Contents

	Preface	<i>page</i> xi
	Acknowledgments	xiii
1	Introduction	1
	1.1 Historical and modern role of modeling and simulation	1
	1.2 Credibility of scientific computing	8
	1.3 Outline and use of the book	15
	1.4 References	17
Part I	Fundamental concepts	19
2	Fundamental concepts and terminology	
	2.1 Development of concepts and terminology	21
	2.2 Primary terms and concepts	32
	2.3 Types and sources of uncertainties	51
	2.4 Error in a quantity	57
	2.5 Integration of verification, validation, and prediction	59
	2.6 References	75
3	Modeling and computational simulation	83
	3.1 Fundamentals of system specifications	84
	3.2 Fundamentals of models and simulations	89
	3.3 Risk and failure	115
	3.4 Phases of computational simulation	116
	3.5 Example problem: missile flight dynamics	127
	3.6 References	137
Part II	Code verification	145
4	Software engineering	146
	4.1 Software development	147
	4.2 Version control	151
	4.3 Software verification and validation	153
	4.4 Software quality and reliability	159
	4.5 Case study in reliability: the T experiments	161

	4.6 Software engineering for large software projects	162
	4.7 References	167
5	Code verification	170
	5.1 Code verification criteria	171
	5.2 Definitions	175
	5.3 Order of accuracy	180
	5.4 Systematic mesh refinement	185
	5.5 Order verification procedures	192
	5.6 Responsibility for code verification	204
	5.7 References	205
6	Exact solutions	208
	6.1 Introduction to differential equations	209
	6.2 Traditional exact solutions	210
	6.3 Method of manufactured solutions (MMS)	219
	6.4 Physically realistic manufactured solutions	234
	6.5 Approximate solution methods	239
	6.6 References	244
Part III	Solution verification	249
7	Solution verification	250
	7.1 Elements of solution verification	250
	7.2 Round-off error	252
	7.3 Statistical sampling error	258
	7.4 Iterative error	260
	7.5 Numerical error versus numerical uncertainty	283
	7.6 References	284
8	Discretization error	286
	8.1 Elements of the discretization process	288
	8.2 Approaches for estimating discretization error	297
	8.3 Richardson extrapolation	309
	8.4 Reliability of discretization error estimators	317
	8.5 Discretization error and uncertainty	322
	8.6 Roache's grid convergence index (GCI)	323
	8.7 Mesh refinement issues	329
	8.8 Open research issues	334
	8.9 References	338
9	Solution adaptation	343
	9.1 Factors affecting the discretization error	343
	9.2 Adaptation criteria	349
	9.3 Adaptation approaches	356
	9.4 Comparison of methods for driving mesh adaptation	360
	9.5 References	366

		Contents	ix
Part IV	Mod	el validation and prediction	369
10		el validation fundamentals	371
	10.1	Philosophy of validation experiments	372
	10.2	Validation experiment hierarchy	388
		Example problem: hypersonic cruise missile	396
	10.4	Conceptual, technical, and practical difficulties	
		of validation	401
	10.5	References	405
11	Desig	n and execution of validation experiments	409
	11.1	Guidelines for validation experiments	409
	11.2	Validation experiment example: Joint Computational/	
		Experimental Aerodynamics Program (JCEAP)	422
	11.3	Example of estimation of experimental measurement	
		uncertainties in JCEAP	437
	11.4	Example of further computational-experimental synergism	
		in JCEAP	455
	11.5	References	465
12	Mode	el accuracy assessment	469
		Elements of model accuracy assessment	470
	12.2	Approaches to parameter estimation and validation metrics	479
	12.3	Recommended features for validation metrics	486
	12.4	Introduction to the approach for comparing means	491
	12.5	Comparison of means using interpolation of experimental	
		data	500
	12.6	Comparison of means requiring linear regression of the	
		experimental data	508
	12.7	Comparison of means requiring nonlinear regression of the	
		experimental data	514
	12.8	Validation metric for comparing p-boxes	524
	12.9	References	548
13	Predi	ctive capability	555
	13.1	Step 1: identify all relevant sources of uncertainty	557
	13.2	Step 2: characterize each source of uncertainty	565
	13.3	Step 3: estimate numerical solution error	584
	13.4	Step 4: estimate output uncertainty	599
	13.5	Step 5: conduct model updating	622
	13.6	Step 6: conduct sensitivity analysis	633
	13.7	Example problem: thermal heating of a safety component	638
	13.8	Bayesian approach as opposed to PBA	664
	13.9	References	665

Contents

Part V	Plan	ning, management, and implementation issues	671
14	Planning and prioritization in modeling and simulation		
	14.1	Methodology for planning and prioritization	673
	14.2	Phenomena identification and ranking table (PIRT)	678
	14.3	Gap analysis process	684
	14.4	Planning and prioritization with commercial codes	690
	14.5	Example problem: aircraft fire spread during crash landing	691
	14.6	References	694
15	Maturity assessment of modeling and simulation		696
	15.1	Survey of maturity assessment procedures	696
	15.2	Predictive capability maturity model	702
	15.3	Additional uses of the PCMM	721
	15.4	References	725
16	Development and responsibilities for verification, validation and		
	uncertainty quantification		728
	16.1	Needed technical developments	728
	16.2	Staff responsibilities	729
	16.3	Management actions and responsibilities	738
	16.4	Development of databases	747
	16.5	Development of standards	753
	16.6	References	755
	Appendix: Programming practices		757
	Index		762
	The c	olor plates will be found between pages 370 and 371.	

х