescribed medicines for a life-threatening condition were approved by the Food and
Drug Administration. Similarly, security-minded IT users in the US would be more

1“Quis custodiet ipsos custodies?” (“Who guards the guardians?”)—Juvenal, Satires VI.347.
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inclined to use security products that have been validated by official evaluation au-
thorities such as the National Information Assurance Partnership (NIAP) Common
Criteria Evaluation and Validation Scheme (CCEVS) and NIST.

CCEVS oversees and validates the evaluation of security products by CCEVS-
approved commercial testing laboratories that are accredited by NIST [12]. The
CC testing labs evaluate security products in accordance with the CC and NIAP-
recognized Protection Profiles [13]. The CC is an international standard, and there
are different evaluation schemes in other countries that provide the same CC eval-
uation oversight as CCEVS. In the US, the evaluation of cryptographic modules is
performed by NIST, not CCEVS. NIST oversees the Cryptographic Module Val-
idation Program (jointly with the Communications Security Establishment of the
Government of Canada) which validates cryptographic modules in accordance with
FIPS cryptographic standards, e.g., FIPS 140-2 [103].

Product evaluation authorities such as CCEVS and NIST only assess the trust-
worthiness of individual products (e.g., operating system, firewall, web server), not
the trustworthiness of the end systems that use evaluated products. From a system
acquisition viewpoint, independent security evaluation of individual products is a
critical part of the technical due diligence which, when properly exercised, can help
mitigate risks throughout the system’s life cycle. However, a system that is com-
posed of different evaluated products is not necessarily secure since the interactions
among security functions provided by the evaluated products may result in new vul-
nerabilities. Product evaluation is performed based on security assumptions (e.g.,
physical and personnel security) and threats of specific operating environments for
which a product is intended to be used. When integrated into an end system with a
different threat model, the evaluated protection mechanisms may be inadequate to
mitigate the threats manifested at the system level.

An independent critical examination of the integrated protection mechanisms at
different dimensions of implementation (e.g., hardware, operating system, applica-
tion software) could help identify adverse emergent behaviors prior to deploying
the composed system for operational use. In the federal government, the process
that federal agencies use for security and risk assessment before authorizing a sys-
tem for operation is known as certification and accreditation (C&A). When there is
a change in the functionality of an authorized system or its operational environment,
subsequent C&A activities might ensue, depending on the organizational C&A pol-
icy, to determine and mitigate risks resulting from the change.

Although the complexity of the FPGA design in a product is typically hidden
(encapsulated) in higher level functional components (e.g., processor cores and de-
vice controllers), it is important to not overlook the malleability of FPGAs in the
security assessment of the overall system. The use of FPGAs should be inspected
with the same depth and rigor that are used to assess the security of critical software
in a product. Dynamic reconfiguration is an inherent benefit of using FPGAs, but it
is also a double-edged sword. When FPGA-based products are used in a mission-
critical system, it would be prudent to include, as part the system’s C&A process,
system-level architectural and design analyses to look for unintended side effects
caused by poor, incorrect, or unanticipated use of FPGA-based components.
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2.6.4 Dynamic Program Analysis

Dynamic program analysis generally refers to the testing and analysis of a program
under execution. A target program is subjected to a specifically constructed set of in-
put data, and instrumentation is used to examine and validate the program behavior.
Input data may be constructed and instrumentation applied to:

• test for functional behavior
• test for performance
• test for timing constraints
• test for resource usage

Functional testing may be considered a common form of dynamic program anal-
ysis in which a program is subjected to a set of input data designed to exercise every
interface of a program and validate all outputs in terms of effects, errors and ex-
ceptions. Functional testing is often conducted in conjunction with code coverage
analysis to ensure that all program code gets exercised by the input data. The input
data set is driven by code coverage and specifically designed to stimulate specific
responses from the program.

In many environments, thorough testing of functional interfaces may be consid-
ered sufficient because properties such as performance, timing constraints or re-
source usage are not particularly demanding or may not be specified at all. Towards
the other end of the spectrum are embedded, real-time systems in which resource
and/or timing constraints may be absolute, severe and critical to the proper operation
of the program. It is often difficult to know a priori how a program will behave in
terms of performance or resource usage. In these environments, dynamic program
analysis is applied to ensure the program behaves properly in response to a range of
real world and pathological conditions.

2.6.4.1 Testing

Testing occurs in various contexts and at different phases during the development
and certification of a software product. Unit and integration testing is typically
conducted during development by the developers themselves. The rigor applied by
developer-implemented testing can vary widely across organizations.

Once an overall software product is developed, it is subjected to a system test,
typically conducted by a distinct Quality Assurance group. The test requirements are
derived from a specification that completely describes the interface to the product.
Testing procedures at this level are generally recognized to include:

• Thoroughly and completely exercising all interfaces to the program.
• Validating behavior under all externally visible states and conditions.
• Testing for both successful and unsuccessful conditions, including generation of

all errors and exceptions.
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If a product is subject to certification, then an evaluator may conduct additional
testing. The examination and testing of a product can vary widely depending on the
nature of the certification [26, 109]. Such testing may be comprised of simply run-
ning a defined test suite against the product to verify compliant functional behavior.
However, often the certification also seeks to assess the compliance of a product
at not just a single point it time, but over the lifetime of the product. Under this
type of requirement, the certification process must examine not only the product it-
self but also all the software development practices applied to develop and maintain
the product. Often the evaluator cannot examine, much less repeat, all the testing
conducted by the developer. Instead, the evaluator examines testing processes, test
records, documentation, and other materials that demonstrate software lifecycle as-
surance.

While testing is recognized as a vital process in software development, it is often
compartmentalized to discrete phases within the development lifecycle, typically
after a software unit or even a complete program has been coded.

The quality of a software product can be greatly improved by addressing testing
requirements throughout the development lifecycle, not only by conducting testing
at appropriate points within the development process, but also by actively consid-
ering testing impacts during the design and implementation of a program. A design
for test strategy includes both application of design principles that promote simple
and appropriately constructed interfaces and application of coding techniques that
facilitate testing.

Application of design principles, including developing a sound abstraction and
creating an appropriately modular architecture, tend to promote more intuitive and
simpler programs that are thus easier to test. Interestingly, while principles of ab-
straction and modularization might not be easily grasped, more rote examination of
an implementation can yield equally valuable feedback. For example, an interface
regarded as hard to test or having too many test cases suggests an interface that
might be unnecessarily complex given an understanding of a particular functional
requirement.

Application of techniques that facilitate testing can enable development of exten-
sive unit and integration test suites that may be used to support initial development
and regression testing. Unit tests are typically conducted using a test driver that can
exercise the unit under test by not only invoking the interfaces exposed by the soft-
ware unit but also by applying code practices that allow one to selectively expose
and control the internal state of the software unit.

Similar to the traditional software development process, the FPGA development
process typically involves several iterative steps in which the output of each pro-
gressive step of development is fed back to verify the functional behavior of the
circuit. To support this iterative model, the FPGA development tools have evolved
to support sophisticated hardware description languages and testing techniques that
can be used to construct test fixtures to exercise implementation logic and interfaces
of an HDL circuit description at each stage of the FPGA design flow.
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2.6.5 Trusted Distribution

It is important that the delivery of trusted products is protected against counterfeiting
and subversion during transit from the vendor site to the user site. The user must
have the following guarantees on the received product:

• It is of the correct version as specified by the vendor. If the product had been
evaluated, the distributed version must also match the evaluated configuration.

• It comes from the vendor, not from a fraudulent source, and
• It arrives unmodified.

This type of assurance requirements is characterized in evaluation criteria as
trusted distribution [110] and secure delivery [25], respectively.2 The need for these
requirements stems from the fact that any unauthorized changes to a product’s se-
curity mechanisms during its life cycle could have an adverse effect on the system’s
ability to enforce its security policy. While configuration management provides pro-
tection against subversion during the development phase, trusted distribution ad-
dresses threats of subversion and forgery during the distribution phase.

In TCSEC, trusted distribution requirements are only levied on Class A1 prod-
ucts since it was considered too costly for lower assurance classes to provide assur-
ance measures for ensuring secure delivery [111]. Specifically, the TCSEC requires
the vendor to implement a distribution system that can ensure the integrity of the
delivered product and to provide procedures for users to validate that the received
version is the same as the distribution master’s version [110]. These requirements
apply to both the initial delivery and subsequent updates of a product. Accompa-
nying the TCSEC is a series of technical guidelines whose purpose is to clarify the
TCSEC requirements and to provide implementation guidance. A Guide to Under-
standing Trusted Distribution in Trusted Systems [111] is one such document. This
guide explains why trusted distribution is an important life cycle assurance measure
and provides insights on different approaches to implementing an effective trusted
distribution mechanism.

The Common Criteria, on the other hand, imposes trusted distribution require-
ments starting at Evaluation Assurance Level 2 (EAL2), the second lowest level
of a seven-level assurance scale. In previous CC versions (Version 2.3 and older),
trusted distribution requirements were grouped into one family (ADO_DEL) and
expressed in terms of delivery procedures (EAL2 and EAL3), detection of modifi-
cation (EAL4 through EAL6), and prevention of modification (EAL7) [21]. These
categories are linearly hierarchical, i.e., detection of modification requires delivery
procedures, and prevention of modification requires both detection of modification
and delivery procedures. These requirements are similar to the TCSEC requirements
in that they focus on the use of the vendor’s master copy and address both proce-
dures and technical measures employed at both ends of the delivery channel.

In the current CC Version 3.1, trusted distribution requirements are expressed
in terms of delivery procedures and preparative procedures [25]. The former re-

2For the purpose of this discussion, the two terms are considered to be equivalent.
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quires the vendor to document and use the delivery procedures for distributing the
product. The latter requires the vendor to provide acceptance procedures for users
at the user site. The CC assurance requirements underwent a major rewrite after
Version 2.3, and trusted distribution requirements are now defined as two separate
families (ALC_DEL and AGD_PRE), making it harder for CC novices to follow.
Anti-subversion and anti-counterfeit safeguards that were explicitly specified in the
previous trusted distribution requirements have been made into application notes
which are not normative in the CC paradigm.

Although the trusted distribution requirements in the TCSEC and CC are differ-
ent in scope and form, they all have the same objective of protecting the product
against post-development subversion and theft. Similar threats also exist in FPGAs,
and just as in high assurance software, stringent delivery mechanisms should be em-
ployed to mitigate these threats at different development stages of an FPGA-based
system.

2.6.6 Trusted Recovery

A secure system (implementing a state-machine model) must ensure that each state
transition after an initial secure state results in another secure state [8]. Although the
definition of secure state depends on a system’s security policy model, in general a
secure state can be viewed as a system state in which the system data is consistent
and uncorrupted, and the system can correctly enforce the security policy repre-
sented by the its security model [46].

When a system detects that it is no longer in a secure state, it must attempt to
self-recover to a secure state without further protection compromise while recovery
is in progress. The concept of recovering in the presence of abnormity while en-
suring continuity of protection is known as trusted recovery. The TCSEC and CC
further characterize these exceptions as either failure or discontinuity of operations.
A failure can be an error condition in the system’s security functionality3 that causes
the system to behave incorrectly (e.g., inconsistent values in system data structures
caused by transient hardware failure) or a media failure (e.g., a disk crash). A dis-
continuity of operation, on the other hand, is an error caused by inappropriate human
actions, e.g., inappropriate shutdown of a system [24, 112].

While a system is running (as opposed to halted), it can be in one of two modes:
operational or maintenance. Trusted recovery mechanisms must be supported in
both modes [46]. These mechanisms must be able to determine whether the cur-
rent system state is secure or not and to initiate mode-specific recovery actions to
repair the system if the system is not in a secure state. Certain error conditions can
be recovered by automated mechanisms (e.g., remapping of a bad disk sector) while

3The term security functionality is based on the term TOE Security Functionality (TSF) which is
defined in the CC as a set consisting of all hardware, software, and firmware of the TOE that must
be relied upon for the correct enforcement of the security functional requirements [23].
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others require manual recovery actions (e.g., system crash due to an unexpected er-
ror). Recovery methods also vary depending on the operational environment of the
system. For example, the recovery method used in an embedded real-time system
would require more complex processing than the method used in a traditional com-
puter due to resource constraints of the embedded system (e.g., processor overhead
and response time) [62].

Although self-testing is a system integrity requirement, it is also relevant to
trusted recovery. Its use during system initialization and normal operation can detect
abnormal conditions that require recovery. Moreover, self-tests can be invoked by
an automated recovery mechanism as part of the recovery process or performed by
an administrator to verify that the system is indeed in a secure state after completing
a recovery action.

Regarding life cycle assurance, recovery mechanisms must meet the same de-
velopment assurance requirements levied on other security-relevant functions, since
they are parts of the system’s security functionality. Their design and implemen-
tation must be critically reviewed to ensure that architectural properties such as
self-protection, least privilege, modularity and minimization are upheld, and that
no Trojan horses or trap doors exist in the code. Furthermore, security testing and
vulnerability analysis must be performed to determine potential vulnerabilities that
could be exploited to bypass security enforcement during recovery [26].

Recovering from certain failures may require complex administrative actions.
Since administrative users typically have more privileges than regular users, the
principle of least privilege should be applied to the assignment of recovery privi-
leges such that only authorized administrative users (e.g., the security administrator,
not the system operator) can perform recovery functions. The operational guidance
documentation must describe all types of failure conditions, recovery procedures,
and tools, and for each type of failure, specific guidance on how best to recover
from the failure. It is paramount that user documentation on recovery is complete
and correct; otherwise, misuse of recovery functions may affect the system’s ability
to fail securely, resulting in compromised protection.

2.6.7 Static Analysis of Program Specifications

As opposed to testing the properties of a program4 in execution, static analysis
provides assurance of the properties of a program based on an objective examination
of some specification of the program.

Programs can be specified at different levels of abstraction, for example, user
manuals, design specs, source code, and executable code are different abstractions
of a program, and different forms of static analysis examine different levels of ab-
straction. Often, the term static analysis is used to refer specifically to the analysis
of source code [17], but in this context, it is used more broadly.

4Where program could be a module, component, monolithic system, or distributed system.
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2.6.7.1 Code Reviews and Bug Checking

A basic form of static analysis occurs during code reviews, in which program au-
thors along with peers, designers, managers, and customers, etc., look at source
code. A code review can focus on properties such as elegance, faithfulness to a
higher level specification, and coding errors like buffer overflows. Automated static
analysis tools [6, 15, 16, 28] can perform some of these analyses of specifications,
as long as the properties in question can be defined in terms of an effective procedure
(e.g., a rule) understandable by the tool. For example, while a tool might be able to
search for a well-defined buffer overflow, many concepts of program elegance are
subjective and beyond the scope of current tools. Some source code properties that
are statically checked by automated tools include: correct syntax and format, mem-
ory leakage, improper stack or general-memory access, memory leaks, overuse of
privilege, buffer overflow, unused or duplicate functions, unused variables, uninitial-
ized variables, lack of encapsulation/data-hiding, and time-of-check to time-of-use
errors.

Automated code reviews and bug checking, like automated testing, may not pro-
vide adequate assurance that a property is completely or correctly implemented in
a given program (the theoretical difficulty of writing a program to understand other
programs is related to the halting problem [11]). The use of formal methods, dis-
cussed next, can lead to greater assurance of program security.

2.6.7.2 Formal Methods

Human languages lend themselves to ambiguity and lack of precision, whereas
mathematics provides a basis for clear and precise description and reasoning about
those descriptions. Formal methods is not, itself, a formally-defined or standardized
term of art in computer science, but in general, it refers to the application of mathe-
matics in various aspects of the software and hardware system development process.
In particular, the use of formal methods to verify security properties is required for
high assurance or high robustness [14] product ratings.

Some formal methods are:

• general mathematical models of
– computation and processing [44]
– security [8, 9]

• specification languages [84, 97, 98] with precise semantics that can express:
– system behavior
– security properties
– refinement relationships between specifications
– theorems of conformance to properties
– theorems of conformance to more abstract specifications

• executable security languages with precise semantics:
– in which security properties such as correct MLS flow can be described with

first order language constructs



64 2 High Assurance Software Lessons and Techniques

– successful compilation of a program guarantees that it conforms to the proper-
ties that it includes [30, 115]

• automated systems for manipulating the logic of formal specifications, such as:
– automatic or interactive theorem provers [54, 78, 84]
– model checkers, model executers, and SAT solvers [48]
– tools that automatically generate theorems based on properties in a formal

specification [34]
• information flow analysis tools [34]

2.6.7.3 Refinement and Preservation of Properties

Formal verification of a secure system includes formalization of key specifications,
at different levels of abstraction, as well as a series of correspondence demonstra-
tions showing that each specification preserves the security properties of the next
most abstract level—resulting in a transitive argument that the implementation pre-
serves the security policy (see Fig. 2.8). The more the elements of this chain are
formalized, the more formal the resulting argument. The particularization of a given
specification to one that is more concrete (i.e., less abstract) is called refinement;
whereas the translation of a concrete specification to one that is more general is
called abstraction.

The prevalent criteria for high assurance verification [14, 110] have required sev-
eral items in common: a formal specification of both the security policy model and
the top level functional specification (an interface specification that includes the in-
puts, outputs, processing, and internal effects of each interface); a proof that the
formal model is consistent with its own security properties; and a proof that the for-
mal specification preserves the properties of the model. Formal methods may also
be used in the analysis of covert channels and in the demonstration that the source
code is consistent with the formal top level specification.

The usual expectation is that the natural language security policy and the secu-
rity policy model are simple enough that their consistency can be ensured through
inspection, with a high degree of confidence. The security policy model is often a

Fig. 2.8 Formal verification
chain of evidence
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refinement of the security policy, where an organizational-level policy that is “inde-
pendent of the use of a computer” [110] is interpreted in the computer technology
domain—i.e., the security policy model helps to transition between the security pol-
icy and the formal specifications. On the other hand, verified translation of source
code to machine code (i.e., trusted compilers) and the automatic translation of for-
mal functional specifications to source or machine code [97] are topics of current
research.

In what has been called the refinement paradox, [70, 82] it has been shown that
the refinement of an information flow model [39] does not, in general, preserve the
security properties of the model—e.g., the addition of detail (viz., in the formal
specification) may introduce flows not included in the abstract formal model. In this
case, covert channel analysis can be performed to ensure that the information flow
in the refined specification is correct. Similarly, if an access control model [8] is
used, a covert channel analysis of the formal specification ensures that information
flow that is extraneous to the model does not violate the security policy.

The correct correspondence of source code to the formal specification can be
demonstrated through exhaustive enumeration of the source code, in which each
element of code is mapped to its representation in the formal specification and is
accompanied by a rationale as to why the semantics of the formal specification are
preserved in the refinement. One of the goals of research to provide verified auto-
matic translation of the formal specification to source code is to avoid the arduous
manual code-correspondence task as well as to reduce the error rates associated with
manual coding.
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