Contents

1 What can't be ignored 1
1.1 The MATLAB and Octave environments 1
1.2 Real numbers 3
1.2.1 How we represent them 3
1.2.2 How we operate with floating-point numbers 6
1.3 Complex numbers 8
1.4 Matrices 10
1.4.1 Vectors 14
1.5 Real functions 16
1.5.1 The zeros 18
1.5.2 Polynomials 20
1.5.3 Integration and differentiation 22
1.6 To err is not only human 25
1.6.1 Talking about costs 29
1.7 The MATLAB language 30
1.7.1 MATLAB statements 32
1.7.2 Programming in MATLAB 34
1.7.3 Examples of differences between MATLAB and Octave languages 37
1.8 What we haven't told you 38
1.9 Exercises 38
2 Nonlinear equations 41
2.1 Some representative problems 41
2.2 The bisection method 43
2.3 The Newton method 47
2.3.1 How to terminate Newton's iterations 49
2.3.2 The Newton method for systems of nonlinear equations 51
2.4 Fixed point iterations 54
2.4.1 How to terminate fixed point iterations 60
2.5 Acceleration using Aitken's method 60
2.6 Algebraic polynomials 65
2.6.1 Hörner's algorithm 66
2.6.2 The Newton-Hörner method 68
2.7 What we haven't told you 70
2.8 Exercises 72
3 Approximation of functions and data 75
3.1 Some representative problems 75
3.2 Approximation by Taylor's polynomials 77
3.3 Interpolation 78
3.3.1 Lagrangian polynomial interpolation 79
3.3.2 Stability of polynomial interpolation 84
3.3.3 Interpolation at Chebyshev nodes 86
3.3.4 Trigonometric interpolation and FFT 88
3.4 Piecewise linear interpolation 93
3.5 Approximation by spline functions 94
3.6 The least-squares method 99
3.7 What we haven't told you 103
3.8 Exercises 105
4 Numerical differentiation and integration 107
4.1 Some representative problems 107
4.2 Approximation of function derivatives 109
4.3 Numerical integration 111
4.3.1 Midpoint formula 112
4.3.2 Trapezoidal formula 114
4.3.3 Simpson formula 115
4.4 Interpolatory quadratures 117
4.5 Simpson adaptive formula 121
4.6 What we haven't told you 125
4.7 Exercises 126
5 Linear systems 129
5.1 Some representative problems 129
5.2 Linear system and complexity 134
5.3 The LU factorization method 135
5.4 The pivoting technique 144
5.5 How accurate is the solution of a linear system? 147
5.6 How to solve a tridiagonal system 150
5.7 Overdetermined systems 152
5.8 What is hidden behind the MATLAB command \backslash 154
5.9 Iterative methods 157
5.9.1 How to construct an iterative method 158
5.10 Richardson and gradient methods 162
5.11 The conjugate gradient method 166
5.12 When should an iterative method be stopped? 169
5.13 To wrap-up: direct or iterative? 171
5.14 What we haven't told you 177
5.15 Exercises 177
6 Eigenvalues and eigenvectors 181
6.1 Some representative problems 182
6.2 The power method 184
6.2.1 Convergence analysis 187
6.3 Generalization of the power method 188
6.4 How to compute the shift 190
6.5 Computation of all the eigenvalues 193
6.6 What we haven't told you 197
6.7 Exercises 197
7 Ordinary differential equations 201
7.1 Some representative problems 201
7.2 The Cauchy problem 204
7.3 Euler methods 205
7.3.1 Convergence analysis 208
7.4 The Crank-Nicolson method 212
7.5 Zero-stability 214
7.6 Stability on unbounded intervals 216
7.6.1 The region of absolute stability 219
7.6.2 Absolute stability controls perturbations 220
7.7 High order methods 228
7.8 The predictor-corrector methods 234
7.9 Systems of differential equations 236
7.10 Some examples 242
7.10.1 The spherical pendulum 242
7.10.2 The three-body problem 246
7.10.3 Some stiff problems 248
7.11 What we haven't told you 252
7.12 Exercises 252
8 Numerical approximation of boundary-value problems 255
8.1 Some representative problems 256
8.2 Approximation of boundary-value problems 258
8.2.1 Finite difference approximation of the one-dimensional Poisson problem 259
8.2.2 Finite difference approximation of a convection-dominated problem 262
8.2.3 Finite element approximation of the one-dimensional Poisson problem 263
8.2.4 Finite difference approximation of the two-dimensional Poisson problem 267
8.2.5 Consistency and convergence of finite difference discretization of the Poisson problem 272
8.2.6 Finite difference approximation of the one-dimensional heat equation 274
8.2.7 Finite element approximation of the one-dimensional heat equation 278
8.3 Hyperbolic equations: a scalar pure advection problem 281
8.3.1 Finite difference discretization of the scalar transport equation 283
8.3.2 Finite difference analysis for the scalar transport equation 285
8.3.3 Finite element space discretization of the scalar advection equation 292
8.4 The wave equation 293
8.4.1 Finite difference approximation of the wave equation 295
8.5 What we haven't told you 299
8.6 Exercises 300
9 Solutions of the exercises 303
9.1 Chapter 1 303
9.2 Chapter 2 306
9.3 Chapter 3 312
9.4 Chapter 4 315
9.5 Chapter 5 320
9.6 Chapter 6 327
9.7 Chapter 7 330
9.8 Chapter 8 339
References 347
Index 353

