Contents

1	What can't be ignored			
1.1 The MATLAB and Octave environments				
	1.2	Real numbers	3	
		1.2.1 How we represent them	3	
		1.2.2 How we operate with floating-point numbers	6	
	1.3	3 Complex numbers		
	1.4	Matrices	10	
		1.4.1 Vectors	14	
	1.5	Real functions	16	
		1.5.1 The zeros	18	
		1.5.2 Polynomials	20	
		1.5.3 Integration and differentiation	22	
	1.6	To err is not only human	25	
		1.6.1 Talking about costs	29	
	1.7	The MATLAB language	30	
		1.7.1 MATLAB statements	32	
		1.7.2 Programming in MATLAB	34	
		1.7.3 Examples of differences between MATLAB		
		and Octave languages	37	
	1.8	What we haven't told you	38	
	1.9	Exercises		
2	Nor	linear equations	41	
_	2.1	Some representative problems	41	
	2.2	The bisection method	43	
	2.3	The Newton method	47	
		2.3.1 How to terminate Newton's iterations	49	
		2.3.2 The Newton method for systems of nonlinear		
		equations	51	
2.4		Fixed point iterations	54	
		2.4.1 How to terminate fixed point iterations	60	

	2.5	Acceleration using Aitken's method				
	2.6	Algebraic polynomials				
		2.6.1 Hörner's algorithm	66			
		2.6.2 The Newton-Hörner method	68			
	2.7	What we haven't told you	70			
	2.8	Exercises	72			
3		proximation of functions and data	75			
	3.1	Some representative problems	75 77			
	3.2	11				
	3.3	Interpolation				
		3.3.1 Lagrangian polynomial interpolation	79			
		3.3.2 Stability of polynomial interpolation	84			
		3.3.3 Interpolation at Chebyshev nodes	86			
		3.3.4 Trigonometric interpolation and FFT				
	3.4	Piecewise linear interpolation				
	3.5	Approximation by spline functions				
	3.6	The least-squares method				
	3.7	What we haven't told you				
	3.8	Exercises	105			
4	merical differentiation and integration	107				
	4.1	Some representative problems				
	4.2	Approximation of function derivatives				
	4.3	Numerical integration				
		4.3.1 Midpoint formula				
		4.3.2 Trapezoidal formula				
		4.3.3 Simpson formula				
	4.4	-				
	4.5					
	4.6	What we haven't told you				
	4.7	Exercises				
5	Lin	ear systems	190			
U	5.1	Some representative problems				
	5.2	Linear system and complexity				
	5.3	The LU factorization method				
	5.4	The pivoting technique				
	5.5	How accurate is the solution of a linear system?	144			
	5.6	How to solve a tridiagonal system	14/			
	5.0 5.7	Overdetermined systems				
	5.8	What is hidden behind the MATLAB command \	102			
	5.9	Iterative methods	154			
	0.9	5.9.1 How to construct an iterative method	150			
		0.9.1 How to construct an iterative method	198			

	5.10	Richardson and gradient methods	162			
	5.11	The conjugate gradient method	166			
	5.12 When should an iterative method be stopped?					
	5.13 To wrap-up: direct or iterative?					
		What we haven't told you				
		Exercises				
6	Eig	envalues and eigenvectors	181			
	6.1	Some representative problems				
	6.2	The power method				
		6.2.1 Convergence analysis				
	6.3	Generalization of the power method				
	6.4	How to compute the shift				
	6.5	Computation of all the eigenvalues				
	6.6	What we haven't told you				
	6.7	Exercises				
7	Ord	linary differential equations	201			
•	7.1	Some representative problems				
	7.2	The Cauchy problem				
	7.3	Euler methods				
		7.3.1 Convergence analysis				
	7.4	The Crank-Nicolson method				
	7.5	Zero-stability				
	7.6	Stability on unbounded intervals				
	1.0	7.6.1 The region of absolute stability				
		7.6.2 Absolute stability controls perturbations				
	7.7	High order methods				
	7.8 The predictor-corrector methods					
	7.9	Systems of differential equations				
		Some examples				
	1.10	7.10.1 The spherical pendulum				
		7.10.2 The three-body problem				
		7.10.3 Some stiff problems				
	7 11	What we haven't told you				
		Exercises				
8	NT	merical approximation of boundary-value problems	955			
0		Some representative problems				
	$\begin{array}{c} 8.1 \\ 8.2 \end{array}$	Approximation of boundary-value problems				
	0.2		200			
			950			
		one-dimensional Poisson problem	209			
		8.2.2 Finite difference approximation of a	969			
		convection-dominated problem	202			

		8.2.3	Finite element approximation of the			
			one-dimensional Poisson problem			
		8.2.4	Finite difference approximation of the			
			two-dimensional Poisson problem			
		8.2.5	Consistency and convergence of finite difference			
			discretization of the Poisson problem			
		8.2.6	Finite difference approximation of the			
			one-dimensional heat equation			
		8.2.7	Finite element approximation of the			
			one-dimensional heat equation			
	8.3	-				
		8.3.1	Finite difference discretization of the scalar			
			transport equation			
		8.3.2	Finite difference analysis for the scalar transport			
			equation			
		8.3.3	Finite element space discretization of the scalar			
			advection equation			
	8.4	The wa	ave equation			
		8.4.1	Finite difference approximation of the wave			
			equation			
	8.5		we haven't told you 299			
	8.6	Exerci	ses			
9	Sol	itions a	of the exercises			
0	9.1		er 1			
	9.2	-	er 2			
	9.3	<u>^</u>				
	9.4	-	er 4			
	9.5	-	er 5			
	9.6					
	9.7	_	er 7			
	9.8		er 8			
References						
Index						