Contents

	List	; of Figures	xiii		
	Pre	face	xv		
1	Introduction				
	1.1	Some Combinatorial Examples	1		
	1.2	Sets, Relations and Proof Techniques	13		
	1.3	Two Principles of Enumeration	15		
	1.4	Graphs	18		
	1.5	Systems of Distinct Representatives	20		
		Exercises 1A	22		
		Exercises 1B	23		
		Problems	25		
2	Fun	damentals of Enumeration	27		
	2.1	Permutations and Combinations	27		
	2.2	Applications of $P(n,k)$ and $\binom{n}{k}$	29		
	2.3	Permutations and Combinations of Multisets	32		
	2.4	Applications and Subtle Errors	36		
	2.5	Algorithms	39		
		Exercises 2A	41		
		Exercises 2B	43		
		Problems	44		
3	The	Pigeonhole Principle and Ramsey's Theorem	47		
	3.1	The Pigeonhole Principle	47		
	3.2	Applications of the Pigeonhole Principle	48		
	3.3	Ramsey's Theorem — the Graphical Case	51		
	3.4	Ramsey Multiplicity	54		
	3.5	Sum-Free Sets	56		
	3.6	Bounds on Ramsey Numbers	59		
	3.7	The General Form of Ramsey's Theorem	63		
		Exercises 3A	63		
		Exercises 3B	64		
		Problems	66		

4	The	Principle of Inclusion and Exclusion	69
	4.1	Unions of Events	69
	4.2	The Principle	71
	4.3	Combinations with Limited Repetitions	75
	4.4	Derangements	77
		Exercises 4A	80
		Exercises 4B	81
		Problems	83
5	Gon	erating Functions and Recurrence Relations	85
U	51	Generating Functions	85
	59	Recurrence Relations	89
	53	From Concepting Function to Recurrence	94
	5.4	Exponential Concreting Functions	95
	0.4	Exponential Generating Functions $\ldots \ldots \ldots \ldots \ldots \ldots$	97
		Exercises 5R	00
		Exercises JD	100
			100
6	Cat	alan, Bell and Stirling Numbers	103
	6.1	Introduction	103
	6.2	Catalan Numbers	104
	6.3	Stirling Numbers of the Second Kind	108
	6.4	Bell Numbers	113
	6.5	Stirling Numbers of the First Kind	114
	6.6	Computer Algebra and Other Electronic Systems	117
		Exercises 6A	119
		Exercises 6B	121
		Problems	122
7	Syn	metries and the Pólya-Redfield Mothod	123
•	71	Introduction	123
	7.2	Basics of Groups	120
	72	Permutations and Colorings	124
	71	An Important Counting Theorem	121
	(.4 75	All important Counting Theorem	101
	1.0		104
		Exercises 7A	138
		Problems	139
		1100lems	140
8	Intr	oduction to Graph Theory	143
	8.1	Degrees	143
	8.2	Paths and Cycles in Graphs	146
	8.3	Maps and Graph Coloring	149
		Exercises 8A	153
		Exercises 8B	155
		Problems	156

9	Fur	ther Graph Theory 1	.59
	9.1	Euler Walks and Circuits	159
	9.2	Application of Euler Circuits to Mazes	164
	9.3	Hamilton Cycles	166
	9.4	Trees	170
	9.5	Spanning Trees	174
		Exercises 9A	180
		Exercises 9B	184
		Problems	187
10	Cod	ling Theory 1	.89
	10.1	Errors; Noise	189
	10.2	The Venn Diagram Code	190
	10.3	Binary Codes; Weight; Distance	192
	10.4	Linear Codes	195
	10.5	Hamming Codes	198
	10.6	Codes and the Hat Problem	200
	10.7	Variable-Length Codes and Data Compression	201
		Exercises 10A	203
		Exercises 10B	204
		Problems	205
11	Lati	n Squares 2	07
	11.1	Introduction	207
	11.2	Orthogonality	211
	11.3	Idempotent Latin Squares	217
	11.4	Partial Latin Squares and Subsquares	219
	11.5	Applications 2	221
		Exercises 11A	225
		Exercises 11B	228
		Problems	229
12	Bala	anced Incomplete Block Designs 2	31
	12.1	Design Parameters	232
	12.2	Fisher's Inequality	236
	12.3	Symmetric Balanced Incomplete Block Designs	238
	12.4	New Designs from Old	240
	12.5	Difference Methods	242
		Exercises 12A	$^{-}_{245}$
		Exercises 12B	247
		Problems	248

13 Linear Algebra Methods in Combinatorics	251			
13.1 Recurrences Revisited	251			
13.2 State Graphs and the Transfer Matrix Method	253			
13.3 Kasteleyn's Permanent Method	260			
Exercises 13A	265			
Exercises 13B	267			
Problems	268			
Appendix 1: Sets; Proof Techniques	271			
A1.1 Sets and Basic Set Operations	271			
A1.2 The Principle of Mathematical Induction	279			
A1.3 Some Applications of Induction	281			
A1.4 Binary Relations on Sets	283			
Exercises A	285			
Exercises B	286			
Appendix 2: Matrices and Vectors	291			
A2.1 Definitions	291			
A2.2 Vector and Matrix Products	294			
A2.3 Inverses	296			
A2.4 Determinants	298			
Exercises A	299			
Exercises B	301			
Appendix 3: Some Combinatorial People	305			
Solutions to Set A Exercises	313			
Hints for Problems				
Solutions to Problems				
References				
Index	375			