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Fig. 3.56 show the BER/OSNR results for a 28 GBaud system. DFB lasers with 
1 MHz linewidth are assumed. With such a small linewidth, the block phase 
estimator performs almost as good as the other three phase estimators which track 
the phase drift. 

Fig. 3.57 shows simulated BER/SNR curves for the same phase estimators and 
a 10 GBaud system with DFB lasers that have 1 MHz linewidth and a residual 
frequency mismatch of 20 MHz. While the block phase estimator is not able to 
cope with high phase noise, both SML phase approximation versions have results 
similar to the weighted averaging method. They fulfill the high phase noise 
requirements of 10 GBaud transmission systems with coarsely controlled DFB 
lasers. The angle-based phase estimation algorithm is a good replacement for the 
optimized moving average phase estimator. It has been used for the first realtime 
QPSK transmission [64], also with polarization multiplex and control [85]. 

In addition to the polarization transformation at the carrier frequency, 
polarization mode dispersion (PMD) and chromatic dispersion (CD) need also to 
be compensated. A surprising lead in this field has been taken by Nortel [86]. 
Another set of application-specific integrated circuits and its application in 
coherent QPSK transmission was presented in [87]. 

CD can as well be pre-compensated electronically in the transmitter that is equipped 
with an I&Q modulator [88]. In that case not even a coherent receiver is needed. 
Rather, for intensity modulation a standard direct-detection ASK receiver is sufficient.  

CD and PMD can be electronically equalized with finite impulse response 
(FIR) filters in the time domain. Beside this, convolution in the time domain can 
be replaced by Fast Fourier Transform (FFT), multiplication in the frequency 
domain and inverse FFT (IFFT). Various equalizer configurations become thereby 
possible [89].  

One possibility is it to perform the IFFT at the transmit end and the FFT at the 
receive end. In this way the symbols at the IFFT input can be understood as the 
amplitudes of orthogonal, narrowly spaced carriers. In order to maintain 
orthogonality in the presence of dispersion the temporal duration of each 
transmitted IFFT frame is cyclically extended by usually a few percent. This 
scheme, called orthogonal frequency division multiplex (OFDM), is well known 
in the wireless world but is also a serious candidate for high-performance optical 
communication [89−97]. 

3.3.6   Digital Coherent QAM Receiver 

Polarization-multiplexed QPSK is that among the modulation formats which 
ideally work with no more than 18 photons/bit at a BER = 10−9 with the highest 
information rate, 4 bit/symbol. QPSK itself is a special case among the square 
quadrature amplitude modulation (QAM) schemes. We will extend and generalize 
the foregoing from QPSK to M-ary QAM schemes. M-QAM, in particular 16-
QAM, is attractive for shorter transmission lengths where ultimate OSNR 
performance is not needed. Fig. 3.58 shows various QAM constellations with 
q = 4-fold angular symmetry, commonly referred to as square QAM [98, 99]. 4-
QAM is the same as QPSK.  
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Fig. 3.58 Square QAM constellation diagrams. © 2009 IEEE. 
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Fig. 3.59 Feedforward carrier recovery using B test phase values φb. © 2009 IEEE.  
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For true square M-QAM signals, the inphase and quadrature symbols (or 
optical field levels) can be written as 

Mmc −+= 12 ,      { }1,...,1,0 −∈ Mm .      (3.214) 

The mean squared field is 
3

12 −= M
c . We divide by 22 c  and write a 

complex QAM signal with unity mean squared magnitude, 

( ) ( ) ( )( )MmjMm
M

c −++−+
−

= 1212
12

3
21 ,    

{ }1,...,1,0, 21 −∈ Mmm ,  12 =c .                 (3.215) 

For QPSK = 4-QAM this is identical with the pc  defined in Table 3.6. The 

modulation variables in the two quadratures are 21, mm .  

A phase-noise tolerant, parallelizable feedforward carrier recovery for QAM 
signals, subsequently abbreviated as FCR-QAM, has been presented by Pfau [98, 
99]. The setup is depicted in Fig. 3.59. The k-th input signal ( )kX  of the coherent 

receiver is sampled at the symbol rate, and perfect clock recovery and equalization 
are assumed. To recover the carrier phase the received signal ( )kX  is rotated by B 

test carrier phase angles bϕ  with 

qB

b
b

πϕ 2⋅= ,      { }1,...,1,0 −∈ Bb .    (3.216) 

Then all rotated symbols are fed into a decision circuit and the squared distance  

( ) ( ) ( )⎣ ⎦ ( ) ( )
222 ˆ kXekXekXekXkd b

j
D

jj
b

bbb −=−= ϕϕϕ  (3.217) 

to the closest constellation point is calculated in the complex plane, taking 
advantage of the rotational symmetry with angles qπ2 . Here ⎣ ⎦D⋅  means the 

rounding to the nearest of the symbols (3.215) as executed in the decision circuit. 
In order to remove noise, the distances of 12 +N  consecutive test symbols rotated 
by the same carrier phase angle bϕ are summed up, 

( ) ( )∑
−=

−=
N

Nn
bb nkdks

2 .       (3.218) 

The optimum value of N depends on the laser linewidth times symbol rate product. 
10...6=N  is a fairly good choice. After filtering the optimum phase angle is 

determined by searching the minimum sum of distance values. As the decoding 

was already executed in (3.217), the decoded output symbol ( )kX̂  can be selected 
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from the ( )kX b
ˆ  by a switch controlled by the index ( )kmmin  of the minimum 

distance sum. Unless an error has occurred ( )kX̂  is equal to the k-th transmitted 

symbol ( )kc  (3.215), but rotated by any of the q angles ( ) qq /1,...,2,12 −⋅π . 

In the case q = 4 with 4-fold ambiguity of the recovered phase, the first two bits 
which determine the quadrant of the complex plane should be differentially Gray-
encoded. The differential encoding and decoding process is the same as for QPSK, 
see chapter 3.3.5. Decoding is described by 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) { }1,,2,1,0,,

mod1

−∈

+−−=

qknknkn

qknknknkn

jro

jrro

…
    (3.219) 

where ( )kno
 

is the differentially decoded quadrant number, ( )knr  is the received 

quadrant number and ( )kn j  is the jump number. The only required modification 

of the decoding process compared to QPSK is that quadrant jumps are detected 
according to 

( )
( ) ( )
( ) ( )
( ) ( )⎪

⎩

⎪
⎨

⎧

−<−−
≤−−≤−

−−<

−
=

21

212

12

    

1

0

1

minmin

minmin

minmin

Bkmkm

BkmkmB

kmkmB

q

kn j .             (3.220) 

For all other bits that determine the symbol within a quadrant of the complex 
plane normal Gray-coding is sufficient and no differential encoding/decoding is 
required. Fig. 3.60 illustrates the bit to symbol assignment including differential 
encoding/decoding exemplarily for square 16-QAM. 

This FCR-QAM algorithm can also be applied to arbitrary QAM constellations. 
A q-fold rotational symmetry is already foreseen in (3.216), (3.219). If there is no 
symmetry then q = 1 holds. ⎡ ⎤q2log  bits must be differentially encoded/decoded, 

where ⎡ ⎤u  is the smallest integer larger than or equal to u.  

With polarization division multiplex, one may use two separate carrier 
recoveries. But due to the intrinsically low phase noise tolerance of QAM schemes 
it is advisable to implement a common carrier recovery for both polarizations. As 
a consequence, (3.218) is replaced by 

( ) ( )∑ ∑
= −=

−=
2

1

2
,

p

N

Nn
bpb nkdks     (3.221) 

where the added index p is the index of the polarization. Because twice as much 
data is available to determine the carrier phase angle, N can be halved, thereby 
increasing the phase noise tolerance by roughly a factor of 2. 
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Fig. 3.60 16-QAM bit to symbol 
assignment: The dashed ellipses mark 
imperfect Gray coding of four 
symbol pairs due to differential 
quadrant encoding. © 2009 IEEE.  
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The rotation of a symbol in the complex plane normally requires a complex 
multiplication, consisting of four real-valued multiplications with subsequent 
summation. This would lead to a large number of multiplications to be executed, 
while achieving a sufficient resolution B for the carrier phase values bϕ . The 

hardware effort would therefore become prohibitive. Applying the CORDIC 
(coordinate rotation digital computer) algorithm [100, 101] can dramatically 
reduce the necessary hardware effort to calculate the B rotated test symbols. This 
algorithm can compute vector rotations simply by summation and shift operations. 
As for the calculation of the B rotated copies of the input vector intermediate 

results can be reused for different rotation angles, only ∑ =
+B

b
b2log

1
12  shift-and-

add operations are required to generate the B test symbols. For example, to 
generate 32=B  rotated copies of Zk the CORDIC algorithm requires only 124 
shift-and-add operations instead of 124 real-valued multiplications and 62 
summations. 

To determine the closest constellation point ( )kXb
ˆ  the rotated symbols are fed 

into a decision circuit. The squared distance (3.217) at instant k can be rewritten as 

( ) ( )( ) ( )( ) ( )( ) ( )( )222 ˆImIm ˆReRe kXekXkXekXkd b
j

b
j

b
bb −+−= ϕϕ       (3.222) 

and requires to two multiplications and three additions/subtractions. However, the 
subtraction results are small in magnitude and the required result resolution is 

moderate. Therefore ( )2kdb  is most efficiently determined by a look-up table or 

basic logic functions. 
Highly parallelized systems allow for a very resourceful implementation of the 

summation of 2N+1 consecutive values in (3.218), (3.221). The adders can be 
arranged in a binary tree structure where intermediate results from different 
modules are reused in neighbor modules. 
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The overall FCR-QAM hardware effort is on the order of B times higher than 
for QPSK. This may be viewed as dramatic since B is in the range of 16 to 64. But 
taking into account that the more bits/symbol are transmitted and that the 
hardware effort for electronic polarization control and PMD and CD compensation 
is also many times higher than that for QPSK carrier recovery it appears that the 
overall effort is reasonable. Furthermore it is possible to implement the FCR-
QAM algorithm in two stages, which reduces the required hardware effort [102].  

The FCR-QAM algorithm has been simulated for the constellations 4-QAM 
(QPSK), 16-QAM, 64-QAM and 256-QAM. These true square constellations are 
easiest to generate [103, 104] and are optimally immune against additive white 
Gaussian noise (AWGN) [105]. The transversal filter halfwidth is always set to 

9=N , and each data point is based on the simulation of 200,000 symbols. The 
results are compared against the theoretically achievable sensitivity [105] 
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ES/N0 is the optical signal to noise ratio (OSNR), M is the number of constellation 

points, BER is the target bit error rate and ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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2
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2
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x  is the Q function. 
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A crucial quantity for FCR-QAM is the required number B of test phases bϕ . 

Fig. 3.61a shows the sensitivity penalty at the bit error rate 10−3 for 4-QAM and 
16-QAM. FCR-QAM and a receiver with ideal carrier recovery were simulated 
with different resolutions for the carrier phase. Ideal carrier recovery means that 
the receiver knows the exact carrier phase (which is only realizable in simulation) 
and therefore the sensitivity penalty is only caused by differential quadrant 
encoding and quantization effects. 

4-QAM attains a minimum penalty of 0.5 dB for the ideal receiver and 0.7 dB 
for FCR-QAM. The penalty difference of 0.2 dB is thus the implementation-
induced penalty. For 16-QAM the minimum penalties decreases (0.4 dB for the 
ideal receiver, 0.6 dB for FCR-QAM), because only 2 out of 4 transmitted bits are 
differentially encoded. For all four receivers it can be seen that almost no 
additional penalty is induced due to the quantization of the carrier phase for 

5log2 ≥B . Therefore in all following simulations for 4-QAM and 16-QAM B is 

set to 32.  
Fig. 3.61b shows the same for 64-QAM and 256-QAM. The minimum penalty 

for 64-QAM is 0.3 dB with ideal carrier recovery and 0.5 dB with FCR-QAM. For 
256-QAM the respective values are 0.35 dB and 0.55 dB. For both constellations 
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the penalty due to the quantization of the carrier phase is tolerable only if 
6log2 ≥B . The number of test phase values for 64-QAM and 256-QAM is 

therefore subsequently chosen as 64=B . 
 

log2B 

log2B
 

Fig. 3.61 Sensitivity penalty for different numbers of test phase values φb for (a) 4- and 16-
QAM; (b) 64-QAM and 256-QAM. © 2009 IEEE. 

FCR-QAM is advantageous because of its phase noise tolerance. Today’s 
commercial transmission systems usually employ DFB lasers, because they are 
cost-efficient and have a small footprint. Their linewidth is in the range 

MHz 10kHz 100 DFB <Δ< f . The sum linewidth DFB2 ff ΔΔ =  of signal and LO 

lasers is twice as much. Assuming a symbol rate of 20 Gbaud, linewidth times 

symbol duration products down to 35 1010 −− <⋅< TfΔ  can be realized. Fig. 3.62 

shows the sensitivity penalty of the FCR-QAM algorithm against the ∆f·T product. 
Table 3.7 shows the maximum tolerable linewidth times symbol duration product 

for a sensitivity penalty of 1 dB at a BER of 10−3. In a polarization multiplexed 
system with common carrier recovery these values can be approximately doubled. 
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Fig. 3.62 Receiver tolerance against phase noise for different square QAM constellations. 
© 2009 IEEE.  
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Fig. 3.63 Impact of different linewidth times symbol duration products on the receiver 
sensitivity of coherent QAM receivers. © 2009 IEEE. 
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Table 3.7 Linewidth requirements for feedforward carrier recovery with different square 
QAM constellations. © 2009 IEEE. 

Constellation Max. tolerable Δf·T for 1 dB 

penalty @ BER = 10−3 
Max. tolerable ΔfDFB for 

1/TS = 20 Gbaud 

4-QAM 4.1·10−4 4.1 MHz 

16-QAM 1.4·10−4 1.4 MHz 

64-QAM 4.0·10−5 400 kHz 

256-QAM 8.0·10−6 80 kHz 

 
BER vs. OSNR has additionally been evaluated for selected values of ∆f·T 

(Fig. 3.63). For BERs below 10−5 the results become inaccurate due to the low 
number of errors which occurred within the 2⋅106 symbols that were simulated per 
data point. The theoretical optimum is calculated by (3.224). A ∆f·TS value equal 

to 1/4 of that causing a ~1 dB penalty at BER = 10−3 gives excellent results at 

least down to BER = 10−6.  
For high OSNR the contribution of AWGN to phase noise can be considered to 

be also Gaussian with the variance ( ) 1
02 −NES  [106]. Therefore the efficiency 

e(N) of the phase estimator depending on the filter half width N is given by 
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ψψ

N

E

N
Ne

S

.   (3.225) 

where the numerator is the Cramer-Rao lower bound [107], and the denominator 
is the mean squared error of the phase estimator output. Fig. 3.64 shows both the 
mean squared error together with the theoretical optimum given by the Cramer-
Rao lower bound (top row) and the resulting estimator efficiency e(N) (bottom 
row) for the different QAM constellations.  

For higher QAM constellations the efficiency of the phase estimation reduces. 
This can be related to the fact that for lower OSNR other limiting factors like 
quantization and phase noise become more dominant, Note that for a 5 bit (4-
QAM, 16-QAM) and 6 bit quantization (64-QAM, 256-QAM) of ψ̂  the minimum 

mean squared errors are ~2·10−4 and ~5·10−5, respectively. 
Fig. 3.64 also shows that the selected filter halfwidth N = 9 is always close to 

the optimum filter half width for a minimum mean squared error. In principle, 
receiver performance could be improved by optimizing N for each parameter set 
{OSNR, ∆f·TS, M}.  
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Fig. 3.64 Phase estimator mean squared error and efficiency e(N) vs. filter half width N for 
different square QAM constellations. © 2009 IEEE. 
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Fig. 3.65 shows the effect of the analog-to-digital converter (ADC) resolution 

on receiver sensitivity. The necessary ADC resolution increases approximately by 
1 bit if the number of constellation points is multiplied by 4. Table 3.8 summarizes 
the ADC requirements for a 100 Gb/s polarization multiplexed transmission 
system. Since commercial systems will also contain PMD and CD compensation, 
which necessitates oversampling, the values for TS/2 sampling are also given. 
Tremendous progress is currently being made, and ADC resolution and speed 
targets are being met [108, 109]. 

 

Fig. 3.65 Receiver sensitivity penalty vs. analog-to-digital converter resolution for different 
square QAM constellations. © 2009 IEEE. 

 

Table 3.8 Analog-to-digital converter requirements for polarization-multiplexed 100 Gb/s 
transmission. © 2009 IEEE. 

Constellation ADC bandwidth ADC sampling rate
(TS/2 sampling) 

ADC effective 
number of bits 

4-QAM 25 GHz 50 Gs/s > 3.8 
16-QAM 12.5 GHz 25 Gs/s > 4.9 
64-QAM 8.33 GHz 16.7 Gs/s > 5.7 
256-QAM 6.25 GHz 12.5 Gs/s > 7.0 

 

Fig. 3.66 shows the receiver sensitivity penalty against different resolutions of 
Re db and Im db. For all considered constellations a resolution ≥ 4 bits is 
sufficient. As for |db|

2 the penalty for a resolution ≥ 5 bits is tolerable (Fig. 3.67), 
and the square operations in (3.222) can be realized with a small look-up table 
(4 bit input, 4 bit output). The reason for the similar requirements in all QAM 
constellations is that the distance to the closest constellation point is independent 
of the number of constellation points. So, the hardware effort of FCR-QAM 
increases only moderately with the QAM order, which in turn determines overall 
spectral efficiency and hence the permissible cost frame.  
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To demonstrate the feasibility of optical high-order QAM transmission 
Figs. 3.68−3.71 depict the constellation diagrams at the receiver before and after 
carrier recovery for the different modulation formats and different optical signal-
to-noise-ratios (OSNR). All constellation diagrams can be recovered using FCR-
QAM for the different QAM modulation schemes and their respective linewidth 
times symbol rate products. 

 

Fig. 3.66 Receiver sensitivity penalty vs. internal resolution for the distances Re dm and 
Im dm for different square QAM constellations. © 2009 IEEE.  

 

Fig. 3.67 Receiver sensitivity penalty vs. internal resolution for the squared distance |db|
2 

for different square QAM constellations. © 2009 IEEE.  
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Fig. 3.68 4-QAM constellation diagrams before and after carrier recovery for ∆f·TS = 
4.1·10−4. © 2009 IEEE. 

 

Fig. 3.69 16-QAM constellation diagrams before and after carrier recovery for ∆f·TS = 
1.4·10−4. © 2009 IEEE.  
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Fig. 3.70 64-QAM constellation diagrams before and after carrier recovery for ∆f·TS = 
4.0·10−5. © 2009 IEEE. 

 

Fig. 3.71 256-QAM constellation diagrams before and after carrier recovery for ∆f·TS = 
8.0·10−6. © 2009 IEEE. 
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Let the transmitted symbol c and its recovered replica r (ideally equal to c, 

except for the time delay) have unit powers in each polarization ( 1
22
== pp cr ,  

p = 1, 2). The decision-directed electronic polarization control algorithm (3.200), 
(3.201) works also for polarization-multiplexed QAM.  

Matters are more complicated for the constant-modulus polarization control 
algorithm (3.200), (3.204), which is non-data-aided. If it is used as is then the 

control gain g must be chosen so low that the deviations of 
2

2,1X  from 1 are 

averaged out effectively. This slows the control down considerably. In this context 
a CMA for 8-QAM signals [110] and a decision-directed CMA for QAM [111] 
have been published.  

For adaptation of the CMA for QAM we modify (3.204) to become 

+
⎥
⎦

⎤
⎢
⎣

⎡
= XRT

min,2

min,1

0

0

P

P

Δ
Δ

,     (3.226) 

[ ] 2
,,

min
,min,

ˆ
,

phphp
P

hpp XPPPP
pp

php
ph

p
−==

∀
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. (3.227) 

phpP ,Δ is the power difference between the observed signal powers 
2

pX in both 

polarizations p = 1, 2 and all expected values 
phpP ,

ˆ  ( ph  = 1, 2, ... , H) of signal 

powers in case of zero polarization crosstalk. min,pPΔ  is that value 
phpP ,Δ  which 

has the smallest magnitude, hence most likely power difference. Once the 
algorithm has converged all power differences min,pPΔ  would be zero in the 

absence of noise. The number H of distortion-free signal powers 
phpP ,

ˆ  equals the 

number of circles around the origin that are needed to touch all symbols in the 
chosen QAM constellation. The value is H = 1, 3, 6, 9 for 4-, 16-, 64- and 256-
QAM, respectively.  

The extension (3.205), (3.206) of the CMA for differential phase compensation 
is even more difficult to adapt for QAM. Similar as for FCR-QAM, a number of 
test phases  

qc πϕ 20 <≤            (3.228) 

is subtracted from the observed phase difference 21 argarg XX − . Which test 

phases are needed depends on the signal powers 
phpP ,

ˆ  that have been estimated 

in the minimization process (3.227). Depending on the estimated powers 
1,1̂ hP ,  
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2,2
ˆ

hP  there are different numbers of test phases. Then one selects, for usage  

in (3.205), 
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i.e., that value ζΔ  among the various phase differences cζΔ  found for the 

applicable set of test phases cϕ  which has the lowest magnitude cζΔ . For the 

time being let 0=fϕ . In order to improve accuracy in the presence of noise the 

phase difference can be weighted according to the available or estimated powers, 
for example using 
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Consider 16-QAM as an example. We assume normalization with respect to the 
mean power. Then the expected powers in the individual polarization channels and 
the needed test phases are  

⎪
⎩

⎪
⎨

⎧

=
=
=

=
3for 8.1

2for 1

1for 2.0
ˆ

,

p

p

p

hp

h

h

h

P
p

,      

{ }

⎪
⎩

⎪
⎨

⎧

±
==±

∈
=

          otherwise46.0

   2for 64.0,0

3,1,for 0

21

21

hh

hh

cϕ . (3.231) 

While the CMA with differential phase compensation can, in this configuration, 
track a once-acquired optimum, initial false locking is all the same possible. 
Similar to the p-fold phase ambiguity there exist different locking points, but only 
one of them yields a product MJ proportional to the unity matrix, while in the 
other cases there is a static phase shift between the two polarization channels. In 
order to quit a false optimum one can proceed similar as in FCR-QAM. One 
calculates ζΔ  according to (3.229) not only for 0=fϕ  but for D equidistant 

phase offsets  

qF

f
f

πϕ 2⋅= ,      { }1,...,1,0 −∈ Ff .      (3.232) 

A good choice is MF 8= ; hence F may be equal to B specified in (3.216). The 
squares of the various ( )kf ,ζζ ΔΔ =  are added up over K subsequent symbols,  

( )( )∑
=

=
K

k
f kfW

1

2,ζΔ .       (3.233) 



3.3   Coherent Optical Transmission 271
 

One determines that integer f which corresponds to the smallest fW . This 

indicates that a better optimum is available if one introduces a differential phase 
shift fϕ  between the polarizations. So, after K symbols one sets   
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.     (3.234) 

Thereafter the summation process (3.233) may start anew. But this is usually not 
needed because a single application of (3.234) usually yields the a differential 
phase very close to the optimum, which is subsequently improved and tracked as 
described above. As a consequence, the full set (3.229) obtained for all f and the 
summation (3.233) may be executed less frequently than the tracking calculation 
for 0=fϕ . This reduces the required hardware effort. 

A more hardware-efficient way to avoid false locking is the following: After 
the decision circuits a framing information is detected which indicates whether 
data is being received correctly in both polarization channels. If not, then (3.234) 
is executed with a suitably chosen fϕ , or with all values given in (3.232), until 

data recovery is correct. This doesn’t slow down normal control, since it occurs 
only at initial signal acquisition. 

CMA-QAM and DPC-CMA-QAM were verified in short simulations without 
noise, for 4-, 16-, 64- and 256-QAM. Subsequently noise has been added, and 
standard CMA, CMA-QAM and DPC-CMA-QAM have been compared for 16-
QAM [76]. Fig. 3.72 shows the sensitivity degradation at BER = 10−3 as a function 
of control gain g, for a sum linewidth times symbol duration product of Δf⋅T = 
2⋅10−4.  1/g is proportional to the small-signal polarization control time constant, 
so a large g is advantageous. The total penalty reaches 2 dB for the standard CMA 
at g ≈ 2−6.5 while the CMA-QAM can control polarization about 3 times faster, 
with g = 2−5. For both, the two carrier recoveries processed 19 symbols in parallel. 
The DPC-CMA-QAM with one joint carrier recovery for both polarizations 
processes only 9 temporal samples. This means that phase noise is better tolerated, 
and sensitivity is therefore increased by ~0.5 dB. Fig. 3.73 shows the same 
simulations, but at a doubled Δf⋅T = 4⋅10−4. The sensitivity advantage of the 
common carrier recovery in the case of DPC-CMA-QAM is even more 
pronounced. 

All QAM polarization control algorithms are compared in Fig. 3.74, again as a 
function of polarization control gain g [76]. Performance is worst for the original 
decision-directed algorithm (ODDA) [63] with ( )MQ1T −=  employed in (3.200) 

and Q given by (3.199). Penalty traces for CMA-QAM and DPC-CMA-QAM are 
fairly identical, due to Δf⋅T = 0. The modified decision-directed algorithm 
(MDDA) (3.200), (3.201) performs best. At 0.5 dB penalty the MDDA is ~15 
times faster than the standard CMA and ~4 times faster than the DPC-CMA-
QAM. 
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Fig. 3.72 Sensitivity penalty at BER = 10−3 of various CMAs applied to polarization-
multiplexed 16-QAM signals vs. control gain g, for ∆f·TS = 2·10−4, MJ = 1. Each data point 
corresponds to 200,000 symbols. Insets: Constellation diagrams, with phase difference 
between polarization channels compensated in the case of DPC-CMA-QAM. © 2010 IEEE. 
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Fig. 3.73 As above, but for ∆f·TS = 4·10−4. © 2010 IEEE. 
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Fig. 3.74 Sensitivity penalty at BER = 10−3 of various 16-QAM polarization control 
algorithms vs. control gain g, for ∆f·TS = 0, MJ = 1. The MDDA outperforms all other 
algorithms. © 2010 IEEE.  




