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Survey of Classical Physics

In this first chapter and in the following one, the fundamentals of classical and
quantum physics will be reviewed. Obviously, the purpose is not to provide
an exhaustive (or even partial) treatment of these subjects: the readers are
supposed to be already familiar with them. We simply intend to recall the
main concepts and to define the symbols that will be used in the rest of the
book. Many excellent textbooks have been written on classical and quantum
physics. We may refer, for example, to Goldstein [168] and Jackson [202] for
the former, and to Messiah [306], Schiff [398] or Greiner [172] for the latter.

1.1 Newton Dynamics

Linear Momentum

The fundamental law of nonrelativistic classical mechanics is Newton second
law of motion for a particle of mass m subject to a force F :

dp
dt = F = md2r

dt2

(1.1)

where p is the linear momentum, or simply the momentum, of the particle:

p = mv , v =
dr

dt
.

Here, r(t) and v(t) are the position and velocity of the particle at time t.
If a system is composed of many particles, a total linear momentum is

defined as the sum over the particles

P =
∑

i

pi,
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where pi is the momentum of the i-th particle. In such a case, the force acting
on each particle is the sum of the forces external to the system and those due
to other particles. According to Newton third law of motion, the forces that
two particles exert on each other are equal and opposite and lie along the line
joining the two particles. As a result,

dP

dt
= F (e),

where F (e) is the sum of the external forces acting on all the particles of the
system.

Angular Momentum

The angular momentum L of a particle with linear momentum p with respect
to point O is defined as

L = r × p,

where r is the vector from O to the particle position. In the same way, if a
force F is applied to a particle in r, the momentum T of this force (or torque)
with respect to point O is defined as

T = r × F . (1.2)

Observing that v × p = v × mv = 0, from Newton second law it follows
immediately that

dL

dt
= T . (1.3)

If a system is composed of many particles, a total angular momentum is
defined as the sum over the particles

L =
∑

i

Li,

where Li is the angular momentum of the i-th particle. The application of
Newton second and third laws yields

dL

dt
= T (e),

where T (e) is the total momentum of the external forces acting on the system.

1.2 Work and Energy

The kinetic energy of a particle with mass m and velocity v is defined as

T =
1
2
mv2.
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This is a scalar quantity and should not be confused with the torque T in
(1.2), which is a vector quantity.

If F (r) is the force acting on a particle in r, and the particle moves from
r1 to r2 following a path s, the work performed by the force on the particle
along s is defined as

W =
∫

s
F · dr.

From Newton second law, it follows immediately that the work performed
over a particle produces an equal change of its kinetic energy:

W = T2 − T1.

If a particle is moving in a force field such that the work performed along any
close trajectory is zero,

W =
∮

F · dr = 0,

then the force field is said to be conservative, and a potential-energy field
V (r) can be defined such that

F = −∇V.

In this case, the total energy of the particle

ε = T + V (1.4)

is constant.
In a many-particle system, the kinetic energy is the sum of the kinetic

energies of all the particles,

T =
∑

i

Ti =
∑

i

1
2
miv

2
i .

If both the applied (external) forces that act on the particles and the forces
due to particle interactions (internal) are conservative, then the total potential
energy of the system is given by:

V =
∑

i

Vi +
1
2

∑

i�=j

Vij ,

where Vi is the potential energy of the i-th particle due to the external forces,
and Vij is the potential interaction energy of the pair of particles i and j.
The factor 1/2 is inserted since each pair of particles is present twice in the
sum. Energy conservation, given by (1.4) for a single particle, still holds for
the many-particle system.
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1.3 Hamiltonian Formulation of Dynamics

In a system composed of n particles that can move separately, even though
interacting with each other, the number of coordinates necessary to describe
the configuration of the system is 3n. These quantities are not enough to
indicate how the system will evolve, since the differential equations of motion
are of second order with respect to time, as shown in (1.1). Thus, also the
velocities of the particles must be assigned. This situation is described by
saying that the state of the system is defined by the positions and velocities
of all its particles.

If, however, the particle positions are subject to given constraints, as it
happens, for example, in rigid bodies where the distances between all the
particles are fixed, then the number of degrees of freedom of the system is
reduced. In such a case, the configuration of the system is described by a
certain number of parameters qi, called generalized coordinates. The number
of independent generalized coordinates necessary to describe the configuration
of the system is the number of its degrees of freedom.

The positions of all particles of the system are functions of the generalized
coordinates, so that the state of the system is described by the values of all
the qi and their time derivatives q̇i. The dynamical equations of motion in
terms of such variables are known as the Lagrange equations. For a conserva-
tive system, the Lagrangian function is defined as the difference between the
kinetic and the potential energy of the system:

L(qi, q̇i) = T (qi, q̇i) − V (qi),

and the Lagrange equations of motion are

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (1.5)

The Lagrange equations can be written also for a nonconservative system
if a generalized potential function U(qi, q̇i, t) can be defined such that the
forces applied to the system are given by

Qi = −∂U

∂qi
+

d
dt

(
∂U

∂q̇i

)
. (1.6)

In this case, the Lagrangian function is defined as

L = T − U,

and the equations of motion are still the Lagrange equations (1.5).
The momenta pi, conjugate to the generalized coordinates qi, are defined

by means of the Lagrangian function, as

pi =
∂L(qi, q̇i, t)

∂q̇i
. (1.7)
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The Hamiltonian function of the system is then defined as

H(qi, pi, t) =
∑

i

q̇ipi − L(qi, q̇i, t). (1.8)

As can be seen from the l.h.s. of the above equation, H is defined as function
of the generalized coordinates qi and their conjugate momenta pi. Thus, in
the functions on the r.h.s., q̇i must be replaced with its expression in terms of
the qi and pi obtained from (1.7).

It may be important to note that the analytical forms of the Lagrangian
and Hamiltonian functions are their crucial properties in the theory, rather
than their particular numerical values.

In general, the Hamiltonian of a system coincides with its energy, but this
is not always necessarily true (see [168] Sect. 7-3).

At this point, we are in the position to write the Hamilton dynamical
equations,

q̇i = ∂H
∂pi

, ṗi = −∂H
∂qi

(1.9)

For purely mechanical systems, they are equivalent to Newton laws, but they
can also be derived, along with Lagrange equations, from some variational
principles that may be used in more general physical systems [168].

In the Hamiltonian formulation of classical physics, the state of a system
with N degrees of freedom is described by the set of 2N values (qi, pi). These
may be considered as the coordinates of a point representative of the state of
the system in a 2N -dimensional space called the phase-space of the system.

1.4 Canonical Transformations

The generalized coordinates and their conjugate momenta which describe the
state of a physical system are not unique. Given a set of qi and pi a transfor-
mation may be considered to new variables q′i and p′i defined by the functions

q′i = q′i(qj , pj , t), p′i = p′i(qj , pj , t). (1.10)

Such a transformation is said to be canonical, and it is of interest, if the new
variables are canonical, i.e., if a function K exists such that the equations of
motion in the new set are the Hamilton equations:

q̇′i =
∂K

∂p′i
, ṗ′i = −∂K

∂q′i
.

The function K(q′i, p
′
i, t) plays the role of the Hamiltonian function in the new

set of variables.
It can be shown [168] that the transformation from the values of the

Hamilton coordinates at time t to the same variables at time t′,

q′i(t) = q′i(qj(t), pj(t), t) = qi(t′), p′i(t) = p′i(qj(t), pj(t), t) = pi(t′)
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is a canonical transformation. In particular, this is true for the transformation
that associates with the qi and pi at time t their initial values. Thus, the state
of the system can be described by the values of the set of qi◦ and pi◦ at the
initial time,

q′i(t) = qi(t◦) = qi◦, p′i(t) = pi(t◦) = pi◦. (1.11)

If the value of a physical quantity A at time t is needed, the inverse
transformation must be used:

A(qi(t), pi(t)) = A(qi(qj◦, pj◦, t), pi(qj◦, pj◦, t)). (1.12)

Note that while in the original description the state of the system is described
by time-varying canonical coordinates and the physical quantities are given
functions of such coordinates, after the canonical transformation in (1.11) the
state of the system is defined by a set of constant canonical coordinates, while
the physical quantities (including pi(t) and qi(t)), are given by functions of
these coordinates that depend explicitly on time as effect of the dynamics.
A similar situation exists in connection with the Schrödinger and Heisenberg
pictures of quantum mechanics (see Sect. 2.2).

1.5 Small Oscillations

A system is in a stable equilibrium state when its generalized coordinates have
values q

(e)
i corresponding to a minimum of its potential energy and the kinetic

energy is zero. If the system is slightly displaced from that position and then
left alone, it will perform small oscillations about the equilibrium position. A
set of generalized coordinates can be found, called normal coordinates, such
that the dynamics described in terms of these coordinates, correspond to n
independent harmonic oscillators, if n is the number of degrees of freedom of
the system. In fact, if the potential energy is expanded around the equilibrium
configuration q

(e)
i , it is given, to second order, by

V (q1, . . . , qn) ≈ V (q(e)
1 , . . . , q(e)

n ) +
∑

i

(
∂V

∂qi

)

(e)

θi +
1
2

∑

ij

(
∂2V

∂qi∂qj

)

(e)

θiθj ,

where
θi = qi − q

(e)
i

are the deviations of the coordinates from their equilibrium values. The first
term in the above equation represents the value of the potential energy at
the equilibrium configuration. Since V is defined with an arbitrary zero, this
value can be made to vanish. The first derivatives in the second term are zero
owing to the condition of minimum potential energy, so that we are left with
the quadratic term

V =
1
2

∑

ij

vijθiθj ,
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where vij = (∂2V/∂qi∂qj)(e). Similarly, the kinetic energy can be put in the
form

T =
1
2

∑

ij

tij θ̇iθ̇j .

Both matrices vij and tij are symmetric and it can be shown [168] that with a
suitable canonical transformation of the generalized coordinates they can be
put simultaneously in a diagonal form. In the new normal coordinates ηi, the
Lagrangian is given by

L = T − V =
1
2

∑

i

μiη̇
2
i − 1

2

∑

i

βiη
2
i ,

where μi and βi are the diagonal elements of the matrices vij and tij trans-
formed into the normal coordinates. The conjugate momenta, according to
(1.7), are given by

πi =
∂L(ηi, η̇i, t)

∂η̇i
= μiη̇i ,

and, according to (1.8), the Hamiltonian is then given by

H(ηi, πi) =
∑

i

η̇iπi − L(ηi, η̇i) =
1
2

∑

i

1
μi

π2
i +

1
2

∑

i

βiη
2
i .

This Hamiltonian is the sum of separate Hamiltonians for each normal coordi-
nate and its conjugate momentum. This means that each normal coordinate
follows its own dynamics, which, moreover, is the dynamics of a harmonic
oscillator. In fact, Hamilton equations yield

η̇i =
∂H

∂πi
=

πi

μi
,

already known, and

π̇i = −∂H

∂ηi
= −βiηi.

These equations are the dynamical equations of a harmonic oscillator: by
substitution of the time derivative of the first into the second one, we obtain

η̈i = −βi

μi
ηi,

with solution

ηi(t) = Ai cos(ωit + φi), ωi =

√
βi

μi
.

Each normal coordinate evolves as an independent harmonic oscillator.
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1.6 Maxwell Equations

The electric field E and the magnetic induction field B are defined through
the force (Lorentz force) they exert on a test charge q:

F = q [ E + v × B ]
(1.13)

This expression must be considered in the limit of a test charge so small that
the sources of the electric and magnetic fields are not altered by its presence.
Here, as in general in this book, we use the International System of Units (SI),
recommended by the Conférence Générale des Poids et Mesures since 1960.

Sources of the electromagnetic fields are charges and currents. The dynam-
ics of electric and magnetic fields, or electrodynamics, is described by Maxwell
equations. If we assume a charge density ρ(r, t) and a current density j(r, t)
in vacuum, i.e., in otherwise empty space, Maxwell equations are

∇ · B = 0

∇× E + ∂B
∂t = 0

ε◦ ∇ · E = ρ

1
μ◦ ∇× B − ε◦ ∂E

∂t = j

(1.14)

where ε◦ and μ◦ are the electric permittivity and the magnetic permeability of
free space, respectively. If these equations are considered inside a material, ρ
and j contain also charges and currents induced in the medium by the external
applied fields. If a polarization field P is defined as the dipole moment per
unit volume inside the medium, and a magnetization field M is defined as the
magnetic moment per unit volume inside the medium, a polarization charge
is generated as

ρP = −∇ · P ,

and a magnetization current is generated as

jM = ∇× M .

These charges and currents are added to the external ρ and j and the last
two Maxwell equations in (1.14) become

∇ · D = ρ, (1.15)
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∇× H − ∂D

∂t
= j, (1.16)

where D and H are the electric induction field and the magnetic field,
respectively:1

D = ε◦E + P , H =
1
μ◦

B − M . (1.17)

The polarization P , the magnetization M , and the current density j are
induced by the applied fields. Their dependences upon the applied fields are
characteristic of each material and are described by the so-called constitutive
equations. In the simplest case of linear materials, the following equations
hold:

P = χeε◦E, M = χmH, j = σE. (1.18)

The proportionality coefficients χe, χm, and σ are called electric susceptibility,
magnetic susceptibility, and electric conductivity, respectively. If the above
equations (1.18) are used in the definition (1.17) of D and H, linear relations
result between D and E and between H and B:

D = εE = εrε◦E, B = μH = κmμ◦H.

Here ε is the permittivity or dielectric constant of the material; εr is the
relative dielectric constant; μ is the magnetic permeability, and κm the relative
permeability. In a linear homogeneous medium, Maxwell equations can then
be rewritten as

∇ · B = 0, (1.19)

∇× E +
∂B

∂t
= 0, (1.20)

ε ∇ · E = ρ, (1.21)

1
μ

∇× B − ε
∂E

∂t
= j. (1.22)

These equations are very similar to the original “microscopic” Maxwell equa-
tions (1.14) with the electric permittivity and the magnetic permeability of
free space substituted by equivalent quantities of the material.

1.7 Electromagnetic Potentials and Gauge
Transformations

It is often convenient to reduce the four first-order differential Maxwell equa-
tions to two second-order equations by the introduction of the electromagnetic
potentials. Since the divergence of the curl of any vector field is zero, the first

1 In different systems of units, not only the electromagnetic units change, but also
the equations of the present section are formally different (see, e.g., [202]).
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Maxwell equation is automatically verified if we define a vector field A(r, t),
called vector potential, such that

B(r, t) = ∇× A(r, t)
(1.23)

With this position, the second homogeneous Maxwell equation in (1.14)
becomes

∇×
[
E +

∂A

∂t

]
= 0

and is again automatically satisfied if we define a scalar field φ(r, t), called
scalar potential, such that

E +
∂A

∂t
= − ∇φ(r, t),

since the curl of the gradient of any scalar field is zero. In terms of the
electromagnetic potentials A and φ, the electric field is then given by

E = − ∇φ(r, t) − ∂A
∂t (1.24)

The electromagnetic potentials are not uniquely defined. In fact, E and
B are left unchanged by the following transformations, called gauge transfor-
mations:

A → A′ = A + ∇Λ, φ → φ′ = φ − ∂Λ

∂t
, (1.25)

where Λ is an arbitrary function of r and t.
The freedom implied by the gauge transformations can be used to prescribe

that the potentials satisfy the Lorentz condition

∇ · A + εμ
∂φ

∂t
= 0. (1.26)

We can still perform a gauge transformation (1.25) and preserve the Lorentz
condition if we request that the function Λ verifies the condition

∇2Λ − εμ
∂2Λ

∂t2
= 0.

The electric and magnetic fields given by the electromagnetic potentials in
(1.23) and (1.24) satisfy already the first two homogeneous Maxwell equations.
If they are introduced in the last two Maxwell equations, they yield:

∇2φ − εμ∂2φ
∂t2 = − 1

ερ

∇2A − εμ∂2A
∂t2 = −μj

(1.27)
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where use has been made of the Lorentz condition. These are the wave
equations that in free space predict a velocity of electromagnetic waves
given by

c =
1√
ε◦μ◦

.

1.8 Hamiltonian of a Charged Particle in an
Electromagnetic Field

A charged particle in an electromagnetic field is subject to the Lorentz
force (1.13). This force depends on the particle velocity, so that, to write
a Lagrangian, it is necessary to find a suitable function U such that (1.6) is
satisfied. It is easy to verify that such a function is

U = q(φ − A · v).

The Lagrangian is then

L = T − U =
1
2
mv2 − qφ + qA · v.

Following the procedure indicated in Sect. 1.3, we have the canonical momenta

pi =
∂L

∂q̇i
= mvi + qAi, (1.28)

and the corresponding Hamiltonian, from (1.8), is

H = 1
2m (p − qA)2 + qφ

(1.29)

This Hamiltonian will be used to study the dynamics of a charged particle in
a crystal subject to an electromagnetic field.


