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d) ( ) ( ) ( )2MC83PS2MC πωπ T−  

 

e) ( ) ( ) ( ) ( )4MC83PS2MC83PS πωπω −TT  

Fig. 2.29 (continued) 

2.6.2   Polarization Mode Dispersion Compensation 

A perfect PMD equalizer (EQ or QE ′ ) has to mirror the PMD profile of the 
transmission span [10]. Each DGD section of the transmission span will have an 
oppositely directed, direct neighbor of the equalizer. The principle can be 
understood from Figs. 2.28 and 2.30.  

 

Fig. 2.30 PMD profile of transmission span 
(solid) and perfect equalizer (dashed, 
dotted) in the 3-dimensional normalized 
Stokes or PMD vector space. © 1999 IEEE. 
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In a particular equalizer implementation QE ′  may consist of the same sequence 
of SBAs and DGD sections as the TS, but with reversed order. The signs of SBA 
and PS retardations are inverted which can also be accomplished by orthogonal 
orientations. 
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The phase delay iωτ−  of a DGD section may be of the order of many, many π2 . 

It is therefore practically impossible to avoid frequency-independent, possibly 
endless offset retardations ∞−∞= ...4iϕ  in each DGD section. However, these can 

be taken care of by moving them through subsequent SBAs, i.e. to the left, 
according to (2.437). In this generalized implementation with additional degrees-
of-freedom the equalizer (EQ) is described by 
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          (2.441) 

As desired, the concatenation of TS and EQ (or QE ′ ) results in a frequency-
independent ER that does not exhibit any PMD, 
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Although suggested by (2.441), the polarization transformers in the EQ need not 
necessarily be SBAs. We may substitute iii 444 ϕϕϕ ′′+′=  and consider ( )i4PS ϕ′  to 

be part of a DGD section ( )ii 4PS ϕωτ ′+−  while ( )i4PS ϕ ′′  belongs to the preceding 

polarization transformer. The ith polarization transformer, now described by 
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is a general ER (2.437) if its three variables, one for the PS and two for the SBA, 
are independent. However, to minimize efforts the designer should let i4ϕ ′′  depend 
on the two SBA parameters at will, thereby retaining only two independent 
variables. Such a polarization transformer may sometimes be easier to realize than 
a true SBA. Like the SBA it has the property of being able to endlessly transform 
any input polarization into a PSP of the following DGD section. Firstly, any 
polarization transformer capable of such operation may be used here, since the PS 
in (2.443) constitutes the difference between the SBA, which is needed to fulfill 
the required functionality, and the most general case, an ER. Secondly, it is indeed 
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a PSP we need to consider here, not just an eigenmode. To see this we place 
another, arbitrary retarder and its inverse between ( )i4PS ϕ ′′  and ( )ii 4PS ϕωτ ′+− . 

One of them is considered to belong to ( )ii 4PS ϕωτ ′+−  where it transforms PSPs 

(but modifies EMs in a different way), while the other is part of the polarization 
transformer (2.443) and will transform horizontal and vertical polarizations which 
are available at the output of ( )i4PS ϕ ′′  into the transformed PSPs.  

Eqn. (2.443) can also be implemented by a phase shifter placed between two 
mode converters, all with finite retardations [11]. The matrix 

( ) ( ) ( )πππ ...0MC2...0PS...0MC  is a suitable description. In this particular example, 

which requires a proper control algrorithm, i4ϕ ′′  in the equivalent expression 

(2.443) is sometimes a step function of the SBA orientation angle. This matter can 
complicate control considerably because i4ϕ ′′  appears in the orientation angles of 

all subsequent SBAs of the PMD compensator. On the other hand, practical 
difficulties are minimized if i4ϕ ′′  can be chosen to be constant. 

Problem: A reciprocal polarization transformer which can be represented by the matrix 

( ) ( )213 ,SBAPS ψψψ  with ( )213 ,ψψψ f=  can in forward direction endlessly transform any 

input polarization into x or y output polarization. (1) Show that in backward direction it can 

endlessly transform x or y polarization into any polarization. (2) Under which condition can it, in 

forward direction, also endlessly transform x or y input polarization into any output polarization? 

(3) A reciprocal polarization transformer is now given by ( ) ( )12 PSMC δδ . Can you represent it 

as ( ) ( )213 ,SBAPS ψψψ  with ( )213 ,ψψψ f= ? (4) Can it in backward direction endlessly 

transform x or y polarization into any polarization? (5) Can it, in forward direction, endlessly 

transform x or y input polarization into any output polarization? 

Solution: In the following we refer to Jones matrices. For reciprocity the Jones matrix in 
backward direction is the transpose of that in forward direction. 

(1) For the backward direction we obtain ( ) ( )( )T213 ,SBAPS ψψψ  ( ) ( )TT
321 PS,SBA ψψψ=  

( ) ( )321 PS,SBA ψψψ −= ; see also (2.252). ( )3PSψ  leaves x and y polarizations unchanged, and 

( )41,SBA ψψ  with ∞−∞=−= ...24 ψψ  has all necessary properties to be able to endlessly 

transform this x or y polarization into any polarization. Alternative, more complicated proof: The 
inverse of ( ) ( )321 PS,SBA ψψψ −  must be able to endlessly transform any polarization into x or y 

polarization. That is indeed the case because we can write 

( ) ( )( ) 1
321 PS,SBA −− ψψψ ( ) ( ) 1

21
1

3 ,SBAPS −− −= ψψψ ( ) ( )213 ,SBAPS ψψψ −−−=  

( ) ( )516 ,SBAPS ψψψ=  with ∞−∞=−= ...25 ψπψ  and ( )5136 ,ψψψψ g=−= .  

(2) With the assumed reciprocity the task is identical to endlessly transforming the arbitrary 

polarization of a backward-propagating signal at the output into x or y polarization at the input. 

The Jones matrix in backward direction ( ) ( )321 PS,SBA ψψψ −  can according to (2.437) be 

written as ( ) ( )3213 ,SBAPS ψψψψ −− . The task is fulfilled if ( )71,SBA ψψ  with 327 ψψψ −−=  

is an SBA. So the question is whether ( )2127 ,ψψψψ f−−=  can be continuously and strictly 

 



2.6   Mode Coupling for Dispersion Compensation 121
 

monotonically varied in the range ∞+−∞...  by varying the only available independent variable 

2ψ . It must therefore hold ∞<∂∂< 270 ψψ  or 027 <∂∂<−∞ ψψ . Using 

2327 1 ψψψψ ∂∂−−=∂∂  it follows 123 −<∂∂<−∞ ψψ  or ∞<∂∂<− 231 ψψ . The 

second expression is more easily fulfilled than the first, in particular by const.3 =ψ . 

(3) It holds ( ) ( )213 ,SBAPS ψψψ  
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successively 12 ψδ = , 222 3213 ψψδψ −−== , 23 ψψ −= , 21 ψδ −= . Yes, the  

required 1δ , 2δ , 3ψ  are indeed given as functions of 1ψ , 2ψ . The device can in  

forward direction endlessly transform any input polarization into x or y output  
polarization. Much easier to understand, ( )1PS δ  transforms the input polarization to a  

position on the 2S - 3S  great circle from where the subsequent ( )2MC δ can transform it into x 

and y polarization. 
(4) We combine solutions (3) and (1) and find: yes.  
(5) We need to fulfill either 123 −<∂∂<−∞ ψψ  or ∞<∂∂<− 231 ψψ . But in (3) we have 

found 23 ψψ −= , which means 123 −=∂∂ ψψ . The answer is no. Much easier to understand, 

( )1PS δ  leaves x and y input polarizations unchanged, and the subsequent ( )2MC δ  can therefore 

reach only half the 2S - 3S  great circle but not the whole Poincaré sphere. 

Fig. 2.30 shows the DGD profile of the concatenation of TS and a perfect EQ 
fulfilling (2.442). All PMD vectors are canceled by opposed adjacent ones 
because PMD is compensated not just to 1st order (which merely requires the 
vector sum and thereby the overall PMD vector to vanish) but completely 
(assuming that all existing frequency dependence has been covered by vectors 

iΩ ). As exemplified by the dotted arrows, an excess of total DGD of the EQ over 
that of the TS is not of concern if some adjacent compensator sections are made to 
cancel each other. Less perfect PMD vector cancelling normally indicates a PMD 
penalty. Provided the signal happens to coincide with a PSP it may be transmitted 
without distortion if merely 1st-order PMD persists after the EQ. 

An important practical question is whether a PMD compensator should have 
fixed or variable DGD sections, and there is a straight answer to it [10]. It may be 
calculated that fixed differential group delays can cause detrimental side maxima 
of compensator performance. An immediate argument in favor of a variable DGD 
compensator is therefore that side maxima vanish. This is useful and important for 
one-section equalizers which, however, leave 2nd- and higher-order PMD 
uncompensated.  
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Fig. 2.31 Variable DGD section equalizer has speed problem (a). Transmission span most 
easily changes PMD vector orientations, and so does a fixed DGD section equalizer (b). Pure 
DGD vector lengthening is unlikely to happen in a transmission span (c). © 1999 IEEE. 

The situation turns out to be different for equalizers with more than one section: 

What happens if the DGD of the first section (denoted as NΩ~−  in Fig. 2.30) of a 

two- or even multisection EQ with variable DGDs has to slide from 0 to 52 ps? 
The latter value corresponds to roughly 10,000 periods of a 1550 nm lightwave. 
The DGD increase corresponds to a lengthening of this vector by a screw motion 
with a pitch of one lightwave period of DGD change per turn. If the subsequent 

DGD vectors (denominated as 1
~

−− NΩ  ... 1
~Ω− ) are connected to it by fixed 

joints (= SBAs with frozen parameters) the PMD profile will change shape during 
each screw turn, which is highly detrimental (Fig. 2.31a). If the joints are of rotary 
type (= SBAs with variable orientations) the PMD profile may stay the same 
because all subsequent DGD vectors may revolve in place 10,000 times like axes 
connected by rotary joints. If the first section is followed by a ball-and-socket joint 
(= ER with 3 degrees-of-freedom) only this latter has to turn 10,000 times. The 

issue can also be understood from i
i
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that each of the 10,000 turns of the joint(s) (SBAs or ER) may need between 10 
and 100 optimization steps it becomes clear that variable DGD sections are 
unpractical due to the huge required number of SBA (or ER) adjustment steps, 
except for the last section which has no subsequent SBA. For comparison, 
consider two fixed 26 ps DGD sections in the compensator. Changing the SBA (or 
ER) in between these two by a retardation of just π will flip the DGD profile open 
like a pocketknife from 0 ps to a total DGD of 52 ps (Fig. 2.31b), and this is about 
10,000 times faster than the previous case. 

But could a fixed DGD equalizer follow if a TS chose to vary its PMD profile by 
lengthening a DGD vector? Here we explain why substantial DGD vector length 
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changes are unlikely to happen: Consider a TS with two fixed 26 ps DGD sections. 
As already explained, a DGD change of 52 ps requires just a retardation change of π 
for the SBA (or ER) in between them (Fig. 2.31b). In contrast, a pure 52 ps DGD 
growth (PMD vector lengthening) requires a much higher retardation change of 
10,000⋅2π and therefore occurs with a negligibly small probability (Fig. 2.31c).  

As a consequence, an equalizer with fixed DGD sections is a natural PMD 
compensator for a fiber transmission span whereas more than one variable 
DGD section of an equalizer can practically not be used as such. Nevertheless, a 
single-section variable DGD equalizer is able to compensate 1st-order PMD, 
better than a single-section fixed DGD equalizer. 

According to what we have learnt the DGD profile of the TE-TM converter of 
Fig. 2.25 is a straight arrow or rod as long as there is no mode conversion. This 
rod can be bent in any direction by a proper combination of in-phase and 
quadrature mode conversion. Twisting about the axis will only occur as a function 
of optical frequency but not electrooptically. The DGD profile of, say, Fig. 2.30 is 
just an approximation. In reality it is more likely that the DGD profile of the fiber 
will be smooth, without sharp corners. It is only logical to construct a near-perfect 
PMD equalizer from a sufficiently large number of such TE-TM mode converters 
on one chip. The DGD is about 0.26ps/mm. With possible chip sizes of almost 
100 mm this is sufficient to compensate one bit duration of DGD at 40 Gbit/s. The 
DGD profile of the equalizer will be a bend-flexible but torsion-stiff rod, with 
close to ideal properties. Fig. 2.32 shows a small section of such a distributed 
PMD equalizer [18]. See also [24, 25] for further discussion on PMD and its 
compensation. 
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Fig. 2.32 One out of 73 TE-TM mode converters on an X-cut, Y-propagation LiNbO3 chip. 
The waveguide runs underneath the comb electrodes. 

2.6.3   Chromatic Dispersion Compensation 

The Jones matrix (2.421) describes a birefringent waveguide with periodic mode 
coupling. We design it to have a length equal to an integer number m of coupling 
periods, mzp πβ 2= . The Jones matrix is now 




