Contents

Preface	vii
1. Introduction: Stochastic Filtering in Finance	
1.1 Filtering Problem	2
1.2 Examples of Filtering Applications	2
1.3 Linear Kalman Filter	3
1.4 Extended Kalman Filter (EKF)	6
1.5 Applying EKF to Interest Rate Model	7
1.6 Unscented Kalman Filter (UKF) for Nonlinear Models	10
1.7 Background to Particle Filter for Non Gaussian Problems	13
1.8 Particle Filter Algorithm	14
1.9 Unobserved Component Models	16
1.10 Concluding Remarks	19
2. Foreign Exchange Market – Filtering Applications	
2.1 Mean Reversion in Real Exchange Rates	21
2.2 Common and Specific Components in Currency Movements	25
2.3 Persistent in Real Interest Rate Differentials	30
2.4 Risk Premia in Forward Exchange Rate	34
2.4.1 Approach based on Market Price of Risk (BCP)	36
2.4.2 Method of Wolff/Cheung	40
2.4.3 Data and Empirical Results	41
2.4.4 Summary of Section 2.4	43
2.5 Concluding Remarks	47
3. Equity Market – Filtering Applications	
3.1 Introduction to Equity Price of Risk	49
3.1.1 A Model for Equity Price of Risk	51
3.1.2 Data Used for Empirical Study	52
3.1.3 Discussion of Empirical Results	53
3.1.4 Summary of Results	61

xii	Stochastic Filtering with Applications in Finance	
	3.2 Economic Convergence in a Filtering Framework	62
	3.2.1 Defining Convergence	64
	3.2.2 Testing for Convergence	65
	3.2.3 Testing Convergence – Dickey-Fuller	66
	3.2.4 Testing Convergence – Kalman Filter	67
	3.3 Ex-Ante Equity Risk Premium	69
	3.3.1 Background to Ex Ante Risk Premium	69
	3.3.2 A Model for Ex Ante Risk Premium	70
	3.3.3 Filtering Ex Ante Risk Premium	72
	3.3.4 Ex-Ante Risk Premium for UK	73
	3.3.5 Summarizing Ex-Ante Risk Premium for UK	73
	3.4 Concluding Remarks	75
4.	Filtering Application — Inflation and the Macroeconomy	
	4.1 Background and Macroeconomic Issues	77
	4.2 Inflation Targeting Countries and Data Requirement	79
	4.3 Model for Inflation Uncertainties	80
	4.4 Testing Fisher Hypothesis	82
	4.5 Empirical Results and Analysis	83
	4.6 Concluding Remarks	85
5.	Interest Rate Model and Non-Linear Filtering	
	5.1 Background to HJM Model and the Related Literature	95
	5.2 The Basic HJM Structure	97
	5.3 Forward Rate Volatility: Deterministic Function of Time	100
	5.4 Forward Rate Volatility: Stochastic	102
	5.5 Estimation via Kalman Filtering	107
	5.6 Preference-Free Approach to Bond Pricing	109
	5.7 Concluding Remarks	112
	Appendix 5.1 Arbitrage-Free SDE for the Bond Price	114
	Appendix 5.2: Proof of Proposition 1	117
	Appendix 5.3: Proof of Proposition 2	119
	Appendix 5.4: Proof Proposition 3	122
6.	Filtering and Hedging using Interest Rate Futures	
	6.1 Background Details	126
	6.2 The Futures Price Model in the HJM Framework	127
	6.3 Non-Linear Filter for Futures Price System	131
	6.4 Data Used in Empirical Study	134
	6.5 Empirical Results	135
	6.6 Concluding Remarks	138
	Appendix 6.1	139

7. A Multifactor Model of Credit Spreads	
7.1 Background and Related Research	150
7.2 Variables Influencing Changes in Credit Spreads	151
7.3 Credit Spread and Default Risk	153
7.4 Credit Spread and Liquidity	155
7.5 Alternative Approach to Analyzing Credit Spread	156
7.6 Data Used	159
7.7 Multifactor Model for Credit Spread	160
7.8 Fitting the Model	162
7.9 Results	162
7.9.1 Results for Apr-96 to Mar-03	162
7.9.2 Results for Apr-96 to Mar-08	165
7.9.3 Model Performance	168
7.9.4 Discussion	168
7.10 Concluding Remarks	169
8. Credit Default Swaps – Filtering the Components	
8.1 Background to Credit Default Swaps	185
8.2 What is in the Literature Already?	188
8.3 Credit Derivatives Market and iTraxx Indices	190
8.4 CDS Index Data and Preliminary Analysis	192
8.5 Focusing on Explanatory Variables	195
8.6 Methodology for Component Structure	201
8.6.1 Latent-Component Model for iTraxx Indices	201
8.6.2 State Space Model and Stochastic Filtering	203
8.6.3 Linear Regression Model for the Determinants of the CDS	
Components	204
8.7 Analyzing Empirical Results	205
8.7.1 Model Parameters and the Extracted Components	205
8.7.2 Determinants of the Extracted Components	207
8.8 Concluding Summary	211
9. CDS Options, Implied Volatility and Unscented Kalman Filter	
9.1 Background to Stochastic Volatility	230
9.2 Heston Model in Brief	231
9.3 State Space Framework	232
9.3.1 Transition Equation	232
9.3.2 Measurement Equation: CDS Option Price	233
9.3.3 Measurement Equation Derivation	235
9.4 General State Space Model and Filter Revisited	237
9.4.1 Additive Non-Linear State Space model (Recap)	238
9.4.2 The Scaled Unscented Transformation (Recap)	240

Contents

xiii

xiv	Stochastic Filtering with Applications in Finance	
	9.5 The Application of Unscented Kalman Filter	243
	9.6 Empirical Results	245
	9.7 Concluding Remarks	249
10.	Stochastic Volatility Model and Non-Linear Filtering Application	
	10.1 Background to Stochastic Volatility Models	258
	10.2 Stochastic Volatility Models of Short-term Interest Rates	259
	10.2.1 SV-ARMA Specification	261
	10.2.2 Exogenous Variables	262
	10.3 Data for Analysis	263
	10.4 Analysis of Estimation Results	264
	10.5 Comparison of Volatility Estimates	266
	10.6 Outline of State Space Model Estimation via MCL	271
	10.7 Concluding Summary	273
11.	Applications for Filtering with Jumps	
	11.1 Background to Electricity Market and Prices	285
	11.2 A Model for Spot Electricity Prices	288
	11.3 State Space Model, Kalman Filter and Poisson Jumps	291
	11.4 Data and Empirical Results for Electricity Market	294
	11.5 Summarizing Electricity Market Application	296
	11.6 Background to Jumps in CDS Indices	297
	11.7 CDS Data and Preliminary Analysis	300
	11.8 Methodology for Analyzing CDS Jump Risks	301
	11.8.1 Normality Test for CDS Index Distribution	301
	11.8.2 Model for Individual iTraxx Indices	301
	11.8.3 Multivariate Analysis of Jumps in iTraxx Index	
	with One Latent Common Factor	304
	11.9 Analysis of Results from the CDS Market	307
	11.10 Summarizing CDS Market Application	308
Bil	bliography	320
Inc	lex	337