
2. Classes of Digraphs

In this chapter we introduce several classes of digraphs. We study these classes
with respect to their properties, characterization, recognition and decompo-
sition. Further properties of the classes are studied in the following chapters
of this book.

In Section 2.1 we study basic properties of acyclic digraphs. Acyclic di-
graphs form a very important family of digraphs and the reader will often
encounter them in this book. Multipartite digraphs and extended digraphs are
introduced in Section 2.2. These digraphs are studied in many other sections
of our book. In Section 2.3, we introduce and study the transitive closure and
a transitive reduction of a digraph. We use the notion of transitive reduction
already in Section 2.6.

Several characterizations and a recognition algorithm for line digraphs are
given in Section 2.4. We investigate basic properties of de Bruijn and Kautz
digraphs and their generalizations in Section 2.5. These digraphs are extreme
or almost extreme with respect to their diameter and vertex-strong connectiv-
ity. Series-parallel digraphs are introduced and studied in Section 2.6. These
digraphs are of interest due to various applications such as scheduling. In the
study of series-parallel digraphs we use notions and results of Sections 2.3
and 2.4.

An interesting generalization of transitive digraphs, the class of quasi-
transitive digraphs, is considered in Section 2.7. The path-merging property
of digraphs which is quite important for investigation of some classes of di-
graphs including tournaments is introduced and studied in Section 2.8. Two
classes of path-mergeable digraphs, locally in-semicomplete and locally out-
semicomplete digraphs, both generalizing the class of tournaments, are de-
fined and investigated with respect to their basic properties in Section 2.9.
The intersection of these two classes forms the class of locally semicomplete
digraphs, which are studied in Section 2.10. There we give a very useful clas-
sification of locally semicomplete digraphs, which is applied in several proofs
in other chapters. A characterization of a special subclass of locally semicom-
plete digraphs, called round digraphs, is also proved.

In Section 2.11, we study three classes of totally decomposable digraphs
forming important generalizations of quasi-transitive digraphs as well as some
other classes of digraphs. The aim of Section 2.11 is to investigate recognition
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32 2. Classes of Digraphs

of these three classes. Planar digraphs are discussed in Section 2.12. Digraphs
of restricted tree-width are considered in Section 2.13. We show the useful-
ness of this class of graphs in designing polynomial algorithms and proving
fixed-parameter tractability for some problems on digraphs. In Section 2.13,
we also introduce and study directed tree-width, directed path-width and
DAG-width. The last section is devoted to digraphs of three classes: circu-
lant digraphs, arc-locally semicomplete digraphs and intersection digraphs.

2.1 Acyclic Digraphs

A digraph D is acyclic if it has no cycle. Acyclic digraphs form a well-
studied family of digraphs of great interest in graph theory, algorithms and
applications (see, e.g., Sections 2.3, 2.6, 3.3.2, 7.3, 10.4, 10.7, 17.2, 17.11,
17.15).

Recall that a vertex x in a digraph is sink (source) if d+(x) = 0 (d−(x) =
0).

Proposition 2.1.1 Every acyclic digraph has a source and a sink.

Proof: Let D be a digraph in which all vertices have positive out-degrees.
We show that D has a cycle. Choose a vertex v1 in D. Since d+(v1) > 0, there
is a vertex v2 such that v1→v2. As d+(v2) > 0, v2 dominates some vertex v3.
Proceeding in this manner, we obtain walks of the form v1v2 . . . vk. As V (D)
is finite, there exists the least k > 2 such that vk = vi for some 1 ≤ i < k.
Clearly, vivi+1 . . . vk is a cycle.

Thus, an acyclic digraph D has a sink. Since the converse H of D is also
acyclic, H has a sink v. Clearly, v has a source in D. ��

Proposition 2.1.1 allows one to check whether a digraph D is acyclic: if D
has a vertex of out-degree zero, then delete this vertex from D and consider
the resulting digraph; otherwise, D contains a cycle. In the end of this section,
we give another algorithm for verifying whether a digraph is acyclic.

Proposition 2.1.2 Let D be an acyclic digraph with precisely one source x
and one sink y in D. Then for every vertex v ∈ V (D) there is an (x, v)-path
and a (v, y)-path in D.

Proof: A longest path starting at v (terminating at v) is certainly a (v, y)-
path (an (x, v)-path). ��

Let D be a digraph and let x1, x2, . . . , xn be an ordering of its vertices.
We call this ordering an acyclic ordering1 if, for every arc xixj in D, we

1 Notice that in a majority of the literature an acyclic ordering is called a topo-
logical sorting. We feel that the name acyclic ordering is more appropriate, since
no topology is involved.
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have i < j. Clearly, an acyclic ordering of D induces an acyclic ordering of
every subdigraph H of D. Since no cycle has an acyclic ordering, no digraph
with a cycle has an acyclic ordering. On the other hand, the following holds:

Proposition 2.1.3 Every acyclic digraph has an acyclic ordering of its ver-
tices.

Proof: We give a constructive proof by describing a procedure that generates
an acyclic ordering of the vertices in an acyclic digraph D. At the first step,
we choose a vertex v with in-degree zero. (Such a vertex exists by Proposition
2.1.1.) Set x1 = v and delete x1 from D. At the ith step, we find a vertex u
of in-degree zero in the remaining acyclic digraph, set xi = u and delete xi

from the remaining acyclic digraph. The procedure has |V (D)| steps.
Suppose that xi→xj in D, but i > j. As xj was chosen before xi, it

means that xj was not of in-degree zero at the jth step of the procedure; a
contradiction. ��

Knuth [602] was the first to give a linear time algorithm for finding an
acyclic ordering. Now we will show how to find an acyclic ordering in linear
time using DFS described in the previous chapter. Below we assume that the
input to the DFS algorithm is an acyclic digraph D = (V,A). In the formal
description of DFS let us add the following: i := n + 1 in line 2 of the main
body of DFS and i := i−1, vi := v in the last line of DFS-PROC. We obtain
the following algorithm which we denote by DFSA:

DFSA(D)
Input: A digraph D = (V,A).
Output: An acyclic ordering v1, . . . , vn of D.

1. For each v ∈ V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0.
2. Set time := 0, i := n + 1.
3. For each vertex v ∈ V do: if tvisit(v) = 0 then perform DFSA-PROC(v).

DFSA-PROC(v)

1. Set time := time + 1, tvisit(v) := time.
2. For each u ∈ N+(v) do: if tvisit(u) = 0 then pred(u) := v and perform

DFSA-PROC(u).
3. Set time := time + 1, texpl(v) := time, i := i − 1, vi := v.

Theorem 2.1.4 The algorithm DFSA correctly determines an acyclic order-
ing of any acyclic digraph in time O(n + m).

Proof: Since the algorithm is clearly linear (as DFS is linear), it suffices to
show that the ordering v1, v2, . . . , vn is acyclic. Observe that according to our
algorithm

texpl(vi) > texpl(vj) if and only if i < j. (2.1)
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Assume that D has an arc vkvs such that k > s. Hence, texpl(vs) > texpl(vk).
The arc vkvs is not a cross arc, because if it were, then by Proposition 1.9.1
and Corollary 1.9.2, the intervals for vk and vs would not intersect, i.e., vk

would be visited and explored before vs would be visited; this and (2.1) make
the existence of vkvs impossible. The arc vkvs is not a forward arc, because if
it were, texpl(vs) would be smaller than texpl(vk). Therefore, vkvs must be
a backward arc, i.e., vk � vs. Thus, there is a (vs, vk)-path in D. This path
and the arc vkvs form a cycle, a contradiction. ��

Figure 2.1 illustrates the result of applying DFSA to an acyclic digraph.
The resulting acyclic ordering is z, w, u, y, x, v.
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10/118/9

Figure 2.1 The result of applying DFSA to an acyclic digraph.

In Section 5.2 we apply DFSA to an arbitrary not necessarily acyclic
digraph and see that the ordering v1, v2, . . . , vn obtained by DFSA is very
useful to determine the strong components of a digraph. DFSA allows us to
check, in time O(n + m), whether a digraph D is acyclic: we run DFSA and
then verify whether the obtained ordering of the vertices is acyclic. Thus, we
have the following:

Proposition 2.1.5 One can check whether a digraph is acyclic in time O(n+
m). ��

2.2 Multipartite Digraphs and Extended Digraphs

A p-partite digraph is a biorientation of a p-partite graph; see Figure
2.2(b). Bipartite (i.e., 2-partite) digraphs are of special interest. It is well-
known (and was proved already by König [618]) that an undirected graph is
bipartite if and only if it has no cycle of odd length. The obvious extension
of this statement to cycles in digraphs is not valid (the non-bipartite digraph
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with vertex set {x, y, z} and arc set {xy, xz, yz} is such an example that can
easily be generalized). However, the obvious extension does hold for strong
bipartite digraphs. Theorem 2.2.1 can be traced back to the book [503] by
Harary, Norman and Cartwright.

Theorem 2.2.1 A strongly connected digraph is bipartite if and only if it
has no cycle of odd length.

Proof: If D is bipartite, then it is easy to see that D cannot have an odd
cycle. To prove sufficiency suppose that D has no odd cycle. Fix an arbitrary
vertex x in D. We claim that for every vertex y ∈ V (D)−x and every choice
of an (x, y)-path P and a (y, x)-path Q, the length of P and Q are equal
modulo 2.

Suppose this is not the case for some choice of y, P and Q. Then choose y,
P and Q such that the parity of the lengths of P and Q differ and |V (P )| +
|V (Q)| is minimum among all such pairs of (x, y)- and (y, x)-paths whose
lengths differ in parity. If V (P ) ∩ V (Q) = {x, y}, then PQ is an odd cycle,
contradicting the assumption. Hence there is a vertex z /∈ {x, y} in V (P ) ∩
V (Q). Let z be chosen as the first such vertex that we meet when we traverse
Q from y towards x. Then P [z, y]Q[y+

Q, z] is a cycle and it is even by our
assumption. But now it is easy to see that the parity of the paths P [x, z]
and Q[z, x] are different and we get a contradiction to the choice of y, P
and Q. This proves the claim and, in particular, it follows that for every
y ∈ V (D) − x, the lengths of all paths from x to y have the same parity.

Now let U = {y : the length of every (x, y)-path is even} and U ′ = {y :
the length of every (x, y)-path is odd}. This is a bipartition of V (D) and

neither U nor U ′ contains two vertices which are joined by an arc, since that
would imply that some vertex had paths of two different parities from x. ��

An extension of this theorem to digraphs whose cycles are all of length 0
modulo k ≥ 2 is given in Theorem 17.8.1.

Recall that tournaments are orientations of complete graphs. Recall that
a semicomplete digraph is a biorientation of a complete graph (see Figure
2.2(a)) and a tournament is an orientation of a complete digraph. The
complete biorientation of a complete graph is a complete digraph (denoted
by

↔
Kn). The notion of semicomplete digraphs and their special subclass,

tournaments, can be extended in various ways. A biorientation of a complete
p-partite (multipartite) graph is a semicomplete p-partite (multipartite)
digraph; see Figure 2.2(c). A multipartite tournament is an orientation
of a complete multipartite graph. A semicomplete 2-partite digraph is also
called a semicomplete bipartite digraph. A bipartite tournament is a
semicomplete bipartite digraph with no 2-cycles.

One can use the operation of extension introduced in Section 1.3 to de-
fine ‘extensions’ of the above classes of digraphs. We will speak of extended
semicomplete digraphs (i.e., extensions of semicomplete digraphs), ex-
tended locally in-semicomplete digraphs, extended locally semi-
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(a) K4 and a semicomplete digraph of order four.

(b) A 3-partite graph G and a biorientation of G.

(c) The complete 3-partite graph K2,1,2 and
a semicomplete 3-partite digraph D.

Figure 2.2 Multipartite digraphs.

complete digraphs, etc. Clearly, every extended semicomplete digraph is
a semicomplete multipartite digraph, which is not necessarily semicomplete,
and every extended semicomplete multipartite digraph is still a semicom-
plete multipartite digraph. Therefore, the class of semicomplete multipartite
digraphs is extension-closed, and the class of semicomplete digraphs is not.

2.3 Transitive Digraphs, Transitive Closures and
Reductions

A digraph D is transitive if, for every pair xy and yz of arcs in D with
x 
= z, the arc xz is also in D. Transitive digraphs form the underlying
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graph-theoretical model in a number of applications. For example, transitive
oriented graphs correspond very naturally to partial orders (see Section 13.5
for some terminology on partial orders, the correspondence between transitive
oriented graphs and partial orders and some basic results). The aim of this
section is to give a brief overview of some properties of transitive digraphs as
well as transitive closures and reductions of digraphs.

It is easy to show that a tournament is transitive if and only it is acyclic
(see Exercise 2.3) and a strong digraph D is transitive if and only if D is com-
plete2. We have the following simple characterization of transitive digraphs;
its proof is left as Exercise 2.4.

Proposition 2.3.1 Let D be a digraph with an acyclic ordering D1, D2, . . . ,
Dp of its strong components. The digraph D is transitive if and only if each of
Di is complete, the digraph H obtained from D by contraction of D1, . . . , Dp

followed by deletion of multiple arcs is a transitive oriented graph, and D =
H[D1, D2, . . . , Dp], where p = |V (H)|. ��

The transitive closure TC(D) of a digraph D is a digraph with
V (TC(D)) = V (D) and, for distinct vertices u, v, the arc uv ∈ A(TC(D))
if and only if D has a (u, v)-path. Clearly, if D is strong, then TC(D) is
a complete digraph. The uniqueness of the transitive closure of an arbitrary
digraph is obvious. To compute the transitive closure of a digraph one can ob-
viously apply the Floyd-Warshall algorithm in Chapter 3. To obtain a faster
algorithm for the problem one can use the fact discovered by a number of re-
searchers (see, e.g., the paper [318] by Fisher and Meyer, or [370] by Furman)
that the transitive closure problem and the matrix multiplication problem
are closely related: there exists an O(na)-algorithm, with a ≥ 2, to compute
the transitive closure of a digraph of order n if and only if the product of
two boolean n × n matrices can be computed in O(na) time. Coppersmith
and Winograd [230] showed that there exists an O(n2.376)-algorithm for the
matrix multiplication. Goralcikova and Koubek [423] designed an O(nmred)-
algorithm to find the transitive closure of an acyclic digraph D with n vertices
and mred arcs in the transitive reduction of D (the notion of transitive re-
duction is introduced below). This algorithm was also studied and improved
by Mehlhorn [691] and Simon [820].

An arc uv in a digraph D is redundant if there is a (u, v)-path in D
which does not contain the arc uv. A transitive reduction of a digraph
D is a spanning subdigraph H of D with no redundant arc such that the
transitive closures of D and H coincide. Not every digraph D has a unique
transitive reduction. Indeed, if D has a pair of hamiltonian cycles, then each
of these cycles is a transitive reduction of D. Below we show that a transitive
reduction of an acyclic digraph is unique, i.e., we may speak of the transitive
2 By the definition of a transitive digraph, a 2-cycle xyx does not force a loop at

x and y.
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reduction of an acyclic digraph. The intersection of digraphs D1, . . . , Dk

with the same vertex set V is the digraph H with vertex set V and arc set
A(D1) ∩ . . . ∩ A(Dk). Similarly one can define the union of digraphs with
the same vertex sets (see Section 1.3). Let S(D) be the set of all spanning
subdigraphs L of D for which TC(L) = TC(D).

Theorem 2.3.2 [10] For an acyclic digraph D, there exists a unique digraph
D′ with the property that TC(D′) = TC(D) and every proper subdigraph H of
D′ satisfies TC(H) 
= TC(D′). The digraph D′ is the intersection of digraphs
in S(D).

The proof of this theorem, which is due to Aho, Garey and Ullman, follows
from Lemmas 2.3.3 and 2.3.4.

Lemma 2.3.3 Let D and H be a pair of acyclic digraphs on the same vertex
set such that TC(D) = TC(H) and A(D) − A(H) 
= ∅. Then, for every
e ∈ A(D) − A(H), we have TC(D − e) = TC(D).

Proof: Let e = xy ∈ A(D)−A(H). Since e 
∈ A(H), H must have an (x, y)-
path passing through some other vertex, say z. Hence, D has an (x, z)-path
Pxz and a (z, y)-path Pzy. If Pxz contains e, then D has a (y, z)-path. The
existence of this path contradicts the existence of Pzy and the hypothesis that
D is acyclic. Similarly, one can show that Pzy does not contain e. Therefore,
D − e has an (x, y)-path. Hence, TC(D − e) = TC(D). ��

Lemma 2.3.4 Let D be an acyclic digraph. Then the set S(D) is closed
under union and intersection.

Proof: Let G, H be a pair of digraphs in S(D). Since TC(G) = TC(H) =
TC(D), G ∪ H is a subdigraph of TC(D). The transitivity of TC(D) now
implies that TC(G ∪ H) is a subdigraph of TC(D). Since G is a subdigraph
of G ∪ H, we have TC(D) (= TC(G)) is a subdigraph of TC(G ∪H). Thus,
we conclude that TC(G ∪ H) = TC(D) and G ∪ H ∈ S(D).

Now let e1, . . . , ep be the arcs of G − A(G ∩ H). By repeated application
of Lemma 2.3.3, we obtain TC(G− e1 − e2 − . . .− ep) = TC(G). This means
that TC(G ∩ H) = TC(G) = TC(D), hence G ∩ H ∈ S(D). ��

Aho, Garey and Ullman [10] proved that there exists an O(na)-algorithm,
with a ≥ 2, to compute the transitive closure of an arbitrary digraph D of
order n if and only if a transitive reduction of D can be constructed in time
O(na). Therefore, we have

Proposition 2.3.5 For an arbitrary digraph D, the transitive closure and a
transitive reduction can be computed in time O(n2.376). ��

Simon [821] described an O(n+m)-algorithm to find a transitive reduction
of a strong digraph D. The algorithm uses DFS and two digraph transforma-
tions preserving TC(D). This means that to have a linear time algorithm for
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finding transitive reductions of digraphs from a certain class D, it suffices to
design a linear time algorithm for the transitive reduction of strong compo-
nent digraphs of digraphs in D. (Recall that the strong component digraph
SC(D) of a digraph D is obtained by contracting every strong component
of D to a vertex followed by deletion of parallel arcs.) Such algorithms are
considered, e.g., in the paper [485] by Habib, Morvan and Rampon.

While Simon’s linear time algorithm in [821] finds a minimal subdigraph
D′ of a strong digraph D such that TC(D′) = TC(D), no polynomial algo-
rithm is known to find a subdigraph D′′ of a strong digraph D with minimum
number of arcs such that TC(D′′) = TC(D). This is not surprising due to the
fact that the corresponding optimization problem is NP-hard. Indeed, the
problem to verify whether a strong digraph D of order n has a subdigraph
D′′ of size n such that TC(D′′) = TC(D) is equivalent to the hamiltonian
cycle problem, which is NP-complete by Theorem 6.1.1.

A subdigraph D′′ of a digraph D with minimum number of arcs such
that TC(D′′) = TC(D) is sometimes called a minimum equivalent sub-
digraph of D. By the above discussion, we see that a minimum equivalent
subdigraph of an acyclic digraph is unique and can be found in polynomial
time. This means that the main difficulty of finding a minimum equivalent
subdigraph of an arbitrary digraph D lies in finding such subdigraphs for
the strong components of D. This issue is addressed in Section 12.2 for some
classes of digraphs studied in this chapter. For the classes in Section 12.2,
the minimum equivalent subdigraph problem is polynomial time solvable.

2.4 Line Digraphs

For a directed pseudograph D, the line digraph Q = L(D) has vertex set
V (Q) = A(D) and arc set

A(Q) = {ab : a, b ∈ V (Q), the head of a coincides with the tail of b}.

A directed pseudograph H is a line digraph if there is a directed pseudo-
graph D such that H = L(D). See Figure 2.3. Clearly, line digraphs do not
have parallel arcs; moreover, the line digraph L(D) has a loop at a vertex
a ∈ A(D) if and only if a is a loop in D.

The following theorem provides a number of equivalent characterizations
of line digraphs. Of these characterizations, (ii) is due to Harary and Nor-
man [502], (iii) to Heuchenne [522] and (iv) and (v) to Richards [777]; condi-
tions (ii) and (iii) have each been rediscovered several times, see the survey
[516] by Hemminger and Beineke. The proof presented here is adapted from
[516]. For an n × n-matrix M = [mik], a row i is orthogonal to a row j if∑n

k=1 mikmjk = 0. One can give a similar definition of orthogonal columns.

Theorem 2.4.1 Let D be a directed pseudograph with vertex set {1, 2, . . . , n}
and with no parallel arcs and let M = [mij ] be its adjacency matrix (i.e., the
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Figure 2.3 A digraph H and its line digraph Q = L(H).

n×n-matrix such that mij = 1, if ij ∈ A(D), and mij = 0, otherwise). Then
the following assertions are equivalent:

(i) D is a line digraph;
(ii) there exist two partitions {Ai}i∈I and {Bi}i∈I of V (D) such that

A(D) = ∪i∈IAi × Bi;

(iii) if vw, uw and ux are arcs of D, then so is vx;
(iv) any two rows of M are either identical or orthogonal;
(v) any two columns of M are either identical or orthogonal.

Proof: We show the following implications and equivalences: (i) ⇔ (ii), (ii)
⇒ (iii), (iii) ⇒ (iv), (iv) ⇔ (v), (iv) ⇒ (ii).

(i) ⇒ (ii). Let D = L(H). For each vi ∈ V (H), let Ai and Bi be the sets
of in-coming and out-going arcs at vi, respectively. Then the arc set of the
subdigraph of D induced by Ai ∪Bi equals Ai ×Bi. If ab ∈ A(D), then there
is an i such that a = vjvi and b = vivk. Hence, ab ∈ Ai × Bi. The result
follows.

(ii) ⇒ (i). Let Q be the directed pseudograph with ordered pairs (Ai, Bi)
as vertices, and with |Aj ∩ Bi| arcs from (Ai, Bi) to (Aj , Bj) for each i and
j (including i = j). Let σij be a bijection from Aj ∩ Bi to this set of arcs
(from (Ai, Bi) to (Aj , Bj)) of Q. Then the function σ defined on V (D) by
taking σ to be σij on Aj∩Bi is a well-defined function of V (D) into V (L(Q)),
since {Aj ∩ Bi}i,j∈I is a partition of V (D). Moreover, σ is a bijection since
every σij is a bijection. Furthermore, it is not difficult to see that σ is an
isomorphism from D to L(Q) (this is left as Exercise 2.6).

(ii) ⇒ (iii). If vw, uw and ux are arcs of D, then there exist i, j such that
{u, v} ⊆ Ai and {w, x} ⊆ Bj . Hence, (v, x) ∈ Ai × Bj and vx ∈ D.

(iii) ⇒ (iv). Assume that (iv) does not hold. This means that some rows,
say i and j, are neither identical nor orthogonal. Then there exist k, h such
that mik = mjk = 1 and mih = 1, mjh = 0 (or vice versa). Hence, ik, jk, ih
are in A(D) but jh is not. This contradicts (iii).
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(iv) ⇔ (v). Both (iv) and (v) are equivalent to the statement:

for all i, j, h, k, if mih = mik = mjk = 1, then mjh = 1.

(iv) ⇒ (ii). For each i and j with mij = 1, let Aij = {h : mhj = 1} and
Bij = {k : mik = 1}. Then, by (iv), Aij is the set of vertices in D whose
row vectors in M are identical to the ith row vector, whereas Bij is the set
of vertices in D whose column vectors in M are identical to the jth column
vector (we use the previously proved fact that (iv) and (v) are equivalent).
Thus, Aij ×Bij ⊆ A(D), and moreover A(D) = ∪{Aij ×Bij : mij = 1}. By
the orthogonality condition, Aij and Ahk are either equal or disjoint, as are
Bij and Bhk. For zero row vector i in M , let Aij be the set of vertices whose
row vector in M is the zero vector, and let Bij = ∅. Doing the same with the
zero column vectors of M completes the partition as in (ii). ��

The characterizations (ii)-(v) all imply polynomial algorithms to verify
whether a given directed pseudograph is a line digraph. This fact is obvious
regarding (iii)-(v); it is slightly more difficult to see that (ii) can be used to
construct a very effective polynomial algorithm. We actually design such an
algorithm for acyclic digraphs (as a pair of procedures illustrated by an exam-
ple) just after Proposition 2.4.3. The criterion (iii) also provides the following
characterization of line digraphs in terms of forbidden induced subdigraphs.
Its proof is left as Exercise 2.7.

Corollary 2.4.2 A directed pseudograph D is a line digraph if and only if D
does not contain, as an induced subdigraph, any directed pseudograph that can
be obtained from one of the directed pseudographs in Figure 2.4 (dotted arcs
are missing) by adding zero or more arcs (other than the dotted ones). ��

Observe that the digraph of order 4 in Figure 2.4 corresponds to the
case of distinct vertices in Part (iii) of Theorem 2.4.1, and the two directed
pseudographs of order 2 correspond to the cases x = u 
= v = w and u = w 
=
v = x, respectively.

Clearly, Theorem 2.4.1 implies a set of characterizations of the line di-
graphs of digraphs (without parallel arcs and loops). This can be found in
[516]. Several characterizations of special classes of line digraphs and iterated
line digraphs can be found in surveys by Hemminger and Beineke [516] and
Prisner [755].

Many applications of line digraphs deal with the line digraphs of special
families of digraphs, for example regular digraphs, in general, and complete
digraphs, in particular, see, e.g., the papers [279] by Du, Lyuu and Hsu
and [316] by Fiol, Yebra and Alegre. In Section 2.6, we need the following
characterization, due to Harary and Norman, of the line digraphs of acyclic
directed multigraphs. It is a specialization of Parts (i) and (ii) of Theorem
2.4.1. The proof is left as (an easy) Exercise 2.8.
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Figure 2.4 Forbidden directed pseudographs.

Proposition 2.4.3 [502] A digraph D is the line digraph of an acyclic di-
rected multigraph if and only if D is acyclic and there exist two partitions
{Ai}i∈I and {Bi}i∈I of V (D) such that A(D) = ∪i∈IAi × Bi. ��

We will now show how Proposition 2.4.3 can be used to recognize very
effectively whether a given acyclic digraph R is the line digraph of another
acyclic directed multigraph H, i.e., R = L(H). The two procedures, which
we construct and illustrate by Figure 2.7, can actually be used to recognize
and represent (that is, to construct H such that R = L(H)) arbitrary line
digraphs (see Theorem 2.4.1(i) and (ii)).

We first use Proposition 2.4.3 to check whether H above exists. The follow-
ing procedure Check-H can be applied. Initially, all arcs and vertices of R are
not marked. At every iteration, we choose an arc uv in R, which is not marked
yet, and mark all vertices in N+(u) by ‘B’, all vertices in N−(v) by ‘A’ and all
arcs in (N−(v), N+(u))R by ‘C’. If (N−(v), N+(u))R 
= N−(v)×N+(u) or if
we mark a certain vertex or arc twice (starting from another arc u′v′) by the
same symbol, then this procedure stops as there is no H such that L(H) = R.
(We call these conditions obstructions.) If this procedure is performed to
the end (i.e., every vertex and arc received a mark), then such H exists. It
is not difficult to see, using Proposition 2.4.3, that Check-H correctly verifies
whether H exists or not.

To illustrate Check-H, consider the digraph R0 of Figure 2.7(a). Suppose
that we choose the arc ab first. Then ab is marked, at the first iteration,
together with the arcs af and ag. The vertex a receives ‘A’, the vertices
b, f, g get ‘B’. Suppose that fi is chosen at the second iteration. Then the
arcs fh, fi, gh, gi are all marked at this iteration. The vertices f, g receive
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‘A’, the vertices h, i ‘B’. Suppose that bc is chosen at the third iteration.
We see that this arc is the only arc marked at this iteration. The vertex b
receives ‘A’, the vertex c ‘B’. Finally, say, ce is chosen. Then both cd and ce
are marked. The vertex c gets ‘A’, the vertices d, e receive ‘B’. Thus, all arcs
have been marked and no obstruction has taken place. This means that there
exists a digraph H0 such that H0 = L(R0).

Suppose now that H does exist. The following procedure Build-H con-
structs such a directed multigraph H. By Proposition 2.4.3, if H exists,
then all arcs of R can be partitioned into arc sets of bipartite tournaments
with partite sets Ai and Bi and arc sets Ai × Bi. Let us denote these di-
graphs by T1, . . . , Tk. (They can be computed by Check-H if we mark every
(N−(v), N+(u))R not only by ‘C’ but also by a second mark ‘i’ starting from
1 and increasing by 1 at each iteration of the procedure.) We construct H
as follows. The vertex set of H is {t0, t1, . . . , tk, tk+1}. The arcs of H are
obtained by the following procedure. For each vertex v of R, we append one
arc av to H according to the rules below:

(a) If dR(v) = 0, then av := (t0, tk+1);
(b) If d+

R(v) > 0, d−R(v) = 0, then av := (t0, ti), where i is the index of Ti

such that v ∈ Ai;
(c) If d+

R(v) = 0, d−R(v) > 0, then av := (tj , tk+1), where j is the index of Tj

such that v ∈ Bj ;
(d) If d+

R(v) > 0, d−R(v) > 0, then av := (ti, tj), where i and j are the indices
of Ti and Tj such that v ∈ Aj ∩ Bi.

It is straightforward to verify that R = L(H). Note that Build-H always
constructs H with only one vertex of in-degree zero and only one vertex of
out-degree zero.

To illustrate Build-H, consider R0 of Figure 2.7 once again. Earlier we
showed that there exists H0 such that R0 = L(H0). Now we will con-
struct H0. The previous procedure applied to verify the existence of H0

has implicitly constructed the digraphs T1 = ({a, b, f, g}, {ab, af, ag}), T2 =
({f, g, h, i}, {fh, fi, gh, gi}), T3 = ({b, c}, {bc}), T4 = ({c, d, e}, {cd, ce}).
Thus, H0 has vertices t0, . . . , t5. Considering the vertices of R0 in the lex-
icographic order, we obtain the following arcs of H0 (in this order):

t0t1, t1t3, t3t4, t4t5, t4t5, t1t2, t1t2, t2t5, t2t5.

The directed multigraph H0 is depicted in Figure 2.7(c). It is easy to check
that R0 = L(H0).

The iterated line digraphs are defined recursively: L1(D) = L(D),
Lk+1(D) = L(Lk(D)), k ≥ 1. It is not difficult to prove by induction (Ex-
ercise 2.10) that Lk(D) is isomorphic to the digraph H, whose vertex set
consists of walks of D of length k and a vertex v0v1 . . . vk (which is a walk
in D) dominates the vertex v1v2 . . . vkvk+1 for every vk+1 ∈ V (D) such that
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vkvk+1 ∈ A(D). New characterizations of line digraphs and iterated line di-
graphs are given by Liu and West [648].

The following proposition can be proved by induction on k ≥ 1 (Exercise
2.12).

Proposition 2.4.4 Let D be a strong d-regular digraph (d > 1) of order n
and diameter t. Then Lk(D) is of order dkn and diameter t + k. ��

Bermond, Munos and Marchetti-Spaccamela [150] proposed broadcasting
algorithms for line digraphs in the telephone mode. The protocols of [150] use
a broadcasting protocol for a digraph D to obtain a broadcasting protocol
for iterated line digraphs of D. As a consequence, improved bounds for the
broadcasting time in de Bruijn and Kautz digraphs were obtained.

2.5 The de Bruijn and Kautz Digraphs

The following problem is of importance in network design. Given positive in-
tegers n and d, construct a digraph D of order n and maximum out-degree at
most d such that diam(D) is as small as possible and the vertex-strong con-
nectivity κ(D) is as large as possible. So we have a 2-objective optimization
problem. For such a problem, in general, no solution can maximize/minimize
both objective functions. However, for this specific problem, there are solu-
tions, which (almost) maximize/minimize both objective functions. The aim
of this section is to introduce these solutions, the de Bruijn and Kautz di-
graphs, as well as some of their generalizations. For more information on the
above classes of digraphs, the reader may consult the survey [276] by Du, Cao
and Hsu. For applications of these digraphs in design of parallel architectures
and large packet radio networks, see e.g. the papers [149] by Bermond and
Hell, [151] by Bermond and Peyrat and [792] by Samatan and Pradhan.

Let V be the set of vectors with t coordinates, t ≥ 2, each taken from
{0, 1, . . . d−1}, d ≥ 2. The de Bruijn digraph DB(d, t) is the directed pseu-
dograph with vertex set V such that (x1, x2, . . . , xt) dominates (y1, y2, . . . , yt)
if and only if x2 = y1, x3 = y2, . . . , xt = yt−1. See Figure 2.5(a). Let DB(d, 1)
be the complete digraph of order d with loop at every vertex.

These directed pseudographs are named after de Bruijn who was the
first to consider them in [252]. Clearly, DB(d, t) has dt vertices and the
out-pseudodegree and in-pseudodegree of every vertex of DB(d, t) equal d.
This directed pseudograph has no parallel arcs and contains a loop at every
vertex for which all coordinates are the same. It is natural to call DB(d, t)
d-pseudoregular (recall that in the definition of semi-degrees we do not
count loops).

Since DB(d, t) has loops at some vertices, the vertex-strong connectivity
of DB(d, t) is at most d − 1 (indeed, the loops can be deleted without the
vertex-strong connectivity being changed). Imase, Soneoka and Okada [550]
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Figure 2.5 (a) The de Bruijn digraph DB(2, 2); (b) the Kautz digraph DK(2, 2).

proved that DB(d, t) is (d − 1)-strong, and moreover, for every pair x 
= y
of vertices there exist d − 1 internally disjoint (x, y)-paths of length at most
t + 1. To prove this result we will use the following two lemmas. The proof
of the first lemma, due to Fiol, Yebra and Alegre, is left as Exercise 2.13.

Lemma 2.5.1 [316] For t ≥ 2, DB(d, t) is the line digraph of DB(d, t − 1).
��

Lemma 2.5.2 Let x, y be distinct vertices of DB(d, t) such that x→y. Then,
there are d−2 internally disjoint (x, y)-paths different from xy, each of length
at most t + 1.

Proof: Let x = (x1, x2, . . . , xt) and y = (x2, . . . , xt, yt). Consider the
walk Wk given by Wk = (x1, x2, . . . , xt), (x2, . . . , xt, k), (x3, . . . , xt, k, x2), . . . ,
(k, x2, . . . , xt), (x2, . . . , xt, yt), where k 
= x1, yt. For each k, every internal ver-
tex of Wk has coordinates forming the same multiset Mk = {x2, . . . , xt, k}.
Since for different k, the multisets Mk are different, the walks Wk are inter-
nally disjoint. Each of these walks is of length t + 1. Therefore, by Propo-
sition 1.4.1, DB(d, t) contains d − 2 internally disjoint (x, y)-paths Pk with
A(Pk) ⊆ A(Wk). Since k 
= x1, yt, we may form the paths Pk such that none
of them coincides with xy. ��

Theorem 2.5.3 [550] For every pair x, y of distinct vertices of DB(d, t),
there exist d − 1 internally disjoint (x, y)-paths, one of length at most t and
the others of length at most t + 1.

Proof: By induction on t ≥ 1. Clearly, the claim holds for t = 1 since
DB(d, 1) contains, as spanning subdigraph,

↔
Kd. For t ≥ 2, by Lemma 2.5.1,

we have that
DB(d, t) = L(DB(d, t − 1)). (2.2)
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Let x, y be a pair of distinct vertices in DB(d, t) and let ex, ey be the arcs
of DB(d, t− 1) corresponding to vertices x, y due to (2.2). Let u be the head
of ex and let v be the tail of ey.

If u 
= v, by the induction hypothesis, DB(d, t − 1) has d − 1 internally
disjoint (u, v)-paths, one of length at most t − 1 and the others of length at
most t. The arcs of these paths together with arcs ex and ey correspond to
d− 1 internally disjoint (x, y)-paths in DB(d, t), one of length at most t and
the others of length at most t + 1.

If u = v, we have x→y in DB(d, t − 1). It suffices to apply Lemma 2.5.2
to see that there are d − 1 internally disjoint (x, y)-paths in DB(d, t), one of
length one and the others of length at most t + 1. ��

By this theorem and Corollary 5.4.2, we conclude that κ(DB(d, t)) =
d− 1. From Theorem 2.5.3 and Proposition 3.4.3, we obtain immediately the
following simple, yet important property.

Proposition 2.5.4 The de Bruijn digraph DB(d, t) achieves the minimum
value t of diameter for directed pseudographs of order dt and maximum out-
degree at most d. ��

For t ≥ 2, the Kautz digraph DK(d, t) is obtained from DB(d + 1, t)
by deletion of all vertices of the form (x1, x2, . . . , xt) such that xi = xi+1

for some i. See Figure 2.5(b). Define DK(d, 1) :=
↔
Kd+1. Clearly, DK(d, t)

has no loops and is a d-regular digraph. Since we have d + 1 choices for the
first coordinate of a vertex in DK(d, t) and d choices for each of the other
coordinates, the order of DK(d, t) is (d + 1)dt−1 = dt + dt−1. It is easy to see
that Proposition 2.5.4 holds for the Kautz digraphs as well.

The following lemmas are analogous to Lemmas 2.5.1 and 2.5.2. Their
proofs are left as Exercises 2.14 and 2.15.

Lemma 2.5.5 For t ≥ 2, the Kautz digraph DK(d, t) is the line digraph of
DK(d, t − 1). ��

Lemma 2.5.6 Let xy be an arc in DK(d, t). There are d− 1 internally dis-
joint (x, y)-paths different from xy, one of length at most t+2 and the others
of length at most t + 1. ��

The following result due to Du, Cao and Hsu [276] shows that the Kautz
digraphs are better, in a sense, than de Bruijn digraphs from the local vertex-
strong connectivity point of view. This theorem can be proved similarly to
Theorem 2.5.3 and is left as Exercise 2.16.

Theorem 2.5.7 [276] Let x, y be distinct vertices of DK(d, t). Then there
are d internally disjoint (x, y)-paths in DK(d, t), one of length at most t, one
of length at most t + 2 and the others of length at most t + 1. ��
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This theorem implies that DK(d, t) is d-strong.

The de Bruijn digraphs were generalized independently by Imase and
Itoh [547] and Reddy, Pradhan and Kuhl [767] in the following way. We
can transform every vector (x1, x2, . . . , xt) with coordinates from Zd =
{0, 1, . . . , d − 1} into an integer from Zdt = {0, 1, . . . , dt − 1} using the poly-
nomial P (x1, x2, . . . , xt) = x1d

t−1 + x2d
t−2 + . . . + xt. It is easy to see that

this polynomial provides a bijection from Zt
d to Zdt . Moreover, for i, j ∈ Zdt ,

i→j in DB(d, t) if and only if j ≡ di + k (mod dt) for some k ∈ Zd.
Let d, n be two natural numbers such that d < n. The generalized de

Bruijn digraph DG(d, n) is a directed pseudograph with vertex set Zn and
arc set

{(i, di + k (mod n) ) : i, k ∈ Zd}.
For example, V (DG(2, 5)) = {0, 1, 2, 3, 4} and A(DG(2, 5)) = {(0, 0), (0, 1),
(1, 2), (1, 3), (2, 4), (2, 0), (3, 1), (3, 2), (4, 3), (4, 4)}.

Clearly, DG(d, n) is d-pseudoregular. It is not difficult to show that
diam(DG(d, n)) ≤ �logd n�. By Proposition 3.4.3, a digraph of maximum out-
degree at most d ≥ 2 and order n has a diameter at least �logd n(d− 1) + 1�.
Thus, the generalized de Bruijn digraphs are of optimal or almost optimal
diameter. It was proved, by Imase, Soneoka and Okada [549], that DG(d, n)
is (d − 1)-strong. It follows from these results that the generalized de Bruijn
digraphs have almost minimum diameter and almost maximum vertex-strong
connectivity.

The Kautz digraphs were generalized by Imase and Itoh [548]. Let n, d
be two natural numbers such that d < n. The Imase-Itoh digraph DI(d, n)
is the digraph with vertex set {0, 1, . . . , n − 1} such that i→j if and only if
j ≡ −d(i + 1) + k (mod n) for some k ∈ {0, 1, . . . , d − 1}. It has been shown
(for a brief account, see the paper [276]) by Du, Cao and Hsu, that DI(d, n)
are of (almost) optimal diameter and vertex-strong connectivity.

Du, Hsu and Hwang [278] suggested a concept of digraphs extending both
the generalized de Bruijn digraphs and the Imase-Ito digraphs. Let d, n be two
natural numbers such that d < n. Given q ∈ [n−1] and r ∈ {0, 1, . . . , n−1}, a
consecutive-d digraph D(d, n, q, r) is the directed pseudograph with vertex
set {0, 1, . . . , n − 1} such that i→j if and only if j ≡ qi + r + k (mod n) for
some k ∈ {0, 1, . . . , d−1}. Several results on diameter, vertex- and arc-strong
connectivity and other properties of consecutive-d digraphs are given in [276].
In Section 6.9, we provide results on hamiltonicity of consecutive-d digraphs.

2.6 Series-Parallel Digraphs

In this section we study vertex series-parallel digraphs and arc series-parallel
directed multigraphs. Vertex series-parallel digraphs were introduced by
Lawler [637] and Monma and Sidney [701] as a model for scheduling prob-
lems. While vertex series-parallel digraphs continue to play an important role
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for the design of efficient algorithms in scheduling and sequencing problems,
they have been extensively studied in their own right as well as in relations
to other optimization problems (cf. the papers [55] by Baffi and Petreschi,
[153] by Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, [776] by Rendl
and [832] by Steiner). Arc series-parallel directed multigraphs were intro-
duced even earlier (than vertex series-parallel digraphs) by Duffin [281] as a
mathematical model of electrical networks.

For an acyclic digraph D, let FD (ID) be the set of vertices of D of
out-degree (in-degree) zero. To define vertex series-parallel digraphs, we first
introduce minimal vertex series-parallel (MVSP) digraphs recursively.

The digraph of order one with no arc is an MVSP digraph. If D = (V,A),
H = (U,B) is a pair of MVSP digraphs (U ∩ V = ∅), so are the acyclic
digraphs constructed by each of the following operations (see Figure 2.6):

(a) Parallel composition: P = (V ∪ U,A ∪ B);
(b) Series composition: S = (V ∪ U,A ∪ B ∪ (FD × IH)).

It is interesting to note that we can embed every MVSP digraph D into
the Cartesian plane such that if vertices u, v have coordinates (xu, yu) and
(xv, yv), respectively, then there is a (u, v)-path in D if and only if xu ≤ xv

and yu ≤ yv. The proof of this non-difficult fact is given in the paper [883]
by Valdes, Tarjan and Lawler; see Exercise 2.17. See also Figure 2.8.

An acyclic digraph D is a vertex series-parallel (VSP) digraph if
the transitive reduction of D is an MVSP digraph (see Section 2.3 for the
definition of the transitive reduction). See Figure 2.7.

The following class of acyclic directed multigraphs, arc series-parallel
(ASP) directed multigraphs, is related to VSP digraphs. The digraph �P2

is an ASP directed multigraph. If D1, D2 is a pair of ASP directed multi-
graphs with V (D1) ∩ V (D2) = ∅, then so are acyclic directed multigraphs
constructed by each of the following operations (see Figure 2.9):

(a) Two-terminal parallel composition: Choose a vertex ui of out-degree
zero in Di and a vertex vi of in-degree zero in Di for i = 1, 2. Identify u1

with u2 and v1 with v2;
(b) Two-terminal series composition: Choose u ∈ FD1 and v ∈ ID2 and

identify u with v.

Observe that every ASP directed multigraph has a unique vertex of out-
degree zero and a unique vertex of in-degree zero. We refer the reader to the
book [127] by Battista, Eades, Tamassia and Tollis for several algorithms for
drawing graphs nicely, in particular drawing of ASP digraphs.

The next result shows a relation between the classes of digraphs intro-
duced above.
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Figure 2.6 (De)construction of an MVSP digraph R0 by series and parallel
(de)compositions.

Theorem 2.6.1 An acyclic directed multigraph D with a unique vertex of
out-degree zero and a unique vertex of in-degree zero is ASP if and only if
L(D) is an MVSP digraph.

Proof: This can be proved easily by induction on |A(D)| using the following
two facts:

(i) L(�P2) = �P1, which is an MVSP digraph;



50 2. Classes of Digraphs

a

b c

d

e

f

g

h

i

a

b c

d

e

f f
h

g
i

1

2

3
4

5

8

9

6

7

(c)(b)(a)

Figure 2.7 Series-parallel directed multigraphs: (a) an MVSP digraph R0, (b) a
VSP digraph R1, (c) an ASP directed multigraph H0.
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Figure 2.8 The MVSP digraph R0 of Figure 2.6 embedded into the Cartesian
plane such that for every (u, v)-path in R0 we have xu ≤ xv and yu ≤ yv (and vice
versa).

(ii) The line digraph of the two-terminal series (parallel) composition of D1

and D2 is the series (parallel) composition of L(D1) and L(D2). ��

It is easy to check that L(H0) = R0 for directed multigraphs H0 and R0

depicted in Figure 2.7. The following operations in a directed multigraph D
are called reductions:

(a) Series reduction: Replace a path uvw, where d+
D(v) = d−D(v) = 1 by

the arc uw;
(b) Parallel reduction: Replace a pair of parallel arcs from u to v by just

one arc from u to v.
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Figure 2.9 (De)construction of an ASP directed multigraph H0 by two-terminal
series and parallel (de)compositions.

The following proposition due to Duffin (see also the paper [883] by
Valdes, Tarjan and Lawler) gives a characterization of ASP directed multi-
graphs. Its proof is left as Exercise 2.18.

Proposition 2.6.2 [281] A directed multigraph is ASP if and only if it can
be reduced to �P2 by a sequence of series and parallel reductions. ��

The reader is advised to apply a sequence of series and parallel reductions
to the directed multigraph H0 of Figure 2.7 to obtain a digraph isomorphic to
�P2. From the algorithmic point of view, it is important that every sequence of
series and parallel reductions transforms a directed multigraph to the same
digraph. Indeed, this implies an obvious polynomial algorithm to verify if a
given directed multigraph is ASP. The proof of the following result, due to
Harary, Krarup and Schwenk, is left as Exercise 2.19.

Proposition 2.6.3 [500] For every acyclic directed multigraph D, the result
of application of series and parallel reductions until one can apply such re-
ductions is a unique digraph H. ��
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In [883], Valdes, Tarjan and Lawler showed how to construct a linear-
time algorithm to recognize ASP directed multigraphs, which is based on
Propositions 2.6.2 and 2.6.3. They also presented a more complicated linear-
time algorithm to recognize VSP digraphs. Since we are limited in space,
we will not discuss the details of the linear-time algorithms. Instead, we
will consider the following simplified polynomial algorithm to recognize VSP
digraphs.

VSP recognition algorithm
Input: An acyclic digraph D.
Output: YES if D is VSP and NO, otherwise.

1. Compute the transitive reduction R of D.
2. Try to compute an acyclic directed multigraph H with |IH | = |FH | = 1

such that L(H) = R. If there is no such H, then output NO.
3. Verify whether H is an ASP directed multigraph. If it is so, then YES,

otherwise, NO.

We prove first the correctness of this algorithm. If the output is YES,
then, by Theorem 2.6.1, R is MVSP and thus D is VSP. If H in Step 2 is not
found, then, by Theorem 2.6.1, R is not MVSP implying that D is not VSP.
If H is not ASP, then R is not MVSP by the same theorem.

Now we prove that the algorithm is polynomial. Step 1 can be performed
in polynomial time by Proposition 2.3.5. Step 2 can be implemented using
Procedure Build-H described at the end of Section 2.4. This procedure implies
that if there is an H such that L(H) = R, then there is such an H with
additional property that |IH | = |FH | = 1. The procedure is polynomial.
Finally, Step 3 is polynomial by the remark after Proposition 2.6.2.

2.7 Quasi-Transitive Digraphs

A digraph D is quasi-transitive if, for every triple x, y, z of distinct vertices
of D such that xy and yz are arcs of D, there is at least one arc between x and
z. Clearly, a semicomplete digraph is quasi-transitive. Note that if there is
only one arc between x and z, it can have any direction; hence quasi-transitive
digraphs are generally not transitive.

The aim of this section is to derive a recursive characterization of quasi-
transitive digraphs which allows one to show that a number of problems for
quasi-transitive digraphs including the longest path and cycle problems are
polynomial time solvable (see Sections 6.7 and 6.8). The characterization im-
plies that every quasi-transitive digraph is totally Ψ -decomposable, where Ψ
is the union of all transitive digraphs and all extended semicomplete digraphs.
Our presentation is based on the paper [103] by Bang-Jensen and Huang.
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T Q

Figure 2.10 A transitive digraph T and a quasi-transitive digraph Q.

An (x1, xn)-path P = x1x2 . . . xn is minimal if, for every (x1, xn)-path
Q, either V (P ) = V (Q) or Q has a vertex not in V (P ).

Proposition 2.7.1 Let D be a quasi-transitive digraph. Suppose that P =
x1x2 . . . xk is a minimal (x1, xk)-path. Then the subdigraph induced by V (P )
is a semicomplete digraph and xj→xi for every 2 ≤ i + 1 < j ≤ k, unless
k = 4, in which case the arc between x1 and xk may be absent.

Proof: The cases k = 2, 3, 4, 5 are easily verified. As an example, let us
consider the case k = 5. If xi and xj are adjacent and 2 ≤ i + 1 < j ≤ 5,
then xj→xi since P is minimal. Since D is quasi-transitive, xi and xi+2

are adjacent for i = 1, 2, 3. This and the minimality of P imply that
x3→x1, x4→x2 and x5→x3. From these arcs and the minimality of P we
conclude that x5→x1. Now the arcs x4x5 and x5x1 imply that x4→x1. Sim-
ilarly, x5→x1→x2 implies x5→x2.

The proof for the case k ≥ 6 is by induction on k with the case k = 5 as the
basis. By induction, each of D〈{x1, x2, . . . , xk−1}〉 and D〈{x2, x3, . . . , xk}〉 is
a semicomplete digraph and xj→xi for any 1 < j − i ≤ k − 2. Hence x3

dominates x1 and xk dominates x3 and the minimality of P implies that xk

dominates x1. ��

Corollary 2.7.2 If a quasi-transitive digraph D has an (x, y)-path but x does
not dominate y, then either y→x, or there exist vertices u, v ∈ V (D)−{x, y}
such that x→u→v→y and y→u→v→x.

Proof: This is easy to deduce by considering a minimal (x, y)-path and
applying Proposition 2.7.1. ��

Lemma 2.7.3 Suppose that A and B are distinct strong components of a
quasi-transitive digraph D with at least one arc from A to B. Then A�→B.

Proof: Suppose A and B are distinct strong components such that there
exists an arc from A to B. Then for every choice of x ∈ A and y ∈ B there
exists a path from x to y in D. Since A and B are distinct strong components,
none of the alternatives in Corollary 2.7.2 can hold and hence x→y. ��
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Lemma 2.7.4 [103] Let D be a strong quasi-transitive digraph on at least
two vertices. Then the following holds:

(a) UG(D) is disconnected;
(b) If S and S′ are two subdigraphs of D such that UG(S) and UG(S′) are

distinct connected components of UG(D), then either S �→S′ or S′ �→S,
or both S→S′ and S′→S in which case |V (S)| = |V (S′)| = 1.

Proof: The statement (b) can be easily verified from the definition of a
quasi-transitive digraph and the fact that S and S′ are completely adjacent
in D (Exercise 2.20). We prove (a) by induction on |V (D)|. Statement (a) is
trivially true when |V (D)| = 2 or 3. Assume that it holds when |V (D)| < n
where n > 3.

Suppose that there is a vertex z such that D−z is not strong. Then there
is an arc from (to) every terminal (initial) component of D − z to (from)
z. Since D is quasi-transitive, the last fact and Lemma 2.7.3 imply that
X→Y for every initial (terminal) strong component X (Y ) of D− z. Similar
arguments show that each strong component of D− z either dominates some
terminal component or is dominated by some initial component of D − z
(intermediate strong components satisfy both). These facts imply that z is
adjacent to every vertex in D − z. Therefore, UG(D) contains a component
consisting of the vertex z, implying that UG(D) is disconnected and (a)
follows.

Assume that there is a vertex v such that D − v is strong. Since D is
strong, D contains an arc vw from v to D − v. By induction, UG(D − v) is
not connected. Let connected components S and S′ of UG(D − v) be chosen
such that w ∈ S, S �→S′ in D (here we use (b) and the fact that D − v is
strong). Then v is completely adjacent to S′ in D (as v→w). Hence UG(S′)
is a connected component of UG(D) and the proof is complete. ��

The following theorem completely characterizes quasi-transitive digraphs
in recursive sense (see also Figure 2.11).

Theorem 2.7.5 (Bang-Jensen and Huang) [103] Let D be a digraph
which is quasi-transitive.

(a) If D is not strong, then there exist a transitive oriented graph T with ver-
tices {u1, u2, . . . , ut} and strong quasi-transitive digraphs H1, H2, . . . , Ht

such that D = T [H1, H2, . . . , Ht], where Hi is substituted for ui, i =
1, 2, . . . , t.

(b) If D is strong, then there exists a strong semicomplete digraph S with
vertices {v1, v2, . . . , vs} and quasi-transitive digraphs Q1, Q2, . . . , Qs such
that Qi is either a vertex or is non-strong and D = S[Q1, Q2, . . . , Qs],
where Qi is substituted for vi, i = 1, 2, . . . , s.

Proof: Suppose that D is not strong and let H1, H2, . . . , Ht be the strong
components of D. According to Lemma 2.7.3, if there is an arc between
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Figure 2.11 A decomposition of a non-strong quasi-transitive digraph. Big arcs
between different boxed sets indicate that there is a complete domination in the
direction shown.

Hi and Hj , then either Hi �→Hj or Hj �→Hi. Now if Hi �→Hj �→Hk, then, by
quasi-transitivity, Hi �→Hk. So by contracting each Hi to a vertex hi, we get
a transitive oriented graph T with vertices h1, h2, . . . , ht. This shows that
D = T [H1, H2, . . . , Ht].

Suppose now that D is strong. Let Q1, Q2, . . . , Qs be the subdigraphs of
D such that each UG(Qi) is a connected component of UG(D). According
to Lemma 2.7.4(a), each Qi is either non-strong or just a single vertex. By
Lemma 2.7.4(b) we obtain a strong semicomplete digraph S if each Qi is
contracted to a vertex. This shows that D = S[Q1, Q2, . . . , Qs]. ��

2.8 Path-Mergeable Digraphs

A digraph D is path-mergeable, if for any choice of vertices x, y ∈ V (D)
and any pair of internally disjoint (x, y)-paths P,Q, there exists an (x, y)-path
R in D, such that V (R) = V (P )∪V (Q). We will see, in several places of this
book, that the notion of a path-mergeable digraph is very useful for design
of algorithms and proofs of theorems. This makes it worthwhile studying
path-mergeable digraphs. The results presented in this section are adapted
from [72], where the study of path-mergeable digraphs was initiated by Bang-
Jensen.
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x y

u1 u2 u3 u5 u6

v1 v2

u4

v3 v4 v5 v6

Figure 2.12 A digraph which is path-mergeable. The fat arcs indicate the path
xu1u2v1v2v3u3u4u5v4v5v6u6y from x to y which is obtained by merging the two
(x, y)-paths xu1u2u3u4u5u6y and xv1v2v3v4v5v6y.

We prove a characterization of path-mergeable digraphs, which implies
that path-mergeable digraphs can be recognized efficiently.

Theorem 2.8.1 A digraph D is path-mergeable if and only if for every
pair of distinct vertices x, y ∈ V (D) and every pair P = xx1 . . . xry,
P ′ = xy1 . . . ysy, r, s ≥ 1 of internally disjoint (x, y)-paths in D, either there
exists an i ∈ {1, . . . , r}, such that xi→y1, or there exists a j ∈ [s], such that
yj→x1.

Proof: We prove ‘only if’ by induction on r + s. It is obvious for r = s =
1, so suppose that r + s ≥ 3. If there is no arc between {x1, . . . , xr} and
{y1, . . . , ys}, then clearly P, P ′ cannot be merged into one path. Hence we
may assume without loss of generality that there is an arc xiyj for some i, j,
1 ≤ i ≤ r, 1 ≤ j ≤ s. If j = 1, then the claim follows. Otherwise apply
induction to the paths P [x, xi]yj , xP ′[y1, yj ].

The proof of ‘if’ is left to the reader. It is similar to the proof of Proposition
2.8.3 below. ��

The proof of the following result is left as Exercise 2.24.

Corollary 2.8.2 Path-mergeable digraphs can be recognized in polynomial
time. ��

The next result shows that if a digraph is path-mergeable, then the merg-
ing of paths can always be done in a particularly nice way.

Proposition 2.8.3 Let D be a digraph which is path-mergeable and let P =
xx1 . . . xry, P ′ = xy1 . . . ysy, r, s ≥ 0 be internally disjoint (x, y)-paths in
D. The paths P and P ′ can be merged into one (x, y)-path P ∗ such that
vertices from P (respectively, P ′) remain in the same order as on that path.
Furthermore the merging can be done in at most 2(r + s) steps.

Proof: We prove the result by induction on r + s. It is obvious if r = 0 or
s = 0, so suppose that r, s ≥ 1. By Theorem 2.8.1 there exists an i such that
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either xi→y1 or yi→x1. By scanning both paths forward one arc at a time, we
can find i in at most 2i steps; suppose without loss of generality xi→y1. By
applying the induction hypothesis to the paths P [xi, xr]y and xiP

′[y1, ys]y,
we see that we can merge them into a single path Q in the required order-
preserving way in at most 2(r+s−i) steps. The required path P ∗ is obtained
by concatenating the paths xP [x1, xi] and Q, and we have found it in at most
2(r + s) steps, as required. ��

2.9 Locally In/Out-Semicomplete Digraphs

A digraph D is locally in-semicomplete (locally out-semicomplete) if,
for every vertex x of D, the in-neighbours (out-neighbours) of x induce a semi-
complete digraph. Clearly, the converse of a locally in-semicomplete digraph
is a locally out-semicomplete digraph and vice versa. A digraph D is locally
semicomplete if it is both locally in- and locally out-semicomplete. See
Figure 2.13. Clearly every semicomplete digraph is locally semicomplete. A
locally in-semicomplete digraph with no 2-cycle is a locally in-tournament
digraph. Similarly, one can define locally out-tournament digraphs and
locally tournament digraphs. For convenience, we will sometimes re-
fer to locally tournament digraphs as local tournaments and to locally
in-tournament (out-tournament) digraphs as local in-tournaments (local
out-tournaments).

(a) (b)

Figure 2.13 (a) A locally out-semicomplete digraph which is not locally in-
semicomplete; (b) a locally semicomplete digraph.

Proposition 2.9.1 by Bang-Jensen shows that locally in-semicomplete
and locally out-semicomplete digraphs form subclasses of the class of path-
mergeable digraphs. In particular, this means that every tournament is path-
mergeable. In many theorems and algorithms on tournaments this property
is of essential use. In some other cases, the very use of this property allows
one to simplify proofs of results on tournaments and their generalizations or
speed up algorithms on those digraphs.
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Proposition 2.9.1 [72] Every locally in-semicomplete (out-semicomplete)
digraph is path-mergeable.

Proof: Let D be a locally out-semicomplete digraph and let P = y1y2 . . . yk,
Q = z1z2 . . . zt be a pair of internally disjoint (x, y)-paths (i.e., y1 = z1 = x
and yk = zt = y). We show that there exists an (x, y)-path R in D, such that
V (R) = V (P ) ∪ V (Q). Our claim is trivially true when |A(P )|+ |A(Q)| = 3.
Assume now that |A(P )| + |A(Q)| ≥ 4. Since D is out-semicomplete, either
y2→z2 or z2→y2 (or both) and the claim follows from Theorem 2.8.1.

The proposition holds for locally in-semicomplete digraphs as they are
the converses of locally out-semicomplete digraphs. ��

The path-mergeability can be generalized in a natural way as follows. A di-
graph D is in-path-mergeable if, for every vertex y ∈ V (D) and every pair
P,Q of internally disjoint paths with common terminal vertex y, there is a
path R such that V (R) = V (P )∪V (Q), the path R terminates at y and starts
at a vertex which is the initial vertex of either P or Q (or, possibly, both).
Observe that, in this definition, the initial vertices of paths P and Q may coin-
cide. Therefore, every in-path-mergeable digraph is path-mergeable. However,
it is easy to see that not every path-mergeable digraph is in-path-mergeable
(see Exercise 2.21). A digraph D is out-path-mergeable if the converse of D
is in-path-mergeable. Clearly, every in-path-mergeable (out-path-mergeable)
digraph is locally in-semicomplete (locally out-semicomplete). The converse is
also true (hence this is another way of characterizing locally in-semicomplete
digraphs). The proof of Proposition 2.9.2 is left as Exercise 2.25.

Proposition 2.9.2 Every locally in-semicomplete (out-semicomplete, respec-
tively) digraph is in-path-mergeable (out-path-mergeable, respectively). ��

Some simple, yet very useful, properties of locally in-semicomplete di-
graphs are described in the following results (in [105], by Bang-Jensen, Huang
and Prisner, these results were proved for locally tournament digraphs only,
so the statements below are their slight generalizations first stated by Bang-
Jensen and Gutin [89]). Observe that a locally out-semicomplete digraph,
being the converse of a locally in-semicomplete digraph, has similar proper-
ties (see Exercise 2.28). The next lemma follows from Proposition 1.7.1 (see
[91]).

Lemma 2.9.3 Every connected locally in-semicomplete digraph D has an
out-branching. ��

Theorem 2.9.4 is illustrated in Figure 2.14.

Theorem 2.9.4 Let D be a locally in-semicomplete digraph.

(i) Let A and B be distinct strong components of D. If a vertex a ∈ A
dominates some vertex in B, then a�→B.

(ii) If D is connected, then SC(D) has an out-branching.
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Proof: Let A and B be strong components of D for which there is an arc
(a, b) from A to B. Since B is strong, there is a (b′, b)-path in B for every
b′ ∈ V (B). By the definition of locally in-semicomplete digraphs and the fact
that there is no arc from B to A, we can conclude that a→b′. This proves (i).

Part (ii) follows from the fact that SC(D) is itself a locally in-tournament
digraph and Lemma 2.9.3. ��

Figure 2.14 The strong decomposition of a non-strong locally in-semicomplete
digraph. The big circles indicate strong components and a fat arc from a component
A to a component B between two components indicates that there is at least one
vertex a ∈ A such that a�→B.

2.10 Locally Semicomplete Digraphs

Locally semicomplete digraphs were introduced in 1990 by Bang-Jensen [66].
As shown in several places in our book, this class of digraphs has many nice
properties in common with its proper subclass, semicomplete digraphs. The
main aim of this section is to obtain a classification of locally semicomplete
digraphs first proved by Bang-Jensen, Guo, Gutin and Volkmann [80]. In
the process of deriving this classification, we will show several important
properties of locally semicomplete digraphs. We start our consideration from
round digraphs, a nice special class of locally semicomplete digraphs.
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2.10.1 Round Digraphs

A digraph on n vertices is round if we can label its vertices v1, v2, . . . , vn

so that for each i, we have N+(vi) = {vi+1, . . . , vi+d+(vi)} and N−(vi) =
{vi−d−(vi), . . . , vi−1} (all subscripts are taken modulo n). We will refer to
the ordering v1, v2, . . . , vn as a round labelling of D. See Figure 2.15 for
an example of a round digraph. Observe that every strong round digraph
D is hamiltonian, since v1v2 . . . vnv1 form a hamiltonian cycle, whenever
v1, v2, . . . , vn is a round labelling. Round digraphs form a subclass of lo-
cally semicomplete digraphs. We will see below that round digraphs play an
important role in the study of locally semicomplete digraphs.

1

3

4

56

R

2

Figure 2.15 A round digraph with a round labelling.

Proposition 2.10.1 [541] Every round digraph is locally semicomplete.

Proof: Let D be a round digraph and let v1, v2, . . . , vn be a round labelling of
D. Consider an arbitrary vertex, say vi. Let x, y be a pair of out-neighbours
of vi. We show that x and y are adjacent. Assume without loss of generality
that vi, x, y appear in that circular order in the round labelling. Since vi→y
and the in-neighbours of y appear consecutively preceding y, we must have
x→y. Thus the out-neighbours of vi are pairwise adjacent. Similarly, we can
show that the in-neighbours of vi are also pairwise adjacent. Therefore, D is
locally semicomplete. ��

The main result of this subsection is Theorem 2.10.4 of Huang [541] that
gives a characterization of round locally semicomplete digraphs. This char-
acterization generalizes the corresponding characterizations of round local
tournaments and tournaments, due to Bang-Jensen [66] and Alspach and
Tabib [38], respectively.

An arc xy of a digraph D is ordinary if yx is not in D. A cycle or path
Q of a digraph D is ordinary if all arcs of Q are ordinary.

The following two lemmas due to Huang [541] imply the necessity part of
Theorem 2.10.4. A sufficiency proof can be found in [91, 541].

Lemma 2.10.2 Let D be a round digraph; then the following is true:
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(d)(a) (b) (c)

Figure 2.16 Some forbidden digraphs in Huang’s characterization.

(a) Every induced subdigraph of D is round.
(b) None of the digraphs in Figure 2.16 is an induced subdigraph of D.
(c) For each x ∈ V (D), the subdigraphs induced by N+(x) − N−(x) and

N−(x) − N+(x) are transitive tournaments.

Proof: Exercise 2.31. ��

Lemma 2.10.3 Let D be a round digraph. Then, for each vertex x of D, the
subdigraph induced by N+(x) ∩ N−(x) contains no ordinary cycle.

Proof: Suppose the subdigraph induced by some N+(x)∩N−(x) contains an
ordinary cycle C. Let v1, v2, . . . , vn be a round labelling of D. Without loss
of generality, assume that x = v1. Then C must contain an arc vivj such that
vjvi 
∈ A(D) and i > j. We have v1 ∈ N−(vi) but vj 
∈ N−(vi), contradicting
the assumption that v1, v2, . . . , vn is a round labelling of D. ��

Theorem 2.10.4 (Huang) [541] A connected locally semicomplete digraph
D is round if and only if the following holds for each vertex x of D:

(a) N+(x)−N−(x) and N−(x)−N+(x) induce transitive tournaments and
(b) N+(x) ∩ N−(x) induces a (semicomplete) subdigraph containing no or-

dinary cycle. ��

The proof of sufficiency of the conditions of this theorem in [91, 541] can
be transformed into a polynomial time algorithm to decide whether a digraph
D is round and to find a round labelling of D (if D is round).

Corollary 2.10.5 (Bang-Jensen) [66] A connected local tournament D is
round if and only if, for each vertex x of D, N+(x) and N−(x) induce tran-
sitive tournaments. ��

2.10.2 Non-Strong Locally Semicomplete Digraphs

The most basic properties of strong components of a connected non-strong
locally semicomplete digraph are given in the following result, due to Bang-
Jensen.
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Theorem 2.10.6 [66] Let D be a connected locally semicomplete digraph
that is not strong. Then the following holds for D.

(a) If A and B are distinct strong components of D with at least one arc
between them, then either A�→B or B �→A.

(b) If A and B are strong components of D, such that A�→B, then A and B
are semicomplete digraphs.

(c) The strong components of D can be ordered in a unique way D1, D2, . . . ,
Dp such that there are no arcs from Dj to Di for j > i, and Di dominates
Di+1 for i ∈ [p − 1].

Proof: Recall that a locally semicomplete digraph is a locally in-semicomplete
digraph as well as a locally out-semicomplete digraph. Part (a) of this theo-
rem follows immediately from Part (i) of Theorem 2.9.4 and its analogue for
locally out-semicomplete digraphs. Part (b) can be easily obtained from the
definition of a locally semicomplete digraph. Finally, Part (c) follows from the
fact proved in Theorem 2.9.4 (and its analogue for locally out-semicomplete
digraphs) that SC(D) has an out-branching and an in-branching. Indeed, a
digraph which is both out-branching and in-branching is merely a hamilto-
nian path. ��

A locally semicomplete digraph D is round decomposable if there exists
a round local tournament R on r ≥ 2 vertices such that D = R[S1, . . . , Sr],
where each Si is a strong semicomplete digraph. We call R[S1, . . . , Sr] a
round decomposition of D. The following consequence of Theorem 2.10.6,
whose proof is left as Exercise 2.32, shows that connected, but not strongly
connected locally semicomplete digraphs are round decomposable.

Corollary 2.10.7 [66] Every connected, but not strongly connected locally
semicomplete digraph D has a unique round decomposition R[D1, D2, . . . , Dp],
where D1, D2, . . . , Dp is the acyclic ordering of strong components of D and
R is the round local tournament containing no cycle which one obtains by
taking one vertex from each Di. ��

Now we describe another kind of decomposition theorem for locally semi-
complete digraphs due to Guo and Volkmann. The proof of this theorem is
left as Exercise 2.33. The statement of the theorem is illustrated in Figure
2.18.

Theorem 2.10.8 [440, 442] Let D be a connected locally semicomplete di-
graph that is not strong and let D1, . . . , Dp be the acyclic ordering of strong
components of D. Then D can be decomposed into r ≥ 2 induced subdigraphs
D′

1, D
′
2, . . . , D

′
r as follows:

• D′
1 = Dp, λ1 = p,

• λi+1 = min{ j | N+(Dj) ∩ V (D′
i) 
= ∅}, for each i ∈ [r − 1],
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Figure 2.17 A round decomposable locally semicomplete digraph D. The big cir-
cles indicate the sets that correspond to the sets W1, W2, . . . , W6 in the decompo-
sition D = R[W1, W2, . . . , W6], where R is the round locally semicomplete digraph
one obtains by replacing each circled set by one vertex. Fat arcs indicate that there
is a complete domination in the direction shown.

• D′
i+1 = D〈V (Dλi+1)∪V (Dλi+1+1)∪· · ·∪V (Dλi−1)〉, for each i ∈ [r−1].

The subdigraphs D′
1, D

′
2, . . . , D

′
r satisfy the properties below:

(a) D′
i consists of some strong components of D and is semicomplete for each

i ∈ [r]
(b) D′

i+1 dominates the initial component of D′
i and there exists no arc from

D′
i to D′

i+1 for any i ∈ [r − 1]
(c) if r ≥ 3, then there is no arc between D′

i and D′
j for i, j satisfying |j−i| ≥

2. ��

For a connected, but not strongly connected locally semicomplete digraph
D, the unique sequence D′

1, D
′
2, . . . , D

′
r defined in Theorem 2.10.8 is called

the semicomplete decomposition of D.

2.10.3 Strong Round Decomposable Locally Semicomplete
Digraphs

In the previous subsection we saw that every connected non-strong locally
semicomplete digraph is round decomposable. This property does not hold
for strong locally semicomplete digraphs (see Lemma 2.10.14). The follow-
ing assertions, due to Bang-Jensen, Guo, Gutin and Volkmann, provide some
important properties concerning round decompositions of strong locally semi-
complete digraphs.
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Figure 2.18 The semicomplete decomposition of a non-strong locally semicomplete
digraph with 16 strong components (numbered 1-16 corresponding to the acyclic
ordering). Each circle indicates a strong component and each box indicates a semi-
complete subdigraph formed by consecutive components all of which dominate the
first component in the previous layer. For clarity arcs inside components as well
as some arcs between components inside a semicomplete subdigraph D′

i (all going
from top to bottom) are omitted.

Proposition 2.10.9 [80] Let R[H1, H2, . . . , Hα] be a round decomposition of
a strong locally semicomplete digraph D. Then, for every minimal separating
set S, there are two integers i and k ≥ 0 such that S = V (Hi)∪. . .∪V (Hi+k).

Proof: We will first prove that

if V (Hi) ∩ S 
= ∅, then V (Hi) ⊆ S. (2.3)

Assume that there exists Hi such that V (Hi) ∩ S 
= ∅ 
= V (Hi) − S.
Using this assumption we shall prove that D−S is strong, contradicting the
definition of S.

Let s′ ∈ V (Hi) ∩ S. To show that D − S is strong, we consider a pair
of different vertices x and y of D − S and prove that D − S has an (x, y)-
path. Since S is a minimal separating set, D′ = D − (S − s′) is strong.
Consider a shortest (x, y)-path P in D′ among all (x, y)-paths using at most
two vertices from each Hj . The existence of such a path follows from the fact
that R is strong. Since the vertices of Hi in D′ have the same in- and out-
neighbourhoods, P contains at most one vertex from Hi, unless x, y ∈ V (Hi)
in which case P contains only these two vertices from Hi. If s′ is not on
P , we are done. Thus, assume that s′ is on P . Then, since P is shortest
possible, neither x nor y belongs to Hi. Now we can replace s′ with a vertex
in V (Hi) − S. Therefore, D − S has an (x, y)-path, so (2.3) is proved.

Suppose that S consists of disjoint sets T1, . . . , T� such that

Ti = V (Hji) ∪ . . . ∪ V (Hji+ki) and (V (Hji−1) ∪ V (Hji+ki+1)) ∩ S = ∅
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for i ∈ [�]. If � ≥ 2, then D − Ti is strong and hence it follows from the fact
that R is round that Hji−1 dominates Hji+ki+1 for every i ∈ [�]. Therefore,
D − S is strong; a contradiction. ��
Corollary 2.10.10 [80] If a locally semicomplete digraph D is round decom-
posable, then it has a unique round decomposition D = R[D1, D2, . . . , Dα].

Proof: Suppose that D has two different round decompositions: D =
R[D1, . . . , Dα] and D = R′[H1, . . . , Hβ ].

By Corollary 2.10.7, we may assume that D is strong. By the definition
of a round decomposition, this implies that α, β ≥ 3. Let S be a minimal
separating set of D. By Proposition 2.10.9, we may assume without loss of
generality that S = V (D1 ∪ . . . ∪ Di) = V (H1 ∪ . . . ∪ Hj) for some i and j.
Since D − S is non-strong, by Corollary 2.10.7, Di+1 = Hj+1,. . . , Dα = Hβ

(in particular, α − i = β − j). Now it suffices to prove that

D1 = H1,. . . ,Di = Hj (in particular, i = j). (2.4)

If D〈S〉 is non-strong, then (2.4) follows by Corollary 2.10.7. If D〈S〉 is
strong, then first consider the case α = 3. Then S = V (D1), because D−S is
non-strong and α = 3. Assuming that j > 1, we obtain that the subdigraph of
D induced by S has a strong round decomposition. This contradicts the fact
that R′ is a local tournament, since the in-neighbourhood of the vertex r′j+1

in R′ contains a cycle (where r′p corresponds to Hp, p = 1, . . . , β). Therefore,
(2.4) is true for α = 3. If α > 3, then we can find a separating set in D〈S〉
and conclude by induction that (2.4) holds. ��

Proposition 2.10.9 allows us to construct a polynomial algorithm for
checking whether a locally semicomplete digraph is round decomposable.

Proposition 2.10.11 [80] There exists a polynomial algorithm to decide
whether a given locally semicomplete digraph D has a round decomposition
and to find this decomposition if it exists.

Proof: We only give a sketch of such an algorithm. Find a minimal separating
set S in D starting with S′ = N+(x) for a vertex x ∈ V (D) and deleting
vertices from S′ until a minimal separating set is obtained. Construct the
strong components of D〈S〉 and D−S and label these D1, D2, . . . , Dα, where
D1, . . . , Dp, p ≥ 1, form an acyclic ordering of the strong components of
D〈S〉 and Dp+1, . . . , Dα form an acyclic ordering of the strong components
of D − S. For every pair Di and Dj (1 ≤ i 
= j ≤ α), we check the following:
if there exist some arcs between Di and Dj , then either Di �→Dj or Dj �→Di.
If we find a pair for which the above condition is false, then D is not round
decomposable. Otherwise, we form a digraph R = D〈{x1, x2, . . . , xα}〉, where
xi ∈ V (Di) for each i ∈ [α]. We check whether R is round using Corollary
2.10.5. If R is not round, then D is not round decomposable. Otherwise, D
is round decomposable and D = R[D1, . . . , Dα].

It is not difficult to verify that our algorithm is correct and polynomial.
��
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2.10.4 Classification of Locally Semicomplete Digraphs

We start this subsection with a lemma on minimal separating sets of locally
semicomplete digraphs. It will be shown in Lemma 5.8.4 that for a strong
locally semicomplete digraph D and a minimal separating set S in D, we
have that D − S is connected.

Lemma 2.10.12 [80] If a strong locally semicomplete digraph D is not semi-
complete, then there exists a minimal separating set S ⊂ V (D) such that
D − S is not semicomplete. Furthermore, if D1, D2, . . . , Dp is the acyclic
ordering of the strong components of D and D′

1, D
′
2, . . . , D

′
r is the semicom-

plete decomposition of D−S, then r ≥ 3, D〈S〉 is semicomplete and we have
Dp �→S �→D1.

Proof: Suppose D − S is semicomplete for every minimal separating set S.
Then D − S is semicomplete for all separating sets S. Hence D is semicom-
plete, because any pair of non-adjacent vertices can be separated by some
separating set S. This proves the first claim of the lemma.

Let S be a minimal separating set such that D − S is not semicomplete.
Clearly, if r = 2 (in Theorem 2.10.8), then D − S is semicomplete. Thus,
r ≥ 3. By the minimality of S every vertex s ∈ S dominates a vertex in D1

and is dominated by a vertex in Dp. Thus if some x ∈ Dp was dominated by
s ∈ S, then, by the definition of a locally semicomplete digraph, we would
have D1 �→Dp, contradicting the fact that r ≥ 3. Hence (using that Dp is
strongly connected) we get that Dp �→S and similarly S �→D1. From the last
observation it follows that S is semicomplete. ��

Now we consider strongly connected locally semicomplete digraphs which
are not semicomplete and not round decomposable. We first show that the
semicomplete decomposition of D−S has exactly three components, whenever
S is a minimal separating set such that D − S is not semicomplete.

Lemma 2.10.13 [80] Let D be a strong locally semicomplete digraph which
is not semicomplete. Either D is round decomposable, or D has a minimal
separating set S such that the semicomplete decomposition of D − S has
exactly three components D′

1, D
′
2, D

′
3.

Proof: By Lemma 2.10.12, D has a minimal separating set S such that the
semicomplete decomposition of D − S has at least three components.

Assume now that the semicomplete decomposition of D − S has more
than three components D′

1, . . . , D
′
r (r ≥ 4). Let D1, D2, . . . , Dp be the acyclic

ordering of strong components of D − S. According to Theorem 2.10.8 (c),
there is no arc between D′

i and D′
j if |i− j| ≥ 2. It follows from the definition

of a locally semicomplete digraph that

N+(D′
i) ∩ S = ∅ for i ≥ 3 and N−(D′

j) ∩ S = ∅ for j ≤ r − 2. (2.5)
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By Lemma 2.10.12, D〈S〉 is semicomplete and S = N+(Dp). Let Dp+1, . . . ,
Dp+q be the acyclic ordering of the strong components of D〈S〉. Using (2.5)
and the assumption r ≥ 4, it is easy to check that if there is an arc be-
tween Di and Dj (1 ≤ i 
= j ≤ p + q), then Di �→Dj or Dj �→Di. Let
R = D〈{x1, x2, . . . , xp+q}〉 with xi ∈ V (Di) for each i ∈ [p + q]. Now it
suffices to prove that R is a round local tournament.

Since R is a subdigraph of D and no pair Di, Dj induces a strong di-
graph, we see that R is a local tournament. By Corollary 2.10.7 each of
the subdigraphs R′ = R − {xp+1, . . . , xp+q}, R′′ = R − V (R) ∩ V (D′

r−1)
and R′′′ = R − V (R) ∩ V (D′

2) is round. Since N+(v) ∩ V (R) (as well as
N−(v) ∩ V (R)) is completely contained in one of the sets V (R′), V (R′′) and
V (R′′′) for every v ∈ V (R), we see that R is round.

Thus if r ≥ 4, then D is round decomposable. ��
Our next result is a characterization of locally semicomplete digraphs

which are not semicomplete and not round decomposable. This character-
ization was proved for the first time by Guo in [432]. A weaker form was
obtained earlier by Bang-Jensen in [71]. Here we give the proof of this result
from [80].

Lemma 2.10.14 Let D be a strong locally semicomplete digraph which is not
semicomplete. Then D is not round decomposable if and only if the following
conditions are satisfied:

(a) There is a minimal separating set S such that D − S is not semicom-
plete and for each such S, D〈S〉 is semicomplete and the semicomplete
decomposition of D − S has exactly three components D′

1, D
′
2, D

′
3;

(b) There are integers α, β, μ, ν with λ2 ≤ α ≤ β ≤ p − 1 and p + 1 ≤ μ ≤
ν ≤ p + q such that

N−(Dα) ∩ V (Dμ) 
= ∅ and N+(Dα) ∩ V (Dν) 
= ∅,

or N−(Dμ) ∩ V (Dα) 
= ∅ and N+(Dμ) ∩ V (Dβ) 
= ∅,

where D1, D2, . . . , Dp and Dp+1, . . . , Dp+q are the acyclic orderings of
the strong components of D − S and D〈S〉, respectively, and Dλ2 is the
initial component of D′

2.

Proof: If D is round decomposable and satisfies (a), then we must have D =
R[D1, D2, . . . , Dp+q], where R is the digraph obtained from D by contracting
each Di into one vertex. This follows from Corollary 2.10.7 and the fact that
each of the digraphs D − S and D − V (D′

2) has a round decomposition that
agrees with this structure. Now it is easy to see that D does not satisfy (b).

Suppose now that D is not round decomposable. By Lemmas 2.10.12 and
2.10.13, D satisfies (a), so we only have to prove that it also satisfies (b).

If there are no arcs from S to D′
2, then it is easy to see that D has a

round decomposition. If there exist components Dp+i and Dj with V (Dj) ⊆
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V (D′
2), such that there are arcs in both directions between Dp+i and Dj ,

then D satisfies (b). So we can assume that for every pair of sets from the
collection D1, D2, . . . , Dp+q, either there are no arcs between these sets, or
one set completely dominates the other. Then, by Corollary 2.10.5, D is
round decomposable, with round decomposition D = R[D1, D2, . . . , Dp+q] as
above, unless we have three subdigraphs X,Y, Z ∈ {D1, D2, . . . , Dp+q} such
that X �→Y �→Z �→X and there exists a subdigraph W ∈ {D1, D2, . . . , Dp+q}−
{X,Y, Z} such that either W �→X,Y, Z or X,Y, Z �→W .

One of the subdigraphs X,Y, Z, say without loss of generality X, is a
strong component of D〈S〉. If we have V (Y ) ⊆ S also, then V (Z) ⊆ V (D′

2)
and W is either in D〈S〉 or in D′

2 (there are four possible positions for W
satisfying that either W �→X,Y, Z or X,Y, Z �→W ). In each of these cases
it is easy to see that D satisfies (b). For example, if W is in D〈S〉 and
W �→X,Y, Z, then any arc from W to Z and from Z to X satisfies the first part
of (b). The proof is similar when V (Y ) ⊆ V (D′

3). Hence we can assume that
V (Y ) ⊆ V (D′

2). If Z = Dp, then W must be either in D〈S〉 and X,Y, Z �→W ,
or V (W ) ⊆ V (D′

2) and W �→X,Y, Z (which means that W = Di and Y = Dj

for some λ2 ≤ i < j < p). In both cases it is easy to see that D satisfies (b).
The last case V (Y ), V (Z) ⊆ V (D′

2) can be treated similarly. ��
We can now state a classification of locally semicomplete digraphs.

Theorem 2.10.15 (Bang-Jensen, Guo, Gutin, Volkmann) [80] Let D
be a connected locally semicomplete digraph. Then exactly one of the following
possibilities holds.

(a) D is round decomposable with a unique round decomposition given by
D = R[D1, D2, . . . , Dα], where R is a round local tournament on α ≥ 2
vertices and Di is a strong semicomplete digraph for each i ∈ [α];

(b) D is not round decomposable and not semicomplete and it has the struc-
ture as described in Lemma 2.10.14;

(c) D is a semicomplete digraph which is not round decomposable. ��

We finish this section with the following useful proposition, whose proof
is left as Exercise 2.36.

Proposition 2.10.16 [80] Let D be a strong non-round decomposable locally
semicomplete digraph and let S be a minimal separating set of D such that
D − S is not semicomplete. Let D1, . . . , Dp be the acyclic ordering of the
strong components of D − S and Dp+1, . . . , Dp+q be the acyclic ordering of
the strong components of D〈S〉. Suppose that there is an arc s → v from S
to D′

2 with s ∈ V (Di) and v ∈ V (Dj), then

Di∪Di+1∪. . .∪Dp+q �→D′
3 �→Dλ2∪. . .∪Dj . ��
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2.11 Totally Φ-Decomposable Digraphs

Theorem 2.7.5 is a very important starting point for construction of poly-
nomial algorithms for hamiltonian paths and cycles in quasi-transitive di-
graphs (see Chapter 6) and solving more general problems in this class of
digraphs. This theorem shows that quasi-transitive digraphs are totally Φ-
decomposable, where Φ is the union of extended semicomplete and transitive
digraphs. Since both extended semicomplete digraphs and transitive digraphs
are special subclasses of much wider classes of digraphs, it is natural to study
totally Φ-decomposable digraphs, where Φ is a much more general class of
digraphs than the union of extended semicomplete and transitive digraphs.
However, our choice of candidates for the class Φ should be restricted in such
a way that we can still construct polynomial algorithms for some important
problems such as the hamiltonian cycle problem using properties of digraphs
in Φ.

This idea was first used by Bang-Jensen and Gutin [86] to introduce the
following three classes of digraphs:

(a) Φ0 is the union of all semicomplete multipartite digraphs, all connected
extended locally semicomplete digraphs and all acyclic digraphs,

(b) Φ1 is the union of all semicomplete bipartite digraphs, all connected ex-
tended locally semicomplete digraphs and all acyclic digraphs, and

(c) Φ2 is the union of all connected extended locally semicomplete digraphs
and all acyclic digraphs.

The aim of this section is to show that totally Φi-decomposable digraphs
can be recognized in polynomial time for i = 0, 1, 2. (If these recognition
problems were not polynomial, then the study of the properties of totally
Φi-decomposable digraphs would be of much less interest.)

A set Φ of digraphs is hereditary if D ∈ Φ implies that every induced
subdigraph of D is in Φ. Observe that every Φi, i = 0, 1, 2, is a hereditary
set.

Lemma 2.11.1 Let Φ be a hereditary set of digraphs. If a given digraph D
is totally Φ-decomposable, then every induced subdigraph D′ of D is totally
Φ-decomposable. In other words, total Φ-decomposability is a hereditary prop-
erty.

Proof: By induction on the number of vertices of D. The claim is obviously
true if D has less than 3 vertices.

If D ∈ Φ, then our claim follows from the fact that Φ is hereditary. So
we may assume that D = R[H1, . . . , Hr], r ≥ 2, where R ∈ Φ and each of
H1, . . . , Hr is totally Φ-decomposable.

Let D′ be an induced subdigraph of D. If there is an index i so that
V (D′) ⊂ V (Hi), then D′ is totally Φ-decomposable by induction. Otherwise,
D′ = R′[T1, . . . , Tr′ ], where r′ ≥ 2 and R′ ∈ Φ, is the subdigraph of R
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induced by those vertices i of R, whose Hi has a non-empty intersection with
V (D′) and the Tj ’s are the corresponding Hi’s restricted to the vertices of
D′. Observe that R′ ∈ Φ, since Φ is hereditary. Moreover, by induction, each
Tj is totally Φ-decomposable, hence so is D′. ��

Lemma 2.11.2 There exists an O(mn + n2)-algorithm for checking if a di-
graph D with n vertices and m arcs has a decomposition D = R[H1, . . . , Hr],
r ≥ 2, where Hi is an arbitrary digraph and the digraph R is either acyclic
or semicomplete multipartite or semicomplete bipartite or connected extended
locally semicomplete.

Proof: If D is not connected and D1,. . . ,Dc are its components, then D =
Kc[D1, . . . , Dc]. Hence, in the rest of the proof we may assume that D is
connected. We consider the different possibilities for R we are interested in,
one by one.

Check whether R can be acyclic: First find the strong components
D1, . . . , Dk of D. If k = 1, then R cannot be acyclic and we can stop verifying
that possibility. So suppose k ≥ 2.

If we find two strong components Di and Dj such that there is an arc
between them but there are non-adjacent vertices x ∈ Di and y ∈ Dj , then
we replace Di and Dj by their union. This is justified because Di and Dj

cannot be in different sets Hs and Ht in a possible decomposition. Repeat
this step but now check also the possibility for a pair D′ and D′′ of new
‘components’ to have arcs between D′ and D′′ in different directions. In the
last case we also replace D′ and D′′ by their union. Continue this procedure
until all remaining sets satisfy that either there is no arc between them,
or there are all possible arcs from one to the other. Let V1, . . . , Vr, r ≥ 1,
denote the distinct vertex sets of the obtained ‘components’. If r = 1, then
we cannot find an acyclic graph as R. Otherwise, D = R[V1, . . . , Vr], r ≥ 2,
and we obtain R by taking one vertex from each Vi.

Check whether R can be a semicomplete multipartite digraph: Find
the connected components G1, . . . , Gc, c ≥ 1, of the complement of the un-
derlying graph UG(D) of D. If c = 1, then R cannot be semicomplete mul-
tipartite. So we may assume that c ≥ 2 below. Let Gj be the subgraph of
UG(D) induced by the vertices Vj of the jth component Gj of the comple-
ment of UG(D). Furthermore, let Gj1, . . . , Gjnj , nj ≥ 1, be the connected
components of Gj . Denote Vjk = V (Gjk).

Starting with the collection W = {V1, . . . , Vc}, we identify two of the sets
Vi and Vj if there exist Via and Vjb a ∈ [ni], b ∈ [nj ] such that we have none
of the possibilities Via �→Vjb, Vjb �→Via or Via→Vjb and Vjb→Via. Clearly the
obtained set Vi ∪ Vj induces a connected subdigraph of D. Let Q1, . . . , Qr

denote the sets obtained, by repeating this process until no more changes
occur. If r = 1, then R cannot be semicomplete multipartite. Otherwise, R
is the semicomplete multipartite digraph obtained by set-contracting each
connected component of Qi into a vertex.
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Checking whether R can be a semicomplete bipartite digraph or a con-
nected extended locally semicomplete digraph is left as Exercise 2.39.

It is not difficult to see that, for every R being either acyclic or semicom-
plete multipartite, the procedures above can be realized as an O(nm + n2)-
algorithm. The same complexity is proved for semicomplete bipartite digraphs
and extended locally semicomplete digraphs in Exercise 2.39. ��

Theorem 2.11.3 [86] There exists an O(n2m+n3)-algorithm for checking if
a digraph with n vertices and m arcs is totally Φi-decomposable for i = 0, 1, 2.

Proof: We describe a recursive algorithm to check Φi-decomposability. We
have shown in Lemma 2.11.2 how to verify whether D = R[H1, . . . , Hr],
r ≥ 2, where R is acyclic, semicomplete multipartite, semicomplete bipartite
or connected extended locally semicomplete. Whenever we find an R that
could be used, the algorithm checks total Φi-decomposability of H1, . . . , Hr

in recursive calls.
Notice how the algorithm exploits the fact that total Φi-decomposability

is a hereditary property (see Lemma 2.11.1): if some R is found appropriate,
then R can be used, because if D is totally Φi-decomposable, then each of
H1, . . . , Hr (being an induced subdigraph of D) must also be totally Φi-
decomposable. Since there are O(n) recursive calls, the complexity of the
algorithm is O(n2m + n3). ��

2.12 Planar Digraphs

We now discuss planar (di)graphs, i.e., (di)graphs that can be drawn without
crossings between (arcs) edges (except at endpoints). Clearly this property
does not depend on the orientation of the arcs and hence we can ignore the
orientation below when we give a formal definition. Furthermore, most of the
results and definitions in this section are for undirected graphs, but are valid
also for planar digraphs as far as their underlying graphs are concerned.

An undirected graph G = (V,E) is planar if there exists a mapping f
which maps G to R

2 in the following way:

• Each vertex is mapped to a point in R
2 and distinct vertices are mapped

to distinct points.
• Each edge uv ∈ E is mapped to a simple (that is, not self-intersecting)

curve Cuv from f(u) to f(v) and no two curves corresponding to distinct
edges intersect, except possibly at their endpoints.

For algorithmic purposes as well as for arguing about planar graphs, it is
inconvenient to allow arbitrary curves in the embeddings of planar graphs.
A polygonal curve from u to v is a piecewise linear curve consisting of
finitely many lines such that the first line starts at u, the last line ends at v
and each other line starts at the last point of the previous line. Since we can
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approximate any simple curve arbitrarily well by a polygonal curve we may
assume that the curves used in the embedding are always polygonal curves.

A planar graph G may have many different embeddings in the plane (each
embedding corresponds to a mapping f as above). Sometimes we wish to refer
to properties of a specific embedding f of G. In this case we say that G is
plane (that is, already embedded) with planar embedding f . A plane graph G
partitions R

2 into a finite number of (topologically) connected regions called
faces. Precisely one of these faces is unbounded and we call this the outer
face. It is easy to see that, for any fixed face F of G, we may re-embed G in
R

2 in such a way that F becomes the outer face. The boundary of a face F is
denoted by bd(F ) and we normally describe a face by listing the vertices in
clockwise order around the face (for the unbounded face this corresponds to
listing the vertices on the boundary in the anti-clockwise order). See Figure
2.19 for an illustration of the definitions.
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Figure 2.19 (a) shows a non-planar embedding of a graph H; (b) shows a planar
embedding of H; (c) shows a planar embedding of H where all curves are polygonal.
With respect to the embedding in (c), the faces are 12341, 14561, 16321 and 36543.
The outer face is 36543.

Observe that if we add the edge 25 to the graph H in Figure 2.19, then
the resulting graph, which is isomorphic to K3,3, is no longer planar. In fact,
planar graphs have a famous characterization, due to Kuratowski:

Theorem 2.12.1 (Kuratowski’s theorem) [632] A graph has a planar
embedding if and only if it does not contain a subdivision3 of K5 or K3,3. ��

Based on this it is possible to show that planar graphs (and hence also
planar digraphs) can be recognized efficiently. In fact, Hopcroft and Tarjan

3 A subdivision H ′ of a graph H is any graph that can be obtained from H by
replacing each edge by a path all of whose internal vertices have degree 2 in H ′.
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[534] showed that it can be done in linear time and if the graph is planar,
one can find a planar embedding in the same time.

The following relation between the number of vertices, edges and faces in
a plane graph, known as Euler’s formula, is easy to prove by induction on
the number of faces.

Theorem 2.12.2 If G is a connected plane graph on n vertices and m edges,
then n − m + φ = 2, where φ denotes the number of faces in the embedding
on G. In particular, the number of faces is the same in every embedding of
G. ��

We leave it to the reader to derive the following easy consequence of
Theorem 2.12.2 (see Exercise 2.46):

Corollary 2.12.3 For every planar graph on n ≥ 3 vertices and m edges we
have m ≤ 3n − 6. ��

If we allow multiple edges, then we cannot bound the number of edges
as we did above. However, for planar digraphs we have the following easy
consequence:

Corollary 2.12.4 No planar digraph on n ≥ 3 vertices has more than 6n−12
arcs. ��

We finish this section by a conjecture of Neumann-Lara first posed in 1982
[724] that links planar digraphs with acyclic digraphs.

Conjecture 2.12.5 The vertices of every planar digraph can be partitioned
into two sets such that each set induces an acyclic digraph.

2.13 Digraphs of Bounded Width

The tree-width is one of the most important parameters in the area of undi-
rected graphs [573]. It is a cornerstone of the Graph Minors Theory, it is used
to prove theorems in structural graph theory, and it has many algorithmic
applications due to the fact that many NP-hard problems can be solved in
linear time when restricted to graphs of bounded tree-width [573]. Naturally,
researchers tried to extend the notion of tree-width to digraphs. In particu-
lar, Johnson, Robertson, Seymour and Thomas [573] introduced and studied
the notion of the directed tree-width, and Berwanger, Dawar, Hunter and
Kreutzer [154] and Obdržálek [731] came up with the notion of DAG-width.
There are several other directed width parameters, for example, Kelly-with
introduced by Hunter and Kreutzer [544].

While the authors of [154, 544, 573, 731] managed to obtain some ‘positive’
algorithmic results on digraphs of bounded directed tree-width, DAG-width
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and Kelly-width similar to those on undirected graphs with bounded tree-
width, there are several ‘negative’ complexity results obtained by Dankel-
mann, Gutin and Kim [241] and Kreutzer and Ordyniak [626] indicating
that the directed width parameters are of somewhat lesser interest than the
tree-width.

In the first subsection of this section we consider digraphs of bounded
tree-width and, in the second subsection, we study digraphs in which directed
width parameters are bounded.

2.13.1 Digraphs of Bounded Tree-Width

To illustrate the usefulness of tree-width, we will show that one can find, in
a linear time, a minimum size kernel4 in a digraph whose underlying graph
is bounded by a constant tree-width. This result allows us to prove that, in
a planar digraph D of order n, one can check, in polynomial time, whether
D has a kernel of size O(log2 n), and if D has such a kernel, then to find one
of minimal size.

A non-trivial use of the tree-width is given by Alon, Fomin, Gutin, Kriv-
elevich and Saurabh [21, 22] who proved fixed-parameter tractability of the
problem of verifying whether a digraph contains, as a subdigraph, an out-tree
with at least k leaves, i.e., vertices of in-degree zero (for the definition of fixed-
parameter tractability, see Section 18.4). A refinement of the approach in [21]
allowed Bonsma and Dorn [173, 174] to prove fixed-parameter tractability of
the problem of verifying whether a digraph has an out-branching with at
least k leaves. Another application of tree-width can be found in [472], where
Gutin, Razgon and Kim proved that the problem of checking whether a di-
graph has an out-branching with at least k non-leaves is also fixed-parameter
tractable.

A tree decomposition of an (undirected) graph G is a pair (S, T ) where
T is a tree whose vertices we will call nodes and S = {Si : i ∈ V (T )} is a
collection of subsets of V (G) (called bags) such that

1.
⋃

i∈V (T ) Si = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Si,

and
3. for each v ∈ V (G) the set of nodes {i : v ∈ Si} forms a subtree of T .

The width of a tree decomposition ({Si : i ∈ V (T )}, T ) is defined as the
number maxi∈V (T ){|Si| − 1}. The tree-width of a graph G (tw(G)) is the
minimum width over all tree decompositions of G. The tree-width of a
digraph D (tw(D)) is the tree-width of its underlying graph.

It is not difficult to see that a connected digraph D is of tree-width one
if and only if D is a biorientation of a tree (Exercise 2.47). An undirected
4 A set S of vertices of a digraph D is a kernel if S is an independent set and

for each x ∈ V (D) − S there is an out-neighbour in S. For more information on
kernels, see Section 3.8.
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graph G is called series-parallel if there is an ASP digraph D such that
G = UG(D). It is well-known (see, e.g., [253] by de Fluiter and Bodlaender)
that an undirected graph G has tree-width at most two if and only if each
block of G is series-parallel (a block of a graph G is a maximal connected
subgraph H of G such that H − x is connected for every x ∈ V (H)).

There are several characterizations of undirected graphs of tree-width at
most k [601]. We will describe one of the most intuitive such characterizations.
A graph G is chordal, if every cycle in G of length at least four has a chord,
i.e., there is an edge connecting two non-consecutive vertices in the cycle. A
triangulation of a graph G is a spanning supergraph of G which is a chordal
graph.

Theorem 2.13.1 Let G be a graph with more than k vertices. The graph G
is of tree-width at most k if and only if G has a triangulation whose maximum
clique has at most k + 1 vertices. ��

To facilitate our description below we make use of a nice tree decom-
position (see, e.g., [601] by Kloks). In a nice tree decomposition, we have
a binary rooted tree T , i.e., T is a rooted tree such that every node has at
most two children. The nodes of T are of four types:

• An insert node i. The node i in T has only one child j and there is a vertex
x ∈ V not in Sj such that Si = Sj ∪ {x}.

• A forget node i. The node i in T has only one child j and there is a vertex
x ∈ V not in Si such that Sj = Si ∪ {x}.

• A join node i has two children p and q. The bags Si, Sp and Sq are exactly
the same.

• A leaf node i is simply a leaf of T .

It is not hard to transform a tree decomposition of G into a nice tree
decomposition. In fact, the following holds.

Lemma 2.13.2 [601] Given a tree decomposition of a graph G with n ver-
tices that has width k and O(n) nodes, we can find a nice tree decomposition
of G that also has width k and O(n) nodes in time O(n). ��

We will use Lemma 2.13.2 in the following result by Gutin, Kloks, Lee
and Yeo [466].

Theorem 2.13.3 Let D be a digraph of order n. Let the underlying graph
G of D have a tree decomposition with O(n) nodes and of width at most t.
Then, in O(n4t) time, we can either find a minimum size kernel in D or
determine that D has no kernel.

Proof: By Lemma 2.13.2, G has a nice tree decomposition with O(n) nodes
and of width at most t. Let (T,S) be such a nice tree decomposition of G.
Let S1, S2, . . . , Sr be the bags of the tree decomposition (i.e., the nodes of T
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are 1, 2, . . . , r). Let root denote the root node of T . Recall that every vertex
(and arc) in D lies in at least one of the bags.

Let Yi denote the union of the bags Sj of the subtree of T with root
node i. For every i, consider a partition (Ki, MCi, DCi) of Si (the three
sets of a partition are disjoint and every vertex of Si is in one of the sets). A
(Ki, MCi, DCi)-kernel is an independent set Q in D such that Ki ⊆ Q ⊆ Yi,
(DCi ∪ MCi) ∩ Q = ∅ and every vertex in Yi − DCi either lies in Q or has
an out-neighbor in Q5.

The vertices in DCi may have an out-neighbor in Q, or not. Since
(DCi ∪ MCi) ∩ Q = ∅, every vertex in MCi has an out-neighbor in Q.
We define κi(Ki, MCi, DCi) as the minimal size of a (Ki, MCi, DCi)-kernel,
if one exists. If it does not exist, then κi(Ki, MCi, DCi) = ∞.

If we can compute κi(Ki, MCi, DCi) for all partitions (Ki, MCi, DCi)
and all i, then

μ = min{κroot(K, Sroot − K, ∅) : K ⊆ Sroot} (2.6)

gives us the size of a minimum size kernel in D.
Let i be a node of T . We show how to compute, in time O(4t), all pos-

sible κi(Ki, MCi, DCi). In fact we can also compute the actual minimum
(Ki, MCi, DCi)-kernels, for all possible partitions (Ki, MCi, DCi) in O(4t)
time, but we will leave the details of this to the reader. This will imply the
desired complexity above as T has O(n) vertices. We consider the cases when
i is a leaf, i has one child and i has two children, separately. We assume that
if i does have some children, then all κi’s are known for these children. We
will for each step argue that we find the correct values.

Case 1: i is a leaf. There are O(3|Si|) distinct partitions (Ki, MCi, DCi),
and we can easily find all of these in O(|Si|3|Si|) time. For each partition
(Ki, MCi, DCi) we can check whether Ki is an independent set and every
vertex in MCi has an out-neighbor in Ki in time O(|Si|2). If the outcomes
of both checks are positive, we have κi(Ki, MCi, DCi) = |Ki|. Otherwise, we
have κi(Ki, MCi, DCi) = ∞. This gives us a time complexity of O(|Si|3|Si|+
|Si|23|Si|) ⊆ O(4|Si|) ⊆ O(4t) (recall that |Si| ≤ t + 1).

Case 2: i has one child. Let j be the child of i in T . By the definition
of a nice tree decomposition, Sj and Si are identical, except for one vertex,
say x, which lies in either Si or Sj . We consider the following cases.

If x ∈ Ki, then if x is adjacent to a vertex in Ki, then κi(Ki, MCi, DCi) =
∞. Otherwise set DCj = DCi ∪ N−(x), MCj = MCi − N−(x) and Kj =
Ki − x. Clearly κi(Ki, MCi, DCi) = 1 + κj(Kj , MCj , DCj) now holds.

If x ∈ MCi and x has no out-neighbor in Ki, then κi(Ki, MCi, DCi) = ∞.
If x ∈ DCi or x ∈ MCi and x has an out-neighbor in Ki, then we have

κi(Ki, MCi, DCi) = κj(Ki, MCi − x, DCi − x).
If x ∈ Sj , then we have the following:

5 MC and DC stand for Must Cover and Don’t Care if a vertex from the set has
an out-neighbor in the kernel.
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κi(Ki, MCi, DCi) = min{κj(Ki ∪{x}, MCi, DCi), κj(Ki, MCi ∪{x}, DCi)}.

As all the above cases can be considered in O(|Si|) time, we get the time
complexity O(|Si|3|Si|) = O(4t) for computing κi’s for all possible partitions.

Case 3: i has two children. Let j and l be the two children, and re-
call that Si = Sj = Sl. It is not difficult to see that κi(Ki, MCi, DCi) is
equal to the minimum value of κj(Ki, W, MCi ∪ DCi − W ) + κl(Ki, MCi −
W,DCi ∪ W ) − |Ki|, over all W ⊆ MCi. The above can be done in
O(2|MCi|) time and there are

(|Si|
m

)
2|Si|−m partitions (Ki, MCi, DCi) with

|MCi| = m. Thus, we can compute κi’s for all possible partitions of Si in
time O(

∑|Si|
m=0 2m

(|Si|
m

)
2|Si|−m) = O(4t).

Since each κi(Ki, MCi, DCi) is computed correctly above, we note that
our algorithm will return the correct value of μ in (2.6). If we remem-
ber a minimum (Ki, MCi, DCi)-kernel for every possible i and partition
(Ki, MCi, DCi), then our algorithm can in fact return the minimum-sized
kernel, and not only its size. Certainly, if μ = ∞, D has no kernel. ��

A set S of vertices of an undirected graph G is called dominating if for
every x ∈ V (G)\S there is a vertex s ∈ S adjacent to x. The following result
was obtained by Fomin and Thilikos [328].

Theorem 2.13.4 Let G be a planar graph with n vertices. There is an
O(n4)-time algorithm that either constructs a tree decomposition of G with
O(n) nodes and of width at most 9.55

√
k, or determines that G has no dom-

inating set of size at most k. ��

Observe that every kernel in a digraph D is a dominating set in UG(D).
This observation and Theorems 2.13.3 and 2.13.4 imply the following:

Theorem 2.13.5 [466] Let D be a planar digraph of order n. There is an
O(n219.1

√
k + n4)-time algorithm that checks whether D has a kernel of size

at most k. Moreover, the algorithm finds a minimum size kernel in D, if D
has a kernel of size at most k. ��

Theorem 2.13.5 implies that the problem to verify whether a planar graph
has a kernel with at most k vertices is fixed-parameter tractable.

Corollary 2.13.6 [466] Let D be a planar digraph of order n. In polynomial
time, one can check whether D has a kernel of size O(log2 n), and if D has
such a kernel, then find one of minimal size. ��

We conclude this subsection by briefly considering the complexity of
checking whether tw(G) ≤ k for a graph G. Unfortunately, the problem is
NP-complete, but it is fixed-parameter tractable, and, provided, k is fixed,
there is a linear time algorithm for the problem (see [161, 601]).



78 2. Classes of Digraphs

2.13.2 Digraphs of Bounded Directed Widths

In this subsection, we consider three of the most studied directed width pa-
rameters: DAG-widths, directed path-widths and directed tree-width. We will
start from the notion of DAG-width rather than that of directed tree-width
as the former seems easier to understand than the latter.

A DAG-decomposition (DAGD) of a digraph D is a pair (H,χ) where
H is an acyclic digraph and χ = {Wh : h ∈ V (H)} is a family of subsets
of V (D) satisfying the following three properties: (i) V (D) =

⋃
h∈V (H) Wh,

(ii) for all h, h′, h′′ ∈ V (H), if h′ lies on a directed path from h to h′′, then
Wh∩Wh′′ ⊆ Wh′ , and (iii) if (u, v) ∈ A(D), then there exist h1, h2 ∈ V (H) (it
is possible that h1 = h2) such that u ∈ Wh1 , v ∈ Wh2 and there is a directed
(h1, h2)-path in H. The width of a DAGD (H,χ) is maxh∈V (H) |Wh| − 1.
The DAG-width of a digraph D (dagw(D)) is the minimum width over all
possible DAGDs of D.

A directed path decomposition (DPD) is a special case of DAGD
when H is a directed path. The directed path-width of a digraph D
(dpw(D)) is defined as the DAG-width above, but DAGDs are replaced by
DPDs.

The following notion of vertex separation allows one to evaluate the di-
rected path-width of a digraph without constructing any DPD. Let D be
a digraph and let π = (v1, v2, . . . , vn) be an ordering of V (D). We define
Vj = {vi : 1 ≤ j ≤ i} and ∂Vj = {vi ∈ Vj : (x, vi) ∈ A(D) for some
x ∈ V (D) \ Vj}. With the vertex separation of D with respect to π
given as vsπ(D) = maxj |∂Vj |, the vertex separation of D is defined as
vs(D) = min{vsπ(D) : π is an ordering of V (D)}.

It is well-known that, for undirected graphs, the path-width equals to
the vertex separation (see Kirousis and Papadimitriou [597]). We extend this
result to digraphs.

Theorem 2.13.7 For any digraph D, vs(D) = dpw(D).

Proof: Let π = (v1, v2, . . . , vn) be an ordering of V (D) and suppose vsπ(D) =
k. We will prove that dpw(D) ≤ k. Set Wi = {vi} ∪ ∂Vi−1 for i ≥ 2 and
W1 = {v1}. We claim that (12 . . . n, χ), where χ = {W1, W2, . . . , Wn}, is a
DPD of width k.

Obviously the property (i) of DPD is satisfied. To check the property
(ii), let us choose an arbitrary vertex vi ∈ V (G) and see whether the sets
Wj containing vi appear in a row. By the construction of Wj ’s, the vertex
vi appears in the set Wi and does not appear in any Wj with j < i. If
there is no backward arc entering vi, this set is the only one containing vi

and there is nothing to prove. Otherwise let (vi′ , vi) ∈ A(D) is a backward
arc and let i′ be the maximum such index. Observe that Wi and Wj for
i < j ≤ i′ contain vi and in fact no other set contains vi. To check the last
property (iii), it is enough to see that both end-vertices of every backward
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arc (vi, vj) ∈ A(D) are in Wi. It remains to observe that |Wj | ≤ k +1, which
implies that dpw(D) ≤ k.

For the converse, let (12 . . . l, χ), where χ = {W1, W2, . . . , Wl}, be a DPD
of width k. Without loss of generality we may assume that these sets are all
distinct. Let X1 = W1 and Xi = Wi \Wi−1 for each i ≥ 2. Order the vertices
of V (D) as follows. We begin with the empty ordering (the 0-th iteration). At
the j-th iteration (1 ≤ j ≤ l) we add a permutation of Xj to the end of the
previous iteration ordering. Suppose we have performed all l iterations and
obtained an ordering π = (v1, v2, . . . , vn). We will prove that vsπ(G) ≤ k.

We will prove that |∂Vi| ≤ k for each i. Consider an arbitrary vertex
vi ∈ V (D) and suppose that vi was included in π at the j-th iteration, which
means vi ∈ Wj . Notice that Vi ⊆ W1 ∪ . . . ∪ Wj . We will first show that
∂Vi ⊆ Wj . Consider an arbitrary backward arc (x, y) with x ∈ V (D) \Vi and
y ∈ Vi. Observe that y ∈ Wp for some p ≤ j, and if x ∈ Wq then q ≥ j. By
the property (iii) of DPD, {x, y} ⊆ Ws for some s ≥ j. Thus, by the property
(ii) of DPD, y ∈ Wj . Hence, we have shown that ∂Vi ⊆ Wj , which implies
|∂Vi| ≤ k + 1. To improve this inequality, we will consider the following two
cases:

(a) Vi is a proper subset of W1 ∪ . . .∪Wj . Then ∂Vj is a proper subset of
Wj and |∂Vi| ≤ k.

(b) Vi = W1 ∪ . . . ∪ Wj . As above we can show that y ∈ Wj′ for some
j′ > j. Thus, y ∈ Wj+1 and |∂Vj | ≤ |Wj ∩ Wj+1| ≤ k. The last inequality
holds due to the fact that Wj and Wj+1 are distinct.

In both cases we conclude that |∂Vi| ≤ k, which completes the proof. ��
It follows from Theorem 2.13.7 that each directed cycle is of directed

path-width 1.
Let Z be a set of vertices of a digraph D. A set S ⊆ V (D) − Z is Z-

normal if every directed walk that leaves and again enters S must traverse
a vertex of Z. For vertices r, r′ of an out-tree T we write r ≤ r′ if there is
a path from r to r′ or r = r′. An arboreal decomposition of a digraph
D is a triple (R, X, W ), where R is an out-tree (not a subdigraph of D),
X = {Xe : e ∈ A(R)} and W = {Wr : r ∈ V (R)} are sets of vertices
of D that satisfy two conditions: (1) {Wr : r ∈ V (R)} is a partition of
V (D) into nonempty sets, and (2) if for each e = (r′, r′′) ∈ A(R) the set⋃
{Wr : r ∈ V (R), r ≥ r′′} is Xe-normal. The width of (R, X, W ) is the

least integer w such that for all r ∈ V (R), |Wr ∪
⋃

e∼r Xe| ≤ w + 1, where
e ∼ r means that r is head or tail of e. The directed tree-width of D,
dtw(D), is the least integer w such that D has an arboreal decomposition of
width w.

Now we will study some basic results on the three directed width parame-
ters. The first lemma can be proved using only the definitions above (Exercise
2.48).

Lemma 2.13.8 Let D be a digraph. For d ∈ {dag, dt, dp}, we have dw(D) =
0 if and only if D is acyclic. ��
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Let D be a digraph. It is immediately follows from the definitions of
DAG-width and directed path-width that dagw(D) ≤ dpw(D). It is easy
to show that dtw(D) ≤ dpw(D) (Exercise 2.49) from the definitions of the
two parameters. Berwanger, Dawar, Hunter and Kreutzer [154] proved that
dtw(D) ≤ 3 · dagw(D) + 1. Thus, we have the following:

Lemma 2.13.9 For a digraph D, we have dagw(D) ≤ dpw(D), dtw(D) ≤
dpw(D) and dtw(D) ≤ 3 · dagw(D) + 1. ��

The last two lemmas imply, in particular, that if dpw(D) = 1 then
dtw(D) = dagw(D) = 1. Thus, for every directed cycle C, we have
dpw(D) = dtw(C) = dagw(C) = 1. Lemma 2.13.9 has many applications
in this book.

Johnson, Robertson, Seymour and Thomas [573] proved that tw(G) =
dtw(

↔
G) for each undirected graph G and Obdržálek [731] showed that

tw(G) = dagw(
↔
G) for each undirected graph G. Since the tree-width prob-

lem is NP-hard, so are the problems of checking whether dtw(D) ≤ k and
dagw(D) ≤ k for a digraph D. However, there are O(nO(k))-time algorithms
for the two problems [573, 731].

Since tw(G) = dtw(
↔
G) and tw(G) = dagw(

↔
G) for each undirected graph

G, it is easy to prove (Exercise 2.50) that dtw(D) ≤ tw(D) and dagw(D) ≤
tw(D) for each digraph D.

2.14 Other Families of Digraphs

This section is devoted to digraphs of three classes: circulant digraphs, arc-
locally semicomplete digraphs and intersection digraphs.

2.14.1 Circulant Digraphs

For an integer n ≥ 2 and a set S ⊆ {1, 2, . . . , n− 1}, the circulant digraph
Cn(S) is defined as follows: V (Cn(S)) = {1, 2, . . . , n} and

A(Cn(S)) = {(i, i + j (mod n)) : 1 ≤ i ≤ n, j ∈ S}.

In particular, Cn(1, 2, . . . , n − 1) =
↔
Kn and Cn(1) = �Cn (it is customary

to omit the set brackets when S is given by a list of its elements). Also,
consecutive-1 digraphs introduced at the end of Section 2.5 are circulant
digraphs. Circulant digraphs are a special family of Caley digraphs, see, e.g.,
[568] and are of importance in many applications of graph theory, see, e.g.,
[269]. Circulant digraphs are of great interest in digraph theory as well, cf.
Sections 3.8.1, 6.9 and 15.6. We start from some basic properties of circulant
digraphs.
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Proposition 2.14.1 Let Cn(S) be a circulant digraph. Then the following
holds:

(a) Cn(S) has a 2-cycle if and only if there is a pair s, t of elements of S
such that s + t = n,

(b) the converse of Cn(S) is isomorphic to Cn(S),
(c) Cn(S) is strong if and only if gcd(n, s1, s2, . . . , sp) = 1, where we have

{s1, s2, . . . , sp} = S. ��

Part (a) is easy to see: if i→j and j→i, then we set s = i − j and
t = j − i; also, if s + t = n, then (1, 1 + s) and (1 + s, 1 + s + t) = (1 + s, 1)
are arcs. If n is odd |S| = (n − 1)/2, then Cn(S) is a tournament called a
rotational tournament by Alspach [35]. To prove (b) observe that Cn(−S)
is the converse of Cn(S), where −S = {−s : s ∈ S}, and that the bijection
f(i) = n − i of [n] to itself is an isomorphism of Cn(S) to Cn(−S). It seems
Ariyoshi [45] was the first to obtain Part (c); we leave the proof of (c) as an
exercise.

In applications it is important to know which circulant digraphs Cn(S) are
|S|-strong [269] (since Cn(S) is |S|-regular, κ(Cn(S)) ≤ |S| and so |S|-strong
connectivity is maximal possible for Cn(S)). In [269] van Doorn obtained two
sufficient conditions:

Theorem 2.14.2 [269] A circulant digraph Cn(S) is |S|-strong if at least
one of the following conditions holds:

(a) gcd(n, s) = 1 for each s ∈ S,
(b) i ∈ S for each i = 1, 2, . . . , �|S|/2�. ��

2.14.2 Arc-Locally Semicomplete Digraphs

A digraph D is arc-locally semicomplete if for every arc xy of D, the
following two conditions hold:

(a) if u ∈ N−(x), v ∈ N−(y) and u 
= v, then u and v are adjacent,
(b) if u ∈ N+(x), v ∈ N+(y) and u 
= v, then u and v are adjacent.

This class of digraphs was introduced by Bang-Jensen in [70]. Clearly,
every semicomplete or semicomplete bipartite digraph is arc-locally semi-
complete. The same holds for extensions of cycles. Bang-Jensen [75] proved
that if we restrict ourselves to strong digraphs, the above three classes of
digraphs are, in fact, all arc-locally semicomplete digraphs.

Theorem 2.14.3 [75] A strong arc-locally semicomplete digraph is either
semicomplete or semicomplete bipartite or an extension of a cycle. ��
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If an arc-locally semicomplete digraph D is non-strong, we do not have
a complete picture of how D ‘looks like’ apart from the case when every
vertex of D is on some cycle. In this case, Bang-Jensen [70] showed that
D is either semicomplete or semicomplete bipartite. The class of arc-locally
semicomplete digraphs was also studied by Galeana-Sánchez [381].

It is natural to define arc-in-locally (arc-out-locally) semicomplete
digraphs as digraphs satisfying the property (a) (the property (b)) above.
To the best of our knowledge, nobody has studied the structure of these two
classes of digraphs so far.

2.14.3 Intersection Digraphs

Let U and V be sets and let F = {(Sv, Tv) : Sv, Tv ⊆ U and v ∈ V } be
a family of ordered subsets of U (one for each v ∈ V ). The intersection
digraph corresponding to F is the digraph DF = (V,A) such that vw ∈ A
if and only if Sv ∩ Tw 
= ∅. The set U is called the universal set for DF .
The above family of pairs form a representation of D. The concept of an
intersection digraph is a natural analogue of the notion of an intersection
graph and was introduced by Beineke and Zamfirescu [133] and Sen, Das,
Roy and West [806]. Since an arc is an ordered pair of vertices, every line
digraph L(D) is the intersection digraph of the family A(D′), where D′ is the
converse of D. It follows from the definition of an intersection digraph that
every digraph D is the intersection digraph of the family {(A+(v), A−(v)) :
v ∈ V (D)}, where A+(v) (A−(v)) is the set of arcs leaving v (entering v).
Here the universal set is A(D).

Clearly, a digraph can be represented as the intersection digraph of various
families of ordered pairs. It is quite natural to ask how large the universal set
U has to be. For a digraph D the minimum number of elements in U such
that D = DF for some family F of ordered pairs of subsets of U is called
the intersection number, in(D) of D. Sen, Das, Roy and West [806] prove
the following theorem for the intersection number of an arbitrary digraph D.
For a digraph D = (V,A), a set B ⊆ A is one-way if there is a pair of sets
X,Y ⊂ V (called a generating pair) such that B = (X,Y )D, that is, B is
the set of arcs from X to Y .

Theorem 2.14.4 [806] The intersection number of a digraph D = (V,A)
equals the minimum number of one-way sets required to cover A.

Proof: Let B1, . . . , Bk be a minimum collection of one-way sets covering
A and let (X1, Y1), . . . , (Xk, Yk) be the corresponding generating pairs. Let
Sv = {i : v ∈ Xi}, and Tv = {i : v ∈ Yi}. Then Sv ∩ Tw 
= ∅ if and only if
vw ∈ A, showing that in(D) ≤ k.

Now let U be a universal set of cardinality u = in(D) such that D has
a representation by a set of ordered pairs (Sv, Tv) of subsets of U . We may
assume that U = [u]. Define u one-way sets covering A as follows: v ∈ Xi if
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and only if i ∈ Sv and v ∈ Yi if and only if i ∈ Tv. Then vw ∈ A if and only
if v ∈ Xi, w ∈ Yi for some i. Thus, k ≤ in(D). ��

Notice that the minimum number of one-way sets required to cover A is
studied in Subsection 13.12.1.

A subtree intersection digraph is a digraph representable as the inter-
section digraph of a family of ordered pairs of subtrees in an undirected tree.
A matching diagram digraph is digraph representable as the intersection
digraph of a family of ordered pairs of straight-line segments between two par-
allel lines. An interval digraph is a digraph representable as the intersection
digraph of a family of ordered pairs of closed intervals on the real line. Sub-
tree intersection digraphs, matching diagram digraphs and interval digraphs
are ‘directed’ analogues of chordal graphs, permutation graphs and interval
graphs, respectively, where subtrees, straight-line segments and real line in-
tervals are also used for representation (see the book [421] by Golumbic).
While chordal graphs form a special family of undirected graphs, Harary,
Kabell and McMorris showed that every digraph is a subtree intersection
digraph.

Proposition 2.14.5 [499] Every digraph is a subtree intersection digraph.

Proof: Let D = (V,A) be an arbitrary digraph. Let G = (U,E), U = V ∪{x},
E = {{x, v} : v ∈ V }, x 
∈ V . Clearly, G is an undirected tree. Setting
Sv = G〈{v}〉 and Tv = G〈{x} ∪ {w : wv ∈ A}〉 provides the required
representation. ��

The following construction by Müller shows that every interval digraph
is a matching diagram digraph [708]. Let {([av, bv], [cv, dv]) : v ∈ V (D)}
be a representation of an interval digraph D. To obtain a representation
{(Sv, Tv) : v ∈ V (D)} of D as a matching diagram digraph we set Sv to be
the line segment between points (av, 0) and (bv, 1) in the plane, and Tv to be
the line segment connecting the points (cv, 1) and (dv, 0).

There are several characterizations of interval digraphs, see, e.g., the pa-
pers [793] by Sanyal and Sen and [903] by West. We restrict ourselves to just
one of them.

Theorem 2.14.6 [806] A digraph D is an interval digraph if and only if
there exist independent row and column permutations of the adjacency matrix
M(D) of D which result in a matrix M ′ satisfying the following property: the
zero entries of M ′ can be labeled R or C such that every position above and
to the right of an R is an R and every position below and to the left of a C
is a C. ��

None of the characterizations given in [793, 903] implies a polynomial
algorithm to recognize interval digraphs. Müller [708] obtained such an algo-
rithm. A polynomial algorithm is also given in [708] to recognize unit interval
digraphs, i.e., interval digraphs that have interval representations, where all
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intervals are of the same length. Brown, Busch and Lundgren [182] showed
that a tournament of order n is an interval digraph if and only if it contains
a transitive tournament of order n − 1 (as a subdigraph).

2.15 Exercises

2.1. Uniqueness of acyclic orderings. Prove that an acyclic digraph D has a
unique acyclic ordering if and only if D is traceable.

2.2. Linear time algorithm for finding an acyclic ordering of an acyclic
digraph. Verify that the algorithm given in the proof of Proposition 2.1.3
can be implemented as an O(n + m) algorithm using the adjacency list rep-
resentation (see Section 18.1).

2.3. Prove that a tournament is transitive if and only if it is acyclic. Hint: apply
Theorem 1.5.1.

2.4. Prove Proposition 2.3.1.

2.5. Let D be a semicomplete multipartite digraph such that every vertex of D
is on some cycle. Prove that D is unilateral.

2.6. In part (ii) ⇒ (i) of Theorem 2.4.1, prove that σ(D) = L(Q).

2.7. Derive Corollary 2.4.2 from Theorem 2.4.1 (iii).

2.8. (−) Prove Proposition 2.4.3 using Theorem 2.4.1 (i) and (ii).

2.9. Prove the following simple properties of line digraphs:

(i) L(D) ∼= �Pn−1 if and only if D ∼= �Pn;

(ii) L(D) ∼= �Cn if and only if D ∼= �Cn.

2.10. Let D be a digraph. Show by induction that Lk(D) is isomorphic to the
digraph H, whose vertex set consists of walks of D of length k and a vertex
v0v1 . . . vk dominates the vertex v1v2 . . . vkvk+1 for every vk+1 ∈ V (D) such
that vkvk+1 ∈ A(D).

2.11. Using the results in Exercise 2.9, prove the following elementary properties
of iterated line digraphs: Let D be a digraph. Then
(i) Lk(D) is a digraph with no arcs, for some k, if and only if D is acyclic;
(ii) if D has a pair of cycles joined by a path (possibly of length 0), then

lim
k→∞

nk = ∞,

where nk is the order of Lk(D);
(iii) if no pair of cycles of D is joined by a path, then for all sufficiently large

values of k, each connected component of Lk(D) has at most one cycle.

2.12. Prove Proposition 2.4.4 by induction on k ≥ 1.

2.13. Prove Lemma 2.5.1.

2.14. Prove Lemma 2.5.5.

2.15. Prove Lemma 2.5.6.
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2.16. Prove Theorem 2.5.7.

2.17. Upwards embeddings of MVSP digraphs. Prove that one can embed
every MVSP digraph D into the Cartesian plane such that if vertices u, v have
coordinates (xu, yu) and (xv, yv), respectively, and there is a (u, v)-path in
D, then xu ≤ xv and yu ≤ yv. Hint: consider series composition and parallel
composition separately.

2.18. Prove Proposition 2.6.2. Hint: use induction on the number of reductions
applied for the ‘if’ part and the number of arcs for the ‘only if’ part.

2.19. Prove Proposition 2.6.3.

2.20. Prove part (b) of Lemma 2.7.4. Hint: if u and v are in S, then there is a

path from u to v in UG(S). Similarly, if x and y are in S′. Use these paths
(corresponding to sequences of non-adjacent vertices in D) to show that if
xu and vy are arcs, then u = v and x = y must hold if D is quasi-transitive.

2.21. (−) Construct an infinite family of path-mergeable digraphs, which are not
in-path-mergeable.

2.22. (−) Show that the following ‘claim’ is wrong. Let D be a locally in-
semicomplete digraph and let D contain internally disjoint paths P1, P2 such
that Pi is an (xi, y)-path (i = 1, 2) and x1 
= x2. Then x1 and x2 are adjacent.

2.23. Orientations of path-mergeable digraphs. Prove that every orientation
of a path-mergeable digraph is a path-mergeable oriented graph.

2.24. (+) Prove Corollary 2.8.2.

2.25. Prove Proposition 2.9.2.

2.26. Path-mergeable digraphs which are neither locally in-semicomplete
nor locally out-semicomplete. Show by a construction that there ex-
ists an infinite class of path-mergeable digraphs, none of which is locally
in-semicomplete or locally out-semicomplete. Then extend your construction
to arbitrary degrees of vertex-strong connectivity. Hint: consider extensions.

2.27. (−) Path-mergeable transitive digraphs. Prove that a transitive digraph
D = (V, A) is path-mergeable if and only if for every x, y ∈ V and every pair
xuy, xvy of (x, y)-paths of length 2, either u→v or v→u holds.

2.28. Prove Lemma 2.9.3.

2.29. Orientations of locally in-semicomplete digraphs. Prove that every
orientation of a digraph which is locally in-semicomplete is a locally in-
tournament digraph.

2.30. Strong orientations of strong locally in-semicomplete digraphs.
Prove that every strong locally in-semicomplete digraph on at least three
vertices has a strong orientation.

2.31. Prove Lemma 2.10.2.

2.32. Prove Corollary 2.10.7.

2.33. Prove Theorem 2.10.8.
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2.34. (+) Using Lemma 2.10.13, show that if D is a non-round decomposable
locally semicomplete digraph, then the independence number of UG(D) is at
most two.

2.35. (−) Give an example of a locally semicomplete digraph on 4 vertices with
no 2-king.

2.36. Prove Proposition 2.10.16.

2.37. Prove the assertion stated in Exercise 2.34 using Lemma 2.10.14 and Propo-
sition 2.10.16.

2.38. Extending in-path-mergeability. Prove that if P, Q are internally disjoint
(x, z)- and (y, z)-paths in an extended locally in-semicomplete digraph D and
no vertex on P − z is similar to a vertex of Q − z, then there is a path R
from either x or y to z in D such that V (R) = V (P ) ∪ V (Q).

2.39. Prove that there exists an O(mn+n2)-algorithm for checking if a digraph D
with n vertices and m arcs has a decomposition D = R[H1, . . . , Hr], r ≥ 2,
where Hi is an arbitrary digraph and the digraph R is either semicomplete
bipartite or connected extended locally semicomplete.

2.40. (−) Let D be a connected digraph which is both quasi-transitive and locally
semicomplete. Prove that D is semicomplete.

2.41. (−) Let D be a connected digraph which is both quasi-transitive and locally
in-semicomplete. Prove that the diameter of UG(D) is at most 2.

2.42. Traceable semicomplete bipartite digraph characterization. Prove
that a semicomplete bipartite digraph B is traceable if and only if it contains
a 1-path-cycle factor F . Hint: demonstrate that if F consists of a path and
a cycle only, then B is traceable; use it to establish the desired result (Gutin
[445]). (See also Chapter 6.)

2.43. Prove that if a bipartite tournament has a cycle, then it has a 4-cycle.

2.44. Show that every orientation of a quasi-transitive digraph is a quasi-transitive
digraph.

2.45. (−) Prove that the intersection number in(D) ≤ n for every digraph D of
order n. Show that this upper bound is sharp (Sen, Das, Roy and West [806]).

2.46. Prove Corollary 2.12.3. Hint: use that each edge is on the boundary of pre-
cisely two faces and that each face has at least three edges.

2.47. Using only the definition of tree-width prove that a connected digraph D is
of tree-width one if and only if D is a biorientation of a tree.

2.48. Prove Lemma 2.13.8.

2.49. Prove that dtw(D) ≤ dpw(D) every digraph D using only the definitions of
directed tree-width and directed path-width.

2.50. (−) Using the fact that tw(G) = dtw(
↔
G) and tw(G) = dagw(

↔
G) for each

undirected graph G prove that dtw(D) ≤ tw(D) and dagw(D) ≤ tw(D) for
each digraph D.

2.51. Prove Proposition 2.14.1 (c).
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