Contents

advantation (1995)

	Introd	luction	xi		
1	Essentials of linear algebra				
	1.1	Motivating problems			
	1.2	Systems of linear equations	8		
		1.2.1 Row reduction using Maple	15		
	1.3	Linear combinations	21		
		1.3.1 Markov chains: an application of matrix-vector			
		multiplication	26		
		1.3.2 Matrix products using Maple	29		
	1.4	The span of a set of vectors 33			
	1.5	Systems of linear equations revisited			
	1.6	Linear independence			
	1.7	Matrix algebra			
		1.7.1 Matrix algebra using Maple	62		
	1.8	The inverse of a matrix			
		1.8.1 Computer graphics	70		
		1.8.2 Matrix inverses using Maple	73		
	1.9	The determinant of a matrix			
		1.9.1 Determinants using Maple	82		
	1.10	The eigenvalue problem			
		1.10.1 Markov chains, eigenvectors, and Google	93		
		1.10.2 Using <i>Maple</i> to find eigenvalues and eigenvectors	94		

vi Content	S
------------	---

	1.11	General	ized vectors	99		
	1.12	Bases an	nd dimension in vector spaces	108		
	1.13	For furt	her study	115		
		1.13.1	Computer graphics: geometry and linear algebra at	115		
			work	115		
		1.13.2	Bézier curves	119		
		1.13.3	Discrete dynamical systems	125		
2	First-c	First-order differential equations				
	2.1	Motivat	ing problems	127		
	2.2	Definiti	ons, notation, and terminology	129		
		2.2.1	Plotting slope fields using Maple	135		
	2.3	Linear f	irst-order differential equations	139		
	2.4	Applica	tions of linear first-order differential equations	147		
		2.4.1	Mixing problems	147		
		2.4.2	Exponential growth and decay	148		
		2.4.3	Newton's law of Cooling	150		
	2.5	Nonline	ear first-order differential equations	154		
		2.5.1	Separable equations	154		
		2.5.2	Exact equations	157		
	2.6	Euler's	method	162		
		2.6.1	Implementing Euler's method in Excel	167		
	2.7	Applica	tions of nonlinear first-order differential			
		equatio	ns	172		
		2.7.1	The logistic equation	172		
		2.7.2	Torricelli's law	176		
	2.8	For fur	ther study	181		
		2.8.1	Converting certain second-order des to			
			first-order DEs	181		
		2.8.2	How raindrops fall	182		
		2.8.3	Riccati's equation	183		
		2.8.4	Bernoulli's equation	184		
3	Linea	Linear systems of differential equations 187				
	3.1	Motiva	ting problems	187		
	3.2	The eig	envalue problem revisited	191		
	3.3	Homog	geneous linear first-order systems	202		
	3.4	System	s with all real linearly independent eigenvectors	211		
		3.4.1	Plotting direction fields for systems using Maple	219		
	3.5	When a	a matrix lacks two real linearly independent			
		eigenve	ectors	223		
	3.6	Nonho	mogeneous systems: undetermined			
		coeffici	ents	236		
	3.7	Nonho	mogeneous systems: variation of parameters	245		
		3.7.1	Applying variation of parameters using Maple	250		

	3.8	Appli	cations of linear systems	253		
		3.8.1	Mixing problems	253		
		3.8.2	Spring-mass systems	255		
		3.8.3	RLC circuits	258		
	3.9	For fu	urther study	268		
		3.9.1	Diagonalizable matrices and coupled systems	268		
		3.9.2	Matrix exponential	270		
4	High	Higher order differential equations				
	4.1	Motivating equations				
	4.2	Home	ogeneous equations: distinct real roots	274		
	4.3	Home	ogeneous equations: repeated and complex roots	281		
		4.3.1	Repeated roots	281		
		4.3.2	Complex roots	283		
	4.4	Nonh	omogeneous equations	288		
		4.4.1	Undetermined coefficients	289		
		4.4.2	Variation of parameters	295		
	4.5	Forced motion: beats and resonance 3				
	4.6	Highe	r order linear differential equations	309		
		4.6.1	Solving characteristic equations using Maple	316		
	4.7	For fu	rther study	319		
		4.7.1	Damped motion	319		
		4.7.2	Forced oscillations with damping	321		
		4.7.3	The Cauchy–Euler equation	323		
		4.7.4	Companion systems and companion matrices	325		
5	Lapla	lace transforms				
	5.1	Motivating problems				
	5.2	Laplace transforms: getting started				
	5.3	General properties of the Laplace transform				
	5.4	9.4 Piecewise continuous functions				
		5.4.1	The Heaviside function	347		
		5.4.2	The Dirac delta function	353		
		5.4.3	The Heaviside and Dirac functions in Maple	357		
	5.5	Solvin	Solving IVPs with the Laplace transform			
	5.6	More on the inverse Laplace transform				
		5.6.1	Laplace transforms and inverse transforms	275		
	57	Forfu	using mapie	373		
	5.7	571	I anlage transforms of infinite series	270		
		570	Laplace transforms of periodic forcing functions	2/8		
		572	Laplace transforms of systems	060		
		3.7.3	Laplace transforms of systems	384		
6	Nonl	Nonlinear systems of differential equations				
	6.1	Motiva	ating problems	387		

	6.2	Graph	Graphical behavior of solutions for 2×2 nonlinear			
		system	systems			
		6.2.1	Plotting direction fields of nonlinear systems			
			using Maple	397		
	6.3	Linear approximations of nonlinear systems				
	6.4	Euler's	Euler's method for nonlinear systems			
		6.4.1	Implementing Euler's method for systems in Excel	413		
	6.5	For fu	rther study	417		
		6.5.1	The damped pendulum	417		
		6.5.2	Competitive species	418		
7	Numerical methods for differential equations					
	7.1	Motiv	ating problems	421		
	7.2	Beyon	d Euler's method	423		
		7.2.1	Heun's method	424		
		7.2.2	Modified Euler's method	427		
	7.3	Highe	r order methods	430		
		7.3.1	Taylor methods	431		
		7.3.2	Runge–Kutta methods	434		
	7.4	Methods for systems and higher order equations				
		7.4.1	Euler's method for systems	440		
		7.4.2	Heun's method for systems	442		
		7.4.3	Runge–Kutta method for systems	443		
		7.4.4	Methods for higher order IVPs	445		
	7.5	For fu	rther study	449		
		7.5.1	Predator-Prey equations	449		
		7.5.2	Competitive species	450		
		7.5.3	The damped pendulum	450		
8	Series solutions for differential equations					
	8.1	Motivating problems				
	8.2	A review of Taylor and power series				
	8.3	Power series solutions of linear equations				
	8.4	Legendre's equation				
	8.5	Three	Three important examples			
		8.5.1	The Hermite equation	477		
		8.5.2	The Laguerre equation	480		
		8.5.3	The Bessel equation	482		
	8.6	The method of Frobenius				
	8.7	For further study				
		8.7.1	Taylor series for first-order differential equations	491		
		8.7.2	The Gamma function	491		

Appendix A	Review of integration techniques	493
Appendix B	Complex numbers	503
Appendix C	Roots of polynomials	509
Appendix D	Linear transformations	513
Appendix E	Solutions to selected exercises	523
Index		549