
Topics in Diophantine Equations

Sir Peter Swinnerton-Dyer

1 Introduction

These notes fall into two parts. The first part, which goes up to the end of Sect. 5,
is a general survey of some of the topics in the theory of Diophantine equations
which interest me and on which I hope to see progress within the next 10 years.
Because of the second condition, I have for example not covered the Riemann Hy-
pothesis or the Birch/Swinnerton-Dyer conjectures, both of which at the moment
appear intractable. Another such survey can be found in Silverberg [1]; it has little
overlap with this one but should appeal to the same readers. In the second part of
these notes, I go into more detail on some particular topics than there was time for
in the lectures.

A Diophantine problem over Q or Z is concerned with the solutions either in Q
or in Z of a finite system of polynomial equations

Fi(X1, . . . ,Xn) = 0 (1≤ i≤ m) (1)

with coefficients in Q. Without loss of generality we can obviously require the co-
efficients to be in Z. A system (1) is also called a system of Diophantine equations.
Often one will be interested in a family of such problems rather than a single one; in
this case one requires the coefficients of the Fi to lie in some Q(c1, . . . ,cr), and one
obtains an individual problem by giving the c j values in Q. Again one can get rid of
denominators. Some of the most obvious questions to ask about such a family are:

(A) Is there an algorithm which will determine, for each assigned set of values of
the c j, whether the corresponding Diophantine problem has solutions, either
in Z or in Q?

(B) When the answer to (A) is positive, is there for values of the c j for which the
system is soluble an algorithm for exhibiting a solution? For example, is there
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an upper bound for the height of the smallest solution in terms of the heights
of the coefficients of (1)?

For individual members of such a family, it is also natural to ask:

(C) Can we describe the set of all solutions, or even its structure?
(D) Is the phrase “density of solutions” meaningful, and if so, what can we say

about it?

The attempts to answer these questions have led to the introduction of new ideas
and these have generated new questions. Progress in mathematics usually comes
by proving results; but sometimes a well justified conjecture throws new light on
the structure of the subject. (For similar reasons, well motivated computations can
be helpful; but computations not based on a feeling for the structure of the subject
have generally turned out to be a waste of time.)

Though the problems associated with solutions in Z and in Q may look very
similar (and indeed were believed for a long time to be so), it now appears that
the methods which are useful are actually very different; and currently the theory
for solutions in Q has much more structure than that for solutions in Z. The main
reason for this seems to be that in the rational case the system (1) defines a variety
in the sense of algebraic geometry, and many of the tools of that discipline can be
used. Despite the advent of Arakelov geometry, this is much less true of integral
problems. However, for most families of varieties of degree greater than 2 it is only
in low dimension that we yet know enough of the geometry for it to be useful.
Uniquely, the Hardy-Littlewood method is useful both for integral and for rational
problems; it was designed for integral problems but it can also be applied to rational
problems by making the equations homogeneous. There is a brief discussion of this
method in Sect. 5 and a comprehensive survey in [2].

Denote by V the variety defined by (1) and let V ′ be any variety birationally
equivalent to V over Q. Rational solutions of (1) in Q are just rational points on V ,
and finding them is almost the same as finding rational points on V ′. Hence (ex-
cept for Question (D) above) one expects the properties of the rational solutions of
(1) to be essentially determined by the birational equivalence class of V over Q.
Classifying Diophantine problems over Q therefore corresponds to classifying bi-
rational equivalence classes of varieties over Q. A first crude approximation to this
is to classify them over C. So number theorists would be helped if geometers could
develop an adequate classification of varieties. At the moment, such a classification
is reasonably complete for curves and surfaces, but it is still fragmentary even in
dimension 3; so for those number theorists who use geometric methods it is natural
to concentrate on curves and surfaces and on certain particularly simple kinds of
variety of higher dimension.

The definitions and the questions above can be generalized to an arbitrary alge-
braic number field and the ring of integers in it; the answers are usually known or
conjectured to be similar to those over Q or Z, though the proofs can be very much
harder. (But there are exceptions; for example, the modularity of elliptic curves
only holds over Q.) Some of the questions above can also be posed for other fields
of number-theoretic interest – in particular for finite fields and for completions of
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algebraic number fields – and when one studies Diophantine problems it is often
essential to consider these fields also. If V is defined over a field K, the set of points
on V defined over K is denoted by V (K). If V (K) is not empty we say that V is sol-
uble in K. In the special case where K = kv, the completion of an algebraic number
field k at the place v, we also say that V is locally soluble at v. From now on we
denote by Qv any completion of Q; thus Qv means R or some Qp.

One major reason for considering solubility in complete fields and in finite fields
is that a necessary condition for (1) to be soluble in Q is that it is soluble in every
Qv. The condition of solubility in every Qv is computationally decidable; see Sect. 2.
Moreover the first step in deciding solubility in Qp is to study the solutions of the
system reduced mod p in the finite field Fp of p elements.

Diophantine problems were first introduced by Diophantus of Alexandria, the
last of the great Greek mathematicians, who lived at some time between 300 BC
and 300 AD; but he was handicapped by having only one letter available to repre-
sent variables, all the others being used in the classical world to represent specific
numbers. Individual Diophantine problems were studied by such great mathemati-
cians as Fermat, Euler and Gauss. But it was Hilbert’s address to the International
Congress in 1900 which started the development of a systematic theory. His tenth
problem asked:

Given a Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: to devise a process according to which it can be determined
by a finite number of operations whether the equation is soluble in rational integers.

Most of the early work on Diophantine equations was concerned with rational rather
than integral solutions; presumably Hilbert posed this problem in terms of integral
solutions because such a process for integral solutions would automatically pro-
vide the corresponding process for rational solutions also. In the confident days
before the First World War, it was assumed that such a process must exist; but in
1970 Matijasevič showed that this was impossible. He exhibited a polynomial
F(c;x1, . . . ,xn) such that there cannot exist an algorithm which will decide for every
given integer c whether F = 0 is soluble in integers. His proof is part of the great
program on decidability initiated by Gödel; good accounts of it can be found in [3],
pp 323–378 or [4]. The corresponding question for rational solutions is still open;
I am among the few who believe that it may have a positive answer. Certainly it is
important to ask for which families of varieties such a process exists, and to find
such a process when it does exist.

2 The Hasse Principle and the Brauer-Manin Obstruction

Let V be a variety defined over Q. If V is locally soluble at every place of Q, we say
that it satisfies the Hasse condition. If V (Q) is not empty then V certainly satisfies
the Hasse condition, so the latter is necessary for solubility. What makes this remark
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valuable is that the Hasse condition is computable – that is, one can decide in finitely
many steps whether a given V satisfies the Hasse condition. This follows from the
next two lemmas.

Lemma 2.1. Let W be an absolutely irreducible variety of dimension n defined over
the finite field k = Fp. Then N(p), the number of points on W defined over k, satisfies

|N(p)− pn|< Cpn−1/2

where the constant C depends only on the degree and dimension of W and is com-
putable.

This follows from the Weil conjectures, for which see Sect. 3; but weaker results
which are adequate for the proof that the Hasse condition is computable were known
much earlier. Since the singular points of W lie on a proper subvariety, there are at
most C1 pn−1 of them, where C1 is also computable. It follows that if p exceeds
a computable bound depending only on the degree and dimension of W then W
contains a nonsingular point defined over Fp.

Let V be an absolutely irreducible nonsingular variety defined over Q, embedded
in affine or projective space. We obtain Ṽp, its reduction mod p, by taking all the
equations for V with coefficients in Z and mapping the coefficients into Fp. If Ṽp is
nonsingular and has the same dimension as V , then V is said to have good reduction
at p; this happens for all but a finite computable set of primes p. If p is large enough,
it follows from the remarks above that Ṽp contains a nonsingular point Qp defined
over Fp. The result which follows, which is known as Hensel’s Lemma though the
idea of the proof goes back to Newton, now shows that V contains a point Pp defined
over Qp.

Lemma 2.2. Let V be an absolutely irreducible variety defined over Q which has
a good reduction Ṽp mod p. If Ṽp contains a nonsingular point Qp defined over Fp

then V contains a nonsingular point Pp defined over Qp whose reduction mod p
is Qp.

In view of this, to decide whether V satisfies the Hasse condition one only has to
check solubility in R and in finitely many Qp. Each of these checks can be shown
to be a finite process.

A family F of varieties is said to satisfy the Hasse Principle if every V contained
in F and defined over Q which satisfies the Hasse condition actually contains at
least one point defined over Q. Again, a family F is said to admit weak approxi-
mation if every V contained in F and defined over Q, and such that V (Q) is not
empty, has the following property: given any finite set of places v and correspond-
ing non-empty sets Nv ⊂ V (Qv) open in the v-adic topology, there is a point P in
V (Q) which lies in each of the Nv. In the special case when F consists of a single
variety V , and V (Q) is not empty, we simply say that V admits weak approximation.
Whether V admits weak approximation appears not to be computable in general; for
a case where it is, see [5]. All this generalizes effortlessly to an arbitrary algebraic
number field.
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The most important families which are known to have either of these properties
(and which actually have both) are the families of quadrics of any given dimension;
this was proved by Minkowski for quadrics over Q and by Hasse for quadrics over
an arbitrary algebraic number field. They also both hold for Severi-Brauer varieties,
which are varieties biregularly equivalent to some Pn over C. But many families,
even of very simple varieties, do not satisfy either the Hasse Principle or weak ap-
proximation. (For example, neither of them holds for nonsingular cubic surfaces.) It
is therefore natural to ask

Question 2.3. For a given family F , what are the obstructions to the Hasse Princi-
ple and to weak approximation?

For weak approximation there is a variant of this question which may be more in-
teresting and and is certainly easier to answer. For another way of stating weak
approximation on V is to say that if V (Q) is not empty then it is dense in the adelic
space V (A) = ∏v V (Qv). This suggests the following:

Question 2.4. For a given V , or family F , what can be said about the closure of
V (Q) in the adelic space V (A)?

For the example of cubic surfaces, see [5]. However, there are families for which
Question 2.3 does not seem to be a sensible question to ask; these probably include
for example all families of varieties of general type. So one should also back up
Question 2.3 with

Question 2.5. For what kinds of families is either part of Question 2.3 a sensible
question to ask?

The only known systematic obstruction to the Hasse Principle or to weak ap-
proximation is the Brauer-Manin obstruction, though obstructions can be found in
the literature which are not Brauer-Manin. (See for example Skorobogatov [6].) It
is defined as follows. Let A be a central simple algebra – that is, a simple algebra
which is finite dimensional over a field K which is its centre. Each such algebra
consists, for fixed D and n, of all n×n matrices with elements in a division algebra
D with centre K. Two central simple algebras over K are equivalent if they have the
same underlying division algebra. Formation of tensor products over K gives the
set of equivalence classes the structure of a commutative group, called the Brauer
group of K and written Br(K). There is a canonical isomorphism ıp : Br(Qp)�Q/Z
for each p; and there is a canonical isomorphism ı∞ : Br(R)� {0, 1

2}, the nontrivial
division algebra over R being the classical quaternions.

Let B be an element of Br(Q). Tensoring B with any Qv gives rise to an element
of Br(Qv), and this element is trivial for almost all v. There is an exact sequence

0→ Br(Q)→
⊕

Br(Qv)→Q/Z→ 0,

due to Hasse, in which the third map is the sum of the ıv; it tells us when a set of
elements, one in each Br(Qv) and almost all trivial, can be generated from some
element of Br(Q).
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Now let V be a complete nonsingular variety defined over Q and A an Azumaya
algebra on V – that is, a simple algebra with centre Q(V) which has a good special-
ization at every point of V . The group of equivalence classes of Azumaya algebras
on V is denoted by Br(V ). If P is any point of V , with field of definition Q(P),
we obtain a simple algebra A(P) with centre Q(P) by specializing at P. For all but
finitely many p, we have ıp(A(Pp)) = 0 for all p-adic points Pp on V . Thus, as was
first noticed by Manin, a necessary condition for the existence of a rational point P
on V is that for every v there should be a v-adic point Pv on V such that

∑ ıv(A(Pv)) = 0 for all A. (2)

Similarly, a necessary condition for V with V (Q) not empty to admit weak approxi-
mation is that (2) should hold for all Azumaya algebras A and all adelic points ∏v Pv.
In each case this is the Brauer-Manin condition. It is clearly unaffected if we add to
A a constant algebra – that is, an element of Br(Q). So what we are really interested
in is Br(V )/Br(Q).

All this can be put into highbrow language. For any V there is an injection of
Br(V ) into the étale cohomology group H2(V,Gm); and if for example V is a com-
plete nonsingular surface, this injection is an isomorphism. If we write

Br1(V ) = ker(Br(V )→ Br(V̄ )) = ker(H2(V,Gm)→ H2(V̄ ,Gm)),

there is a filtration
Br(Q)⊂ Br1(V )⊂ Br(V ).

However, not even the abstract structure of Br(V )/Br1(V ) is known; and there is
no known systematic way of finding Azumaya algebras which represent nontrivial
elements of this quotient, though in a particular case Harari [7] has exhibited a
Brauer-Manin obstruction coming from such an algebra. In contrast, provided the
Picard variety of V is trivial there is an isomorphism

Br1(V )/Br(Q)� H1(Gal(Q̄/Q),Pic(V ⊗ Q̄)),

and this is computable in both directions provided the Néron-Severi group of V over
Q̄ is known and is torsion-free. (For details of this, see [8].)

There is no known systematic way of determining the Néron-Severi group for ar-
bitrary V , and there is strong reason to suppose that this is really a number-theoretic
rather than a geometric problem. One may need to approach this question through
the Tate conjectures, for which see Sect. 3; but this is a very long-term strategy.
However, it is usually possible to determine it for any given V , even if one cannot
prove that this determination is correct.

Question 2.6. Is there a general algorithm (even conjectural) for determining the
Néron-Severi group of V for varieties V defined over an algebraic number field?

Lang has conjectured that if V is a variety of general type defined over an alge-
braic number field K then there is a finite union S of proper subvarieties of V such
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that every point of V (K) lies in S . (Faltings’ theorem, for which see Sect. 4, is the
special case of this for curves.) This raises another question, similar to Question 2.6
but probably somewhat easier:

Question 2.7. Is there an algorithm for determining Pic(V ) where V is a variety
defined over an algebraic number field?

The Brauer-Manin obstruction was introduced by Manin [9] in order to bring
within a single framework various sporadic counterexamples to the Hasse principle.
The theory of this obstruction has been extensively developed, largely by Colliot-
Thélène and Sansuc. In particular, for rational varieties they have shown how to go
back and forth between the Brauer-Manin condition and the descent condition for
torsors under tori. They also defined universal torsors and showed that if there is
no Brauer-Manin obstruction to the Hasse principle on a variety V then there exists
a universal torsor over V which has points everywhere locally. This suggests that
one should pay particular attention to Diophantine problems on universal torsors.
Unfortunately, it is usually not easy to exploit what is known about the geomet-
ric structure of universal torsors. Indeed there are very few families for which the
Brauer-Manin obstruction can be nontrivial but for which it has been shown that
it is the only obstruction to the Hasse principle. (See however [10] and, subject to
Schinzel’s hypothesis, [11, 12].) Colliot-Thélène and Sansuc have conjectured that
the Brauer-Manin obstruction is the only obstruction to the Hasse principle for ra-
tional surfaces – that is, surfaces birationally equivalent to P2 over Q̄. On the other
hand, Skorobogatov ([6], and see also [13]) has exhibited on a bielliptic surface an
obstruction to the Hasse principle which is definitely not Brauer-Manin.

Question 2.8. Is the Brauer-Manin obstruction the only obstruction to the Hasse
principle for all unirational (or all Fano) varieties?

For the method of universal torsors, the immediate question to address must be the
following:

Question 2.9. Does the Hasse principle hold for universal torsors over a rational
surface?

We can of course ask similar questions for weak approximation. Both for the Hasse
principle and for weak approximation one can alternatively ask what is the most
general class of varieties for which the Brauer-Manin obstruction is the only one.
Colliot-Thélène has suggested that this class probably includes all rationally con-
nected varieties.

There are families F whose universal torsors appear to be too complicated
to be systematically investigated, but for which it is still possible to identify the
obstruction to the Hasse principle. It is sometimes possible to start from the ab-
sence of a Brauer-Manin obstruction (the most impressive example being Chap. 3
of Wittenberg [14]); but there are also alternative strategies. Implementing these
falls naturally into two parts:

1. Assuming that V in F satisfies the Hasse condition, one finds a necessary and
sufficient condition for V to have a rational point, or to admit weak approximation.
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2. One then shows that this necessary and sufficient condition is equivalent to the
Brauer-Manin condition.

Both parts of this strategy have been applied to pencils of conics, where one uses
Schinzel’s Hypothesis to implement (1); see [12, 11]. Except for Skorobogatov’s
example above, I know of no families for which it has been possible to carry out (1)
but not (2). But there are families for which it has been possible to find a sufficient
condition for solubility (additional to the Hasse condition) which appears rather
weak but which is definitely stronger than the Brauer-Manin condition. The obvious
examples of such a condition are the various forms of what is called Conditions D
or E in [15, 16, 17, 18]. However, in these cases it is not obvious that a condition
stronger than the Brauer-Manin condition is actually necessary; and I attribute the
gap to clumsiness in the proofs.

Question 2.10. When the Brauer-Manin condition is trivial, how can one make use
of this fact?

In addition to the work of Wittenberg cited above, there are at least two known
approaches to this question: by descent using torsors, and by the fibration method
exploited in particular by Harari.

3 Zeta-Functions and L-Series

Let W ⊂ Pn be a nonsingular and absolutely irreducible projective variety of
dimension d defined over the finite field k = Fq, and denote by φ(q) the Frobenius
automorphism of W given by

φ(q) : (x0,x1, . . . ,xn) �→ (xq
0,x

q
1, . . . ,x

q
n).

For any r > 0 the fixed points of (φ(q))r are precisely the points of W which are
defined over Fqr ; suppose that there are N(qr) of them. Although the context is
totally different, this is almost the formalism of the Lefschetz Fixed Point theorem,
since for geometric reasons each of these fixed points has multiplicity +1. This
analogy led Weil to conjecture that there should be a cohomology theory applicable
in this context. This would imply that there were finitely many complex numbers
αi j such that

N(qr) =
2d

∑
i=0

Bi

∑
j=1

(−1)iαr
i j for all r > 0, (3)

where Bi is the dimension of the ith cohomology group of W and the αi j are the
characteristic roots of the map induced by φ(q) on the ith cohomology. For each i
duality asserts that Bi = B2d−i and the α2d−i, j are a permutation of the qd/αi j. If we
define the local zeta-function Z(t,W ) by either of the equivalent relations
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logZ(t) =
∞

∑
r=1

N(qr)tr/r or tZ′(t)/Z(t) =
∞

∑
r=1

N(qr)tr,

then (3) is equivalent to

Z(t) =
P1(t,W ) · · ·P2d−1(t,W )

P0(t,W )P2(t,W ) · · ·P2d(t,W )

where Pi(t,W ) = ∏ j(1−αi jt). Each Pi(t,W ) must have coefficients in Z, and the
analogue of the Riemann hypothesis is that |αi j| = qi/2. (For a fuller account of
Weil’s conjectures and their motivation, see the excellent survey [19].) All this has
now been proved, the main contributor being Deligne.

Now let V be a nonsingular and absolutely irreducible projective variety defined
over an algebraic number field K. If V has good reduction at a prime p of K we can
form Ṽp, the reduction of V mod p, and hence form the Pi(t,Ṽp). For s in C, we can
now define the ith global L-series Li(s,V ) of V as a product over all places of K, the
factor at a prime p of good reduction being (Pi(q−s,Ṽp))−1 where q = NormK/Qp.
The rules for forming the factors at the primes of bad reduction and at the infinite
places can be found in [20]. These L-series of course depend on K as well as on V .
In particular, L0(s,V ) is just the zeta-function of the algebraic number field K.

To call a function F(s) a (global) zeta-function or L-series ought to carry with it
certain implications, though some authors have used these terms very loosely:

• F(s) should be the product of a Dirichlet series and possibly some Gamma-
functions, and the half-plane of absolute convergence for the Dirichlet series
should have the form Rs > σ0 with 2σ0 in Z.

• The Dirichlet series should be expressible as an Euler product ∏p fp(p−s) where
the fp are rational functions.

• F(s) should have an analytic continuation to the entire s-plane as a meromorphic
function all of whose poles are in Z.

• There should be a functional equation relating F(s) and F(2σ0−1− s).
• The zeroes of F(s) in the critical strip σ0− 1 < Rs < σ0 should lie on Rs =

σ0− 1
2 .

In our case, the first two implications are trivial; and fortunately one is not expected
to prove the last three, but only to state them as conjectures. The last one is the
Riemann Hypothesis, which appears to be out of reach even in the simplest case,
which is the classical Riemann zeta-function; and the third and fourth have so far
only been proved in a few favourable cases.

Question 3.1. Can one extend the list of V for which analytic continuation and the
functional equation can be proved?

It seems likely that any proof of analytic continuation will carry a proof of the
functional equation with it.

It has been said about the zeta-functions of algebraic number fields that “the zeta-
function knows everything about the number field; we just have to prevail on it to
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tell us”. If this is so, we have not yet unlocked the treasure-house. Apart from the
classical formula which relates hR to ζK(0) all that has so far been proved are certain
results of Borel [21] which relate the behaviour of ζK(s) near s = 1−m for integers
m > 1 to the K-groups of OK . One might hope that when a mysterious number turns
up in the study of Diophantine problems on V , some L-series contains information
about it; and this is certainly sometimes true, the most spectacular examples being
the Birch/Swinnerton-Dyer conjecture and the far-reaching generalizations of it due
to Bloch and Kato. But it appears to be false for the order of the Chow group of
a rational surface; this is always finite, but two such surfaces can have the same
L-series while having Chow groups of different orders.

Suppose for convenience that V is defined over Q, and let its dimension be d.
Even for varieties with B1 = 0 we do not expect a product like

∏
p

N(p)/pd or ∏
p

N(p)
/(

pd+1−1
p−1

)
(4)

to be necessarily absolutely convergent. But in some contexts there is a respectable
expression which is formally equivalent to one of these, with appropriate modifica-
tions of the factors at the bad primes. The idea that such an expression should have
number-theoretic significance goes back to Siegel (for genera of quadratic forms)
and Hardy/Littlewood (for what they called the singular series). Using the ideas
above, we are led to replace the study of the products (4) by a study of the behaviour
of L2d−1(s,V ) and L2d−2(s,V ) near s = d. By duality, this is the same as studying
L1(s,V ) near s = 1 and L2(s,V ) near s = 2. The information derived in this way ap-
pears to relate to the Picard group of V , defined as the group of divisors defined over
Q modulo linear equivalence. By considering simultaneously both V and its Picard
variety (the abelian variety which parametrises divisors algebraically equivalent to
zero modulo linear equivalence), one concludes that L1(s,V ) should be associated
with the Picard variety and L2(s,V ) with the group of divisors modulo algebraic
equivalence – that is, with the Néron-Severi group of V . These ideas motivated the
weak forms of the Birch/Swinnerton-Dyer conjecture (for which see Sect. 4) and the
case m = 1 of the Tate conjecture below. For the strong forms (which give expres-
sions for the leading coefficients of the relevent Laurent series expansions) heuristic
arguments are less convincing; but one can formulate conjectures for these coeffi-
cients by asking what other mysterious numbers turn up in the same context and
should therefore appear in the formulae for the leading coefficients.

The weak form of the Tate conjecture asserts that the order of the pole of
L2m(s,V ) at s = m + 1 is equal to the rank of the group of classes of m-cycles
on V defined over K, modulo algebraic equivalence; it is a natural generalization
of the case m = 1 for which the heuristics have just been shown. For a more de-
tailed account of both of these, including the conjectural formulae for the leading
coefficients, see [22] or [23].
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Question 3.2. What information about V is contained in its L-series?

There is in the literature a beautiful edifice of conjecture, lightly supported by
evidence, about the behaviour of the Li(s,V ) at integral points. The principal archi-
tects of this edifice are Beilinson, Bloch and Kato. Beilinson’s conjectures relate to
the order and leading coefficients of the Laurent series expansions of the Li(s,V )
at integer values of s; in them the leading coefficients are treated as elements of
C∗/Q∗. (For a full account see [24] or [25].) Bloch and Kato [26, 27] have strength-
ened these conjectures by treating the leading coefficients as elements of C∗. But I
do not believe that anything like the full story has yet been revealed.

4 Curves

The most important invariant of a curve is its genus g. In the language of algebraic
geometry over C, curves of genus 0 are called rational, curves of genus 1 are called
elliptic and curves of genus greater than 1 are of general type. But note that for a
number theorist an elliptic curve is defined to be a curve of genus 1 with a distin-
guished point P0 on it, both being defined over the ground field K. The effect of this
is that the points on an elliptic curve form an abelian group with P0 as its identity
element, the sum of P1 and P2 being the other zero of the function (defined up to
multiplication by a constant) with poles at P1 and P2 and a zero at P0.

A canonical divisor on a curve Γ of genus 0 has degree −2; hence by the
Riemann-Roch theorem Γ is birationally equivalent over the ground field to a conic.
The Hasse principle holds for conics, and therefore for all curves of genus 0; this
gives a complete answer to Question (A) at the beginning of these notes. But it does
not give an answer to Question (B). Over Q, a very simple answer to Question (B)
is as follows:

Theorem 4.1. Let a0,a1,a2 be nonzero elements of Z. If the equation

a0X2
0 + a1X2

1 + a2X2
2 = 0

has a nontrivial solution in Z, then it has a solution for which each aiX2
i is absolutely

bounded by |a0a1a2|.
Siegel [28] has given an answer to Question (B) over arbitrary algebraic number
fields, and Raghavan [29] has generalized Siegel’s work to quadratic forms in more
variables.

The knowledge of one rational point on Γ enables us to transform Γ birationally
into a line; so if Γ is soluble there is a parametric solution which gives explicitly all
the points on Γ defined over the ground field. This answers Question (C).

If Γ is a curve of general type defined over an algebraic number field K, Mordell
conjectured and Faltings proved that Γ (K) is finite; and a number of other proofs
have appeared since then. But it does not seem that any of them enable one to com-
pute Γ (K), though some of them come tantalizingly close. For a survey of several
such proofs, see [30].
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Question 4.2. Is there an algorithm for computing Γ (Q) when Γ is a curve of
general type defined over Q?

The study of rational points on elliptic curves is now a major industry, almost
entirely separate from the study of other Diophantine problems. If Γ is an ellip-
tic curve defined over an algebraic number field K, the group Γ (K) is called the
Mordell-Weil group. Mordell proved that Γ (K) is finitely generated and Weil ex-
tended this to all Abelian varieties. Thanks to Mazur [31] and Merel [32] the theory
of the torsion part of the Mordell-Weil group is now reasonably complete; but for the
non-torsion part all that was known before 1960 is that for any n > 1 Γ (K)/nΓ (K)
could be embedded into a certain group (the n-Selmer group, for which see Sect. 10)
which is finitely generated and computable. The process involved, which is known
as the method of infinite descent, goes back to Fermat; various forms of this for
n = 2 will be described in Sect. 10. By means of this process one can always com-
pute an upper bound for the rank of the Mordell-Weil group of any particular Γ ,
and the upper bound thus obtained can frequently be shown to be equal to the actual
rank by exhibiting enough elements of Γ (K). It was also conjectured that the dif-
ference between the upper bound thus computed and the actual rank was always an
even integer, but apart from this the actual rank was mysterious. This not wholly sat-
isfactory state of affairs has been radically changed by the Birch/Swinnerton-Dyer
conjecture, the weak form of which is described at the end of this section. A survey
of what is currently known or conjectured about the ranks of Mordell-Weil groups
can be found in [33].

Suppose now that Γ is a curve of genus 1 defined over K but not necessarily
containing a point defined over K. Let J be the Jacobian of Γ , defined as a curve
whose points are in one-one correspondence with the divisors of degree 0 on Γ
modulo linear equivalence. Then J is also a curve of genus 1 defined over K, and
J(K) contains the point which corresponds to the trivial divisor. So J is an elliptic
curve in our sense.

Conversely, if we fix an elliptic curve J defined over K we can consider the equiv-
alence classes (for birational equivalence over K) of curves Γ of genus 1 defined
over K which have J as Jacobian. For number theory, the only ones of interest are
those which contain points defined over each completion Kv. These form a commu-
tative torsion group, called the Tate-Shafarevich group and usually denoted by X;
the identity element of this group is the class which contains J itself, and it consists
of those Γ which have J as Jacobian and which contain a point defined over K. (The
simplest example of a nontrivial element of a Tate-Shafarevich group is the curve

3X3
0 + 4X3

1 + 5X3
2 = 0 with Jacobian Y 3

0 +Y 3
1 + 60Y3

2 = 0.)

Thus for curves of genus 1 the Tate-Shafarevich group is by definition the obstruc-
tion to the Hasse principle.

The weak form of the Birch/Swinnerton-Dyer conjecture states that the rank
of the Mordell-Weil group of an elliptic curve J is equal to the order of the zero
of L1(s,J) at s = 1; the conjecture also gives an explicit formula for the leading
coefficient of the power series expansion at that point. Note that this point is at the
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centre of the critical strip, so that the conjecture pre-supposes the analytic continu-
ation of L1(s,J). At present there are two well-understood cases in which analytic
continuation is known: when K = Q, so that J can be parametrised by means of mod-
ular functions, and when J admits complex multiplication. In consequence, these
two cases are likely to be easier than the general case; but even here I do not expect
much further progress in the next decade. In each of these two cases, if one assumes
the Birch/Swinnerton-Dyer conjecture one can derive an algorithm for finding the
Mordell-Weil group and the order of the Tate-Shafarevich group; and in the first of
the two cases this algorithm has been implemented by Gebel [34]. Without using
the Birch/Swinnerton-Dyer conjecture, Heegner long ago produced a way of gener-
ating a point on J whenever K = Q and J is modular; and Gross and Zagier [35, 36]
have shown that this point has infinite order precisely when L′(1,J) 
= 0. Building
on their work, Kolyvagin (see [37]) has shown the following.

Theorem 4.3. Suppose that the Heegner point has infinite order; then the group
J(Q) has rank 1 and X(J) is finite.

Kolyvagin [38] has also obtained sufficient conditions for both J(Q) and X(J) to
be finite. The following result is due to Nekovar and Plater.

Theorem 4.4. If the order of L(s,J) at s = 1 is odd then either J(Q) is infinite or
the p-part of X(J) is infinite for every good ordinary p.

If J is defined over an algebraic number field K and can be parametrized by mod-
ular functions for some arithmetic subgroup of SL2(R) then analytic continuation
and the functional equation for L1(s,J) follow; but there is not even a plausible con-
jecture identifying the J which have this property, and there is no known analogue
of Heegner’s construction.

In the complex multiplication case, what is known is as follows.

Theorem 4.5. Let K be an imaginary quadratic field and J an elliptic curve defined
and admitting complex multiplication over K. If L(1,J) 
= 0, then

(i) J(K) is finite;
(ii) For every prime p > 7 the p-part of X(J) is finite and has the order predicted

by the Birch/Swinnerton-Dyer conjecture.

Here (i) is due to Coates and Wiles, and (ii) to Rubin. For an account of the proofs,
see [39]. Katz has generalized (i) and part of (ii) to behaviour over an abelian exten-
sion of Q, but with the same J as before.

In general we do not know how to compute X. It is conjectured that it is always
finite; and indeed this assertion can be regarded as part of the Birch/Swinnerton-
Dyer conjecture, for the formula for the leading coefficient of the power series for
L1(s,J) at s = 1 contains the order of X(J) as a factor. If indeed this order is finite,
then it must be a square; for Cassels has proved the existence of a skew-symmetric
bilinear form on X with values in Q/Z, which is nonsingular on the quotient of
X by its maximal divisible subgroup. In particular, finiteness implies that if X
contains at most p−1 elements of order exactly p for some prime p then it actually
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contains no such elements; hence an element which is killed by p is trivial, and the
curves of genus 1 in that equivalence class contain points defined over K. For use
later, we state the case p = 2 as a lemma.

Lemma 4.6. Suppose that X(J) is finite and the quotient of the 2-Selmer group of
J by its soluble elements has order at most 2; then that quotient is actually trivial.

5 Varieties of Higher Dimension and the Hardy-Littlewood
Method

A first coarse classification of varieties of dimension n is given by the Kodaira
dimension κ , which can take the values −∞ or 0,1, . . . ,n. Denote the genus of a
curve by g; then for curves κ =−∞ corresponds to g = 0, κ = 0 to g = 1 and κ = 1
to g > 1; so the major split in the Diophantine theory of curves corresponds to the
possible values of κ .

Over C a full classification of surfaces can be found in [40]. But what is also
significant for the number theory (and cuts across this classification) is whether the
surface is elliptic – that is, whether over C there is a map V → C for some curve
C whose general fibre is a curve of genus 1. The case when the map V → C is
defined over the ground field K and C has genus 0 is discussed below; in this case
the Diophantine problems for V are only of interest when C(K) is nonzero, so that
C can be identified with P1. When C has genus greater than 1, the map V → C
is essentially unique and it and C are therefore both defined over K. By Faltings’
theorem, C(K) is then finite; thus each point of V (K) lies on one of a finite set of
fibres, and it is enough to study these. In contrast, we know nothing except in very
special cases when C is elliptic.

The surfaces with κ =−∞ are precisely the ruled surfaces – that is, those which
are birationally equivalent over C to P1×C for some curve C. Among these, by far
the most interesting are the rational surfaces, which are birationally equivalent to
P2 over C. From the number-theoretic point of view, there are two kinds of rational
surface:

• Pencils of conics, given by an equation of the form

a0(u,v)X2
0 + a1(u,v)X2

1 + a2(u,v)X2
2 = 0 (5)

where the ai(u,v) are homogeneous polynomials of the same degree. Pencils of
conics can be classified in more detail according to the number of bad fibres.

• Del Pezzo surfaces of degree d, where 0 < d ≤ 9. Over C, such a surface is
obtained by blowing up (9− d) points of P2 in general position – except when
d = 8, in which case the construction is more complicated. It is known that Del
Pezzo surfaces of degree d > 4 satisfy the Hasse principle and weak approxima-
tion; indeed those of degree 5 or 7 necessarily contain rational points. Del Pezzo
surfaces of degree 2 or 1 have attracted relatively little attention; it seems sen-
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sible to ignore them until the problems coming from those of degrees 4 and 3
have been solved. The Del Pezzo surfaces of degree 3 are the nonsingular cubic
surfaces, which have an enormous but largely irrelevant literature, and those of
degree 4 are the nonsingular intersections of two quadrics in P4. For historical
reasons, attention has been concentrated on the Del Pezzo surfaces of degree 3;
but the problems presented by those of degree 4 are necessarily simpler.

Surfaces with κ = 0 fall into four families:

• Abelian surfaces. These are the analogues in two dimensions of elliptic curves,
and there is no reason to doubt that their number-theoretical properties largely
generalize those of elliptic curves.

• K3 surfaces, including in particular Kummer surfaces. Some but not all K3 sur-
faces are elliptic.

• Enriques surfaces, whose number theory has been very little studied. Enriques
surfaces are necessarily elliptic.

• Bielliptic surfaces.

Surfaces with κ = 1 are necessarily elliptic.
Surfaces with κ = 2 are called surfaces of general type – which in mathematics is

generally a derogatory phrase. About them there is currently nothing to say beyond
Lang’s conjecture stated in Sect. 2.

For varieties of higher dimension (other than quadrics and Severi-Brauer va-
rieties) there seem to be at the moment only two ways of obtaining results: by
deduction from special results for surfaces, and by the Hardy/Littlewood method.
The latter differs from most geometric methods in that it is not concerned with an
equivalence class of varieties under birational or biregular transformation, but with
a particular embedding of a variety V in projective or affine space. A point P in
Pn defined over Q has a representation (x0, . . . ,xn) where the xi are integers with
no common factor; and this representation is unique up to changing the signs of
all the xi. We define the height of P to be h(P) = max |xi|; a linear transformation
on the ambient space multiplies heights by numbers which lie between two positive
constants depending on the linear transformation. Denote by N(H,V ) the number of
points of V (Q) whose height is less than H; then it is natural to ask how N(H,V ) be-
haves as H→ ∞. This is the core question for the Hardy-Littlewood method, which
when it is applicable is the best (and often the only) way of proving that V (Q) is not
empty. In very general circumstances that method provides estimates of the form

N(H,V ) = leading term + error term. (6)

The leading term is usually the same as one would obtain by probabilistic argu-
ments. But such results are only valuable when it can be shown that the error term is
small compared to the leading term, and to achieve this the dimension of V needs to
be large compared to its degree. The extreme case of this is the following theorem,
due to Birch [41].

Theorem 5.1. Suppose that the Fi(X0, . . . ,XN) are homogeneous polynomials with
coefficients in Z and degFi = ri for i = 1, . . . ,m, where r1, . . . ,rm are positive odd
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integers. Then there exists N0(r1, . . . ,rm) such that if N ≥ N0 the Fi have a common
nontrivial zero in ZN+1.

The proof falls into two parts. First, the Hardy-Littlewood method is used to prove
the result in the special case when m = 1 and F1 is diagonal – that is, to show that if
r is odd and N ≥ N1(r) then

c0Xr
0 + . . .+ cNXr

N = 0

has a nontrivial integral solution. Then the general case is reduced to this special
case by purely elementary methods. The requirement that all the ri should be odd
arises from difficulties connected with the real place; over a fixed totally complex
algebraic number field there is a similar theorem for which the ri can be any positive
integers.

The Hardy-Littlewood method was designed for a single equation in which the
variables are separated – for example, an equation of the form

f1(X1)+ . . .+ fN(XN) = c

where the fi are polynomials, the Xi are integers, and one wishes to prove solubility
in Z for all integers c, or all large enough c, or almost all c. But it has also been ap-
plied both to several simultaneous equations and to equations in which the variables
are not separated. The following theorem of Hooley [42] is the most impressive
result in this direction.

Theorem 5.2. Homogeneous nonsingular nonary cubics over Q satisfy both the
Hasse principle and weak approximation.

6 Manin’s Conjecture

Even on the most optimistic view, one can only hope to make the Hardy-Littlewood
method work for families for which N(H,V ) is asymptotically equal to its proba-
bilistic value; in particular it seems unlikely that it can be made to work for families
for which weak approximation fails. On the other hand, one can hope that the lead-
ing term in (6) will still have the correct shape for other families, even if it is in
error by a constant factor. Manin has put forward a conjecture about the asymptotic
density of rational solutions for certain geometrically interesting families of vari-
eties for which weak approximation is unlikely to hold: more precisely, for Fano
varieties embedded in Pn by means of their anticanonical divisors. A general survey
of the present state of the Manin conjecture can be found in [43]. In the full gener-
ality in which he stated the conjecture, it is known to be false; and in what follows
I consider it only for Del Pezzo surfaces V of degrees 3 and 4. These are the most
natural ones for the number theorist to consider, because of the simplicity of the
equations which define them – one cubic and two quadratic respectively. The anal-
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ogy of the Hardy-Littlewood method suggests an estimate AH ∏(N(p)/(p+1)) for
N(H,V ), where the product is taken over all primes less than a certain bound which
depends on H. In view of what is said in Sect. 3, this product ought to be replaced
by something which depends on the behaviour of L2(s,V ) near s = 1. The way in
which the leading term in the Hardy-Littlewood method is obtained suggests that
here we should take s−1 to be comparable with (logH)−1. Remembering the Tate
conjecture, this gives the right hand side of (7) as a conjectural estimate for N(H,V ).
But to ask about N(H,V ) is the wrong question, for V may contain lines L defined
over Q, and for any line N(H,L)∼ AH2 for some nonzero constant A. This is much
greater than the order-of-magnitude estimate for N(H,V ) given by a probabilistic ar-
gument. Manin’s way to resolve this absurdity is to study not N(H,V ) but N(H,U),
where U is the open subset of V obtained by deleting the finitely many lines on V .
He therefore conjectured that

N(H,U)∼ AH(logH)r−1 where r is the rank of Pic(V ). (7)

Peyre [44] has given a conjectural formula for A. Unfortunately there are no nonsin-
gular Del Pezzo surfaces of degrees 3 or 4, and very few singular ones, for which
(7) has been proved.

Question 6.1. Are there nonsingular Del Pezzo surfaces V of degree 3 or 4 for which
the Manin conjecture can be proved by present methods?

In the first instance, it would be wise to address this problem under rather restric-
tive hypotheses about V , not least because the Brauer-Manin obstruction to weak
approximation occurs in the conjectural formula for A and therefore the problem is
likely to be easier for families of V for which weak approximation holds. The sim-
plest cases of all are likely to be among those for which V is birationally equivalent
to P2 over Q. For nonsingular cubic surfaces, for example, it has long been known
that this happens if and only if V is everywhere locally soluble and contains a di-
visor defined over Q which is the union of 2, 3 or 6 skew lines. In the case when
V contains two skew lines each defined over Q, a lower bound for N(H,U) of the
correct order of magnitude was proved in [45].

An alternative method of describing the statistics of rational points on U is by
means of the height zeta function

Z(h,U,s) = ∑P∈U(Q)(h(P))−s

where h is some height function – for example, the classical one defined in Sect. 5.
(Note that, despite the name, we do not expect this function to have the properties
listed in Sect. 3.) Now (7) is more or less equivalent to

Z(h,U,s)∼ A′(s−1)−r as s tends to 1 from above.

It is now natural to hope that Z(h,U,z) can be analytically continued to some
halfplane Rs > c for some c < 1, subject to a pole of order r at s = 1. If this is
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so, we can derive N(H,U) from Z(U,s) by means of Perron’s formula

N(H,U) =
1

2π i

∫ c+i∞

c−i∞
Bs Z(U,s)

s
ds

where H−1 < B < H and c > 1. Now (7) can be strengthened to

N(H,U) = H f (logH)+ O(Hc+ε) (8)

where f is a polynomial of degree r−1.
De la Bretèche and Browning [46, 47, 48] have proved results of the form (8) for

several singular Del Pezzo surfaces of degrees 3 and 4. Their methods are intricate,
and it would be interesting to know what features of the geometry of their particular
surfaces underlie them. The simplest surface of this kind, and the one about which
most is known, is the toric surface

X3
0 = X1X2X3. (9)

Let U be the open subset of (9) given by X0 
= 0. Building on earlier work of de la
Bretèche [49] and assuming the Riemann Hypothesis, he and I have proved [50] that

N(U,H) = H f (logH)+CH9/11 +R∑γnH3/4+ρn/8 + O(H4/5) (10)

where C and the γn are constants, ρn runs through the zeros of the Riemann zeta
function, and f is a certain polynomial of degree 6. Some bracketing of terms for
which the ρn are nearly equal may be needed to ensure convergence. The associated
height zeta function can be meromorphically continued to Rs > 3

4 but no further.
The key idea in the proofs of (10) and of analytic continuation is to introduce the

multiple Dirichlet series

φ(s1,s2,s3) = ∑P∈U(Q)|x1|−s1 |x2|−s2 |x3|−s3

where (x0,x1,x2,x3) is a primitive integral representation of P. At the cost of a factor
4, we can confine ourselves in the definition of φ to points with all coordinates
positive. We have

|x1|−s1 |x2|−s2 |x3|−s3 = ∏p p−{s1vp(x1)+s2vp(x2)+s3vp(x3)}

from which it follows that φ(s1,s2,s3) = 4∏p φ∗(p−s1 , p−s2 , p−s3) where the factor
associated with p is the sum over the points all of whose coordinates are powers of
p. A straightforward calculation shows that

φ∗(z1,z2,z3) =
1 + ∑z2

i z j(1− z3
k)− z3

1z3
2z3

3

(1− z3
1)(1− z3

2)(1− z3
3)

,
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the sum being taken over the six permutations i, j,k of 1, 2, 3. This expresses
φ(s1,s2,s3) as an Euler product and enables its meromorphic continuation to the
open set in which Rsi > 0 for i = 1,2,3. (A simpler example of the same process
will be found in the next paragraph.) Moreover

Z(h,U,s) =
1

(2π i)2

∫ c2+i∞

c2−i∞

∫ c3+i∞

c3−i∞

sφ(s− s2− s3,s2,s3)
s2s3(s− s2− s3)

ds2ds3

provided Rs,c2 and c3 are chosen so that the series for φ is absolutely conver-
gent. One can now move the contours of integration to the left, though the reader is
warned that this imvolves technical problems as well as some tedious calculation.
In the end (10) and the meromorphic continuation of Z(h,U,s) follow.

The estimate (10) is reminiscent of the explicit formula of prime number theory.
But the second term on the right is unexpected, and one would have hoped that the
exponent in the third term would have been ρn rather than 3

4 + 1
8 ρn. Both these blem-

ishes are caused by the fact that h(P), though classical, is not the most natural height
function. For comparison, we now consider what happens if we use as our height
function h1(P) = |x0| where (x0,x1,x2,x3) is a primitive integral representation of
P. Now we obtain

Z(h1,U,s) = 4∏p

1 + 7p−s + p−2s

(1− p−s)2 .

The factor corresponding to p on the right is

(1− p−s)−9{(1− p−s)7(1 + 7p−s + p−2s)}

where the expression in curly brackets is 1 + O(p−2s); so using the known analytic
continuation of the Riemann zeta function, this gives the continuation of Z(h1,U,s)
to Re s > 1

2 . The expression in curly brackets is actually

1−27p−2s + O(p−3s);

so we can take out a factor (1− p−2s)27 and obtain the continuation of Z(h1,U,s) to
Res > 1

3 – and so on. The eventual conclusion is that Z(h1,U,s) can be meromor-
phically continued to Re s > 0 but that Res = 0 is a natural boundary. Using Perron’s
formula we can obtain a complicated formula for the corresponding counting func-
tion N1(H,U) of which the leading terms are

N1(H,U) = H f1(logH)+ H1/3g1(logH)+∑γ1n(logH)Hρn/2 + O(H1/5+ε).

Here f1 and g1 are polynomials of degrees 8 and 104 respectively, ρn runs through
the complex zeros of the Riemann zeta function and the γ1n are polynomials of
degree 26.

The second term here is much smaller than that in (10). This raises the question
of what is the best height function to choose, and indeed whether there is a canonical
height function on at least some Del Pezzo surfaces. (Recall that on abelian varieties
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there certainly is a canonical height function.) A very partial answer to this can be
found in [51], where reasons are given for using for (9) the height function h∗(P) =
∏p p−sαp where

αp =
1
2
((vp(x1))2 +(vp(x2))2 +(vp(x3))2−3(vp(x0))2).

With this choice, again assuming the Riemann Hypothesis, the natural boundary
for the height zeta function Z(h∗,U,s) is Rs = 0 and we can exhibit a (very compli-
cated) formula for the corresponding counting function N∗(H,U) with error O(Hε).
This time the polynomial f ∗ in the leading term H f ∗(logH) has degree 5 and the
remaining terms contribute O(H1/2+ε).

In the light of these results it is natural to wonder what is the shape of the error
term in (8) when V is nonsingular. At present, the only way to approach this question
is by computation. It is advantageous to study varieties whose equations have the
form g1(X0,X1) = g2(X2,X3) because counting rational points is then much faster
than for general cubic surfaces. Some computations have been made for V of the
form

a0X3
0 + a1X3

1 + a2X3
2 + a3X3

3 = 0.

Now r = 1 and the evidence strongly suggests that in (8) we can take c = 1
2 . The

results are indeed compatible with a conjecture of the form

N(H,V ) = AH +∑γnH1/2+itn + O(H1/2−ε) (11)

for a discrete sequence of real tn. But the evidence available so far, which is for
H ≤ 105, is too scanty for one to be able to estimate the first few tn with any great
accuracy. However, the way in which they appear in (11) suggests that they should
be the zeros of some L-series – and of course there is one L-series naturally associ-
ated with V .

There is no reason why one should not also ask about the density of rational
points on surfaces which are not Fano. For Del Pezzo surfaces, the conjectural value
of c for which N(H,U)∼ AH(logH)c is defined by the geometry rather than by the
number theory, though that is not true of A. For other varieties, the corresponding
statement need no longer be true. We start with curves. For a curve of genus 0
and degree d, we have N(H,V ) ∼ AH2/d; and for a curve of genus greater than 1
Faltings’ theorem is equivalent to the statement that N(H,V ) = O(1). But if V is an
elliptic curve then N(H,V ) ∼ A(logH)r/2 where r is the rank of the Mordell-Weil
group. (For elliptic curves there is a more canonical definition of height, which is
invariant under bilinear transformation; this is used to prove the result above.)

For pencils of conics, Manin’s question is probably not the best one to ask, and it
would be better to proceed as follows. A pencil of conics is a surface V together with
a map V → P1 whose fibres are conics. Let N∗(H,V ) be the number of points on P1

of height less than H for which the corresponding fibre contains rational points.
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Question 6.2. What is the conjectural estimate for N∗(H,V ) and under what condi-
tions can one prove it?

It may be worth asking the same questions for pencils of curves of genus 1.
For surfaces of general type, Lang’s conjecture implies that questions about

N(H,V ) are really questions about certain curves on V ; and for Abelian surfaces
(and indeed Abelian varieties in any dimension) the obvious generalisation of the
theorem for elliptic curves holds. The new case of greatest interest is that of K3
surfaces, and in particular that of nonsingular quartic surfaces. The same heuristics
which led to (7) for Del Pezzo surfaces now lead one to

N(H,V )∼ A(logH)r (12)

where r is as before the rank of Pic(V ). Unfortunately, if V contains at least one
soluble curve of genus 0 it contains infinitely many; and on each one of them the
rational points will outnumber the estimate given by (12). To delete all these curves
and count the rational points on what is left appears neither sensible nor feasible; so
we have to assume that V contains no such curves. If V contains a pencil of curves of
genus 1 it again seems unlikely that (12) can hold. Van Luijk has tabulated N(H,V )
for certain quartic surfaces which have neither of these properties and which have
r = 1 or 2, and his results fit the conjecture (12) very well.

7 Schinzel’s Hypothesis and Salberger’s Device

Schinzel’s Hypothesis gives a conjectural answer to the following question: given
finitely many polynomials F1(X), . . . ,Fn(X) in Z[X ] with positive leading coeffi-
cients, is there an arbitrarily large integer x at which they all take prime values?
There are two obvious obstructions to this:

• One or more of the Fi(X) may factorize in Z[X ].
• There may be a prime p such that for any value of x mod p at least one of the

Fi(x) is divisible by p.

If the congruence Fi(x) ≡ 0mod p is non-trivial, it has at most deg(Fi) solutions;
so the second obstruction can only happen for p ≤ ∑deg(Fi) or if p divides every
coefficient of some Fi. Schinzel’s Hypothesis is that these are the only obstructions:
in other words, if neither of them happens then we can choose an arbitrarily large x
so that every Fi(x) is a prime.

If one assumes Schinzel’s Hypothesis the corresponding result over any algebraic
number field follows easily. But in most applications there is a predetermined set B
of bad places, and we need to impose local conditions on x at some or all of them.
These conditions constrain the values of the Fi(x) at those places, and therefore
we cannot necessarily require these values to be units at the bad primes; nor in
the applications do we need to. I have stated Lemma 7.1 in a form which applies
to homogeneous polynomials Gi in two variables; but the reader who wishes to
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do so will have no difficulty in stating and proving the corresponding (stronger)
result for polynomials in one variable. Just as with the original version of Schinzel’s
Hypothesis, provided that the coefficients of Gi for each i have no common factor
we need only verify the existence of the yp,zp in the statement of the lemma when
the absolute norm of p does not exceed ∑deg(Gi).

Lemma 7.1. Let k be an algebraic number field and o the ring of integers of k.
Let G1(Y,Z), . . . ,Gn(Y,Z) be homogeneous irreducible elements of o[Y,Z] and B
a finite set of primes of k. Suppose that for each p not in B there exist yp,zp in o
such that none of the Gi(yp,zp) is in p. For each p in B, let Vp be a non-empty open
subset of kp×kp; and for each infinite place v of k let Vv be a non-empty open subset
of k∗v . Assume Schinzel’s Hypothesis; then there is a point η×ζ in k∗×k∗, with η ,ζ
integral outside B, such that

• η× ζ lies in Vp for each p in B;
• η/ζ lies in Vv for each infinite place v;
• Each ideal (Gi(η ,ζ )) is the product of a prime ideal not in B and possibly

powers of primes in B.

Proof. Choose α,β in o so that α/β lies in Vv for each infinite place v and no
Gi(α,β ) vanishes. We can repeatedly adjoin a further prime p to B provided we
define the corresponding Vp to be the set of all y× z in op× op such that each
Gi(y,z) is a unit at p. We can therefore assume that B contains all ramified primes
p and all primes p such that

• The absolute norm of p is not greater than [k : Q]∑deg(Gi); or
• p divides any Gi(α,β ).

Let B be the set of primes in Q which lie below some prime of B, and further
adjoin to B all the primes of k not already in B which lie above some prime of B.
By the Chinese Remainder Theorem we can choose η0,ζ0 in k, integral outside B
and such that each Gi(η0,ζ0) is nonzero and η0× ζ0 lies in Vp for each p in B. For
reasons which will become clear after (13), we also need to ensure that β η0 
= αζ0;
this can be done by varying η0 or ζ0 by a suitable element of o divisible by large
powers of each p in B. As an ideal, write

(Gi(η0,ζ0)) = aibi

where the prime factors of each ai are outside B and those of each bi are in B; thus
ai is integral. Let Ni be the absolute norm of bi. Now choose γ 
= 0 in o to be a unit
at all the primes outside B which divide any Gi(η0,ζ0) and to be divisible by such
large powers of each p in B that

η× ζ = (αγξ + η0)× (β γξ + ζ0)

is in Vp for all ξ ∈ o and all p ∈B, and that if we write

gi(X) = Gi(αγX + η0,β γX + ζ0), (13)
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then every coefficient of gi(X) is divisible by at least as great a power of p as is bi.
We have arranged that the two arguments of Gi in (13), considered as linear forms in
X , are not proportional; thus if gi(X) factorizes in k[X ] then Gi(αγU + η0V,β γU +
ζ0V ) would factorize in k[U,V ], contrary to the irreducibility of Gi(Y,Z). We shall
also require for each i that gi(X) is prime to all its conjugates as elements of k̄[X ];
since the zeros of gi(X) have the form γ−1ξi j for some ξi j independent of γ , this
merely requires the ratios of γ to its conjugates to avoid finitely many values. Write

Ri(X) = Normk(X)/Q(X)(gi(X))/Ni;

then Ri(X) has all its coefficients integral, for at each prime it is the norm of a
polynomial with locally integral coefficients. An irreducible factor of Ri(X) in Q[X ]
cannot be prime to gi(X), because then it would also be prime to all the conju-
gates of gi(X) and therefore to their product – which is absurd. If Ri(X) had two
coprime factors in Q[X ], their highest common factors with gi(X) would be non-
trivial coprime factors of gi(X) in k[X ], whence gi(X) would not be irreducible in
k[X ]. Finally, Ri(X) cannot have a repeated factor because the conjugates of gi(X)
are pairwise coprime. So Ri(X) = AiHi(X) in Z[X ], with Hi(X) irreducible. Clearly
we can require the leading coefficient of each Hi(X) to be positive. But the only
primes which divide the constant term in Ri(X) are the primes outside B which
divide Gi(η0,ζ0), and none of them divide the leading coefficient of Ri(X); hence
Ai =±1. Now apply Schinzel’s Hypothesis to the Hi(X), which we can do because
no Hi(0) is divisible by any prime in B. But if Hi(x) is equal to a prime not in B
then the ideal (gi(x)) must be equal to the product of bi and a prime ideal not in B.

��
If we are content to obtain results about 0-cycles of degree 1 instead of results

about points, it would be enough to prove solubility in some field extension of each
large enough degree. Arguments of this type were pioneered by Salberger. Unfortu-
nately neither of the recipes below enables us to control either the units or the ideal
class group of the field involved, so at present the usefulness of this idea is rather
limited.

Lemma 7.2. Let k be an algebraic number field and P1(X), . . . ,Pn(X) monic irre-
ducible non-constant polynomials in k[X ]; and let N ≥ ∑deg(Pi) be a given integer.
Let B be a finite set of places of k which contains the infinite places, the primes at
which some coefficient of some Pi is not integral and any other primes p at which
∏Pi(X) does not remain separable when reduced mod p. Let b > 1 be in Z and such
that no prime of k which divides b is in B. For each v in B let Uv be a non-empty
open set of separable monic polynomials of degree N in kv[X ]. Let M > 0 be a fixed
rational integer. Then we can find an irreducible monic polynomial G(X) in k[X ] of
degree N which lies in each Uv and for which λ , the image of X in K = k[X ]/G(X),
satisfies

(Pi(λ )) = PiAiC
M
i (14)

for each i, where the Pi are distinct first degree primes in K not lying above any
prime in B, the Ai are products of bad primes in K and the Ci are integral ideals
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in K. (Here we call a prime in K bad if it divides b or any prime in B.) Moreover
we can arrange that λ = α/β where α is integral and β is an integer all of whose
prime factors are bad.

Lemma 7.3. Let k be an algebraic number field and P1(X), . . . ,Pn(X) monic irre-
ducible non-constant polynomials in k[X ]; and let N ≥ ∑deg(Pi) be a given integer.
Let B be a finite set of places of k which contains the infinite places, the primes at
which some coefficient of some Pi is not integral and any other primes p at which
∏Pi(X) does not remain separable when reduced mod p.

Let L be a finite extension of k in which all the polynomials Pi split completely,
and which is Galois over Q. Let V be an infinite set of finite primes of k lying over
primes in Q which are totally split in L. Suppose that we are given for each v ∈B a
non-empty open set Uv of separable monic polynomials in kv[X ] of degree N. Then
we can find an irreducible monic polynomial G(X) in k[X ] of degree N such that if
θ is the image of X in k[X ]/G(X) then

(i) θ is an integer except perhaps at primes in k(θ ) above those in B∪V;
(ii) G(X) is in Uv for each v in B;

(iii) For each i there is a finite prime wi in k(θ ), of absolute degree one, such that
Pi(θ ) is a uniformizing parameter for wi and a unit at all primes except wi and
possibly some of those above some prime in B∪V.

The existence of V follows from Tchebotarov’s density theorem. The proof of
Lemma 7.3 can be found in [52]. The proof of Lemma 7.2 is currently unpub-
lished. The idea underlying the proofs of both these Lemmas is as follows. Write
R(X) = ∏Pi(X) and Ri(X) = R(X)/Pi(X). Any polynomial G(X) in k[X ] can be
written in just one way in the form

G(X) = R(X)Q(X)+∑Ri(X)ψi(X) (15)

with deg ψi < deg Pi; for if λi is a zero of Pi(X) this is just the classical partial
fractions formula

G(X)
∏Pi(X)

= Q(X)+∑ ψi(X)
Pi(X)

with ψi(λi) = G(λi)/Ri(λi). This property determines for each i a unique ψi(X) in
k[X ] of degree less than degPi. The same result holds over any kv. If the coefficients
of G are integral at v, for some v not in B, then so are those of Q and each ψi because
R and the Ri are monic and Ri(λi) is a unit outside B. For each v in B let Gv(X) be
a polynomial of degree N lying in Uv, and write

Gv(X) = R(X)Qv(X)+∑Ri(X)ψiv(X)

with deg ψiv < deg Pi. We adjoin to B a further finite place w at which b is a unit,
and associate with it a monic irreducible polynomial Gw(X) in kw[X ] of degree N;
the only purpose of Gw is to ensure that the G(X) which we construct is irreducible
over k. We then build G(X), close to Gv(X) for every v ∈B including w.
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Let pi be the prime in k below Pi. By computing the resultant of Pi(X) and G(X)
in two different ways, we obtain

NormK/kPi(λ ) =±Normki/kG(λi) =±Normki/k(φiRi(λi)) (16)

where λi is a zero of Pi(X). By hypothesis Ri(λi) is a unit at every place of k(λi)
which does not lie above a place in B; and we can arrange that the denominator of
Normki/kφi is only divisible by bad primes, and its numerator is the product of the
first degree prime pi, powers of primes in B and other factors which we can largely
control by the way in which we build G(X). That depends on which Lemma we are
trying to prove, and it is the presence of these factors that lead to the complications
in the statements of the two Lemmas.

8 The Legendre-Jacobi Function

If α,β are elements of k∗ and v is a place of k, the multiplicative Hilbert symbol
(α,β )v is defined by

(α,β )v =

{
1 if αX2 + βY2 = Z2 is soluble in kv,

−1 otherwise.

The additive Hilbert symbol is defined in the same way except that it takes the values
0 and 1 in F2 instead of 1 and −1. The Hilbert symbol is effectively a replacement
for the quadratic residue symbol, with the advantage that it treats the even primes
and the infinite places in just the same way as any other prime. It is symmetric in
α,β and its principal properties are

• (α1α2,β )v = (α1,β )v(α2,β )v and (α,β1β2)v = (α,β1)v(α,β2)v;
• For fixed α,β , (α,β )v = 1 for almost all v, and ∏(α,β )v = 1 where the product

is taken over all places v of k.

The second of these is one of the main results of class field theory.
The Legendre-Jacobi function L is crucial to much of what follows. Its theory is

described in some detail here, because there is no adequate source for it in print. Let
F(U,V ),G(U,V ) be homogeneous coprime square-free polynomials in k[U,V ]. Let
B be a finite set of places of k containing the infinite places, the primes dividing 2,
those at which any coefficient of F or G is not integral, and any primes p at which
FG does not remain separable when reduced mod p.

Let N 2 = N 2(k) be the set of α×β with α,β integral and coprime outside B,
and let N 1 = N 1(k) be k∪{∞}. For α ×β in k× k with α,β not both zero, we
shall consistently write λ = α/β with λ in N 1(k). Provided F(α,β ) and G(α,β )
are nonzero, we define the function

L(B;F,G;α,β ) : α×β �→∏
p

(F(α,β ),G(α,β ))p (17)
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on N 2, where the outer bracket on the right is the multiplicative Hilbert symbol
and the product is taken over all primes p of k outside B which divide G(α,β ). By
the definition of B, F(α,β ) is a unit at any such prime. We can restrict the product
in (17) to those p which divide G(α,β ) to an odd power; thus we can also write
it as ∏ χp(F(α,β )) where χp is the quadratic character mod p and the product is
taken over all p outside B which divide G(α,β ) to an odd power. This relationship
with the quadratic residue symbol underlies the proof of Lemma 8.1. The function
L does depend on B, but the effect on the right hand side of (17) of increasing
B is obvious. Some of the more interesting properties of L depend on degF being
even, but this usually holds in applications. In the course of the proofs, however, we
need to consider functions (17) with degF odd; and for this reason it is expedient to
introduce

M(B;F,G;α,β ) = L(B;F,G;α,β )(∏(α,β )v)(degF)(degG),

where the product is taken over all p outside B which divide β and therefore do not
divide α .

Lemma 8.1. The value of M is continuous in the topology induced on N 2 by B.
For each v in B there is a function m(v;F,G;α,β ) with values in {±1} which is
continuous on N 2 in the v-adic topology, such that

M(B;F,G;α,β ) = ∏
v∈B

m(v;F,G;α,β ). (18)

Proof. If degF is even, so that M = L, the neatest proof of the lemma is by means
of the evaluation formula in [11], Lemma 7.2.4. When degG is even but degF may
not be, the result follows from (20), and (19) then gives the general case. (The proof
in [11] is for k = Q, but there is not much difficulty in modifying it to cover all k.)
However, the proof which we shall give, using the ideas of [53], provides a more
convenient method of evaluation.

For this proof we have to impose on B the additional condition that it contains
all primes whose absolute norm does not exceed deg(FG). As the proof in [11]
shows, this condition is not needed for the truth of Lemma 8.1 itself; but we use it
in the proof of (25) below, and the latter is crucial to the subsequent argument. In
any case, to classify all small enough primes as bad is quite usual. We repeatedly
use the fact that L(B;F,G) and M(B;F,G) are multiplicative in both F and G; the
effect of this is that we can reduce to the case when both F and G are irreducible in
oB[U,V ], where oB is the ring of elements of k integral outside B. Introducing M
and dropping the parity condition on degF are not real generalizations since if we
increase B so that the leading coefficient of F is a unit outside B then

M(B;F,G) = L(B;F,GV degG) (19)

by (21), and we can apply (20) to the right hand side.
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It follows from the product formula for the Hilbert symbol that

L(B; f ,g;α,β )L(B;g, f ;α,β ) = ∏
v∈B

( f (α,β ),g(α,β ))v, (20)

provided that f (α,β ), g(α,β ) are nonzero. The right hand side of (20) is the prod-
uct of continuous terms each of which only depends on a single v in B. This formula
enables us to interchange F and G when we want to, and in particular to require that
degF ≥ degG in the reduction process which follows. We also have

L(B; f ,g;α,β ) = L(B; f −gh,g;α,β ) (21)

for any homogeneous h in k[U,V ] with degh = deg f − degg provided the coeffi-
cients of h are integral outside B, because corresponding terms in the two products
are equal. Both (20) and (21) also hold for M.

We deal first with two special cases:

• G is a constant. Now M(B;F,G) = 1 because all the prime factors of G must
be in B, so that M(B;F,G) = L(B;F,G) and the product in the definition of
L(B;F,G) is empty.

• G = V . Choose H so that F − GH = γUdegF for some nonzero γ . Now
M(B;F,G) = 1 follows from the previous case and (21), since all the prime
factors of γ must be in B.

We now argue by induction on deg(FG). Since we can assume that F and G are
irreducible, we need only consider the case when

degF ≥ degG > 0, G = γUdegG + . . . , F = δUdegF + . . .

for some nonzero γ,δ . Let B1 be obtained by adjoining to B those primes of k not
in B at which γ is not a unit. By (21) we have

M(B1;F,G) = M(B1;F− γ−1δGUdegF−degG,G). (22)

By taking a factor V out of the middle argument on the right, and using (20), the
second special case above and the induction hypothesis, we see that M(B1;F,G) is
continuous in the topology induced by B1 and is a product taken over all v in B1

of continuous terms each one of which depends on only one of the v. Hence the
same is true of M(B;F,G), because this differs from M(B1;F,G) by finitely many
continuous factors, each of which depends only on one prime in B1 \B.

But B1 \B only contains primes whose absolute norm is greater than deg(FG).
Thus by an integral unimodular transformation from U,V to U,V1 we can arrange
that G = γ1UdegG + . . . and F = δ1UdegF + . . . where γ1 is a unit at each prime in
B1 \B. Let B2 be obtained from B by adjoining all the primes at which γ1 is not
a unit; then M(B;F,G) has the same properties with respect to B2 that we have
already shown that it has with respect to B1. Since B1∩B2 = B, this implies that
M(B;F,G) already has these properties with respect to B. ��
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Of course there will be finitely many values of α/β for which at some stage of
the argument the right hand side of (20) appears to be indeterminate; but by means
of a preliminary linear transformation on U,V one can avoid this and ensure that the
formula (18) is meaningful except when F(α,β ) or G(α,β ) vanishes.

When degF is even, the value of L(B;F,G;α,β ) is already determined by λ =
α/β regardless of the values of α and β separately; here λ lies in k∪{∞} with the
roots of F(λ ,1) and G(λ ,1) deleted. We shall therefore also write this function as
L(B;F,G;λ ). But note that it is not necessarily a continuous function of λ ; see the
discussions in [12] and Sect. 9 of [11], or Lemma 8.4 below. Moreover if B does
not contain a base for the ideal class group of k then not all elements of k∪{∞} can
be written in the form α/β with α,β integers coprime outside B; so we have not
yet defined L(B;F,G;λ ) for all λ . To go further in the case when degF is even, we
modify the definition (17) so that it extends to all α×β in k× k such that F(α,β )
and G(α,β ) are nonzero. For any such α,β and any p not in B, choose αp,βp

integral at p, not both divisible by p and such that α/β = αp/βp. Write

L(B;F,G;α,β ) = ∏(F(αp,βp),G(αp,βp))p (23)

where the product is taken over all p not in B such that p|G(αp,βp). This is a finite
product whose value does not depend on the choice of the αp and βp; indeed it only
depends on λ = α/β and when α,β are integers coprime outside B it is the same
as the function given by (17). Thus we can again write it as L(B;F,G;λ ). This
generalization is not really needed until we come to (27); but at that stage we cannot
take account of the ideal class group of K because we need B to be independent of
K. Its disadvantage is that L is no longer necessarily a continuous function of α×β .

If deg F or deg G is 0 or 1, it is easy to obtain an evaluation formula; so the first
case of interest is when degF = degG = 2. Suppose that

F = a1U2 + b1UV + c1V 2, G = a2U2 + b2UV + c2V
2 (24)

and that B contains the infinite places and the primes which divide 2 or

R = (a1c2−a2c1)2−b1b2(a1c2 + a2c1)+ a1c1b2
2 + a2c2b2

1,

the resultant of F and G. Suppose also that η× ζ and ρ×σ are in N 2. Then

L(B;F,G;η ,ζ )L(B;F,G;ρ ,σ)

= ∏
v∈B

{( f/(ση−ρζ ),R)v( f G(ρ ,σ),− f G(η ,ζ ))v}

where
f = F(η ,ζ )G(ρ ,σ)−F(ρ ,σ)G(η ,ζ ).

If we set ρ ,σ to convenient values, this gives the value of L(B;F,G;η ,ζ ).
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The proof of Lemma 8.1 constructs an evaluation formula all of whose terms
come from the right hand side of (20) for various pairs f ,g. For α ×β in N 2, the
formula can therefore be described by an equation of the form

m(v;F,G;α,β ) = ∏
j
(φ j(α,β ),ψ j(α,β ))v. (25)

Here the φ j,ψ j are homogeneous elements of k[U,V ] which depend only on F and
G and not on v or B. The decomposition (25) is not unique, but we can display an
invariant aspect of it.

Let θ = γ1U + γ2V be a linear form with γ1,γ2 coprime integers in k. By using
(φ ,ψ)v = (φ ,θψ)v(φ ,θ )v and (−θ ,θ )v = 1, we can ensure that all the φ j,ψ j in (25)
have even degree except perhaps that ψ0 = θ . Denote by Θ the group of elements
of k∗ which are not divisible to an odd power by any prime of k outside B, and by
Θ0 ⊂Θ the subgroup consisting of those ξ which are quadratic residues mod p for
all p in B; thus we are free to multiply φ0 by any element of Θ0.

Lemma 8.2. Provided degF is even, if ψ0 = θ we can take φ0 to be in Θ .

The evaluation formula for (24) shows that (φ0,ψ0)v may not be trivial even when
F and G both have even degree.

Proof. Let γ in k∗ be a unit outside B, and apply (25) to the identity

L(B;F,G;γα,γβ ) = L(B;F,G;α,β ),

where α×β is in N 2. On cancelling common factors, we obtain

∏
v∈B

(φ0(α,β ),γ)v = 1. (26)

If we can choose α×β in N 2 so that φ0(α,β ) is not in Θ , this gives a contradiction.
For let δ prime to φ0(α,β ) be such that ∏(φ0(α,β ),δ )p =−1 where the product is
taken over all primes p outside B at which φ0(α,β ) is not a unit. Let B1 be obtained
by adjoining to B all the primes at which δ is not a unit; then ∏(φ0(α,β ),δ )v =−1
by the Hilbert product formula, where the product is taken over all places v in B1.
Recalling that φ0 does not depend on B and writing B1,δ for B,γ in (26), we
obtain a contradiction. It follows that φ0(α,β ) lies in Θ for all α,β ; this can only
happen if φ0(U,V ) is itself in Θ modulo squares of elements of k[U,V ]. ��

In practice, what we usually need to study is the subspace of N 2 given by n con-
ditions L(B;Fν ,Gν ;α,β ) = 1, or the subspace of N 1 given by the
L(B;Fν ,Gν ;λ ) = 1, where the degFν are all even. Let Λ be the abelian group
of order 2n whose elements are the n-tuples each component of which is ±1; then
there is a natural identification, which we shall write τ , of each element of Λ with
a partial product of the L(B;Fν ,Gν ). Thus each element of Λ can be interpreted
as a condition, which we shall write as L = 1. If φ0 is as in Lemma 8.2, there is a
homomorphism
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φ0 ◦ τ : Λ →Θ/Θ0;

let Λ0 denote its kernel. It turns out that the conditions which are continuous in λ
are just those which come from Λ0. The following lemma corresponds to Harari’s
Formal Lemma (Theorem 3.2.1 of [11]); it shows that for most purposes we need
only consider the conditions coming from the elements of Λ0. For obvious reasons,
we call these the continuous conditions.

Lemma 8.3. Suppose that every degFν is even and all the conditions corresponding
to Λ0 hold at some given λ0. Then there exists λ arbitrarily close to λ0 such that all
the conditions L(B;Fν ,Gν ) = 1 hold at λ .

Proof. Let λ0 = α0/β0. For a suitably chosen γ we show that we can take λ = α/β ,
where α ×β is close to γα0× γβ0 at every finite prime in B and α/β is close to
α0/β0 at the infinite places. For any c in Λ , write φ0c = φ0 ◦τ(c) for the correspond-
ing element of Θ/Θ0. If θ is as defined just before Lemma 8.2, the corresponding
partial product L of the L(B;Fν ,Gν ;λ ) is equal to

fc(λ ) ∏
v∈B

(φ0c,θ (α0,β0))v ∏
v∈B

(φ0c,γ)v

where fc comes from the φ j,ψ j with j > 0 and is therefore continuous. The map
c �→ fc(λ ) is a homomorphism Λ →{±1} for any fixed λ ; moreover if two distinct
c give rise to the same φ0c their quotient comes from an element of Λ0; so the
quotient of the corresponding fc takes the value 1 at λ0. In other words, if λ is close
enough to λ0 then fc(λ ) only depends on the class of c in Λ/Λ0. The map c �→ φ0c

induces an embedding Λ/Λ0→Θ/Θ0. The homomorphism Image(Λ/Λ0)→{±1}
induced by c �→ fc(λ ) can be extended to a homomorphism Θ/Θ0→{±1} because
Θ/Θ0 is killed by 2; and any such homomorphism can be written in the form

θ → ∏
v∈B

(θ ,γ)v

for a suitably chosen γ , because the Hilbert symbol induces a nonsingular form on
Θ/Θ0. But given any such γ we can construct λ = α/β having the properties listed
above. ��

In circumstances in which we wish to use Salberger’s device, we need analogues
of these last statements for positive 0-cycles. To state these, we introduce more
notation. We continue to assume that degF is even. Let K be the direct product of
finitely many fields ki each of finite degree over k, and let B be the set of places of
K lying over some place v in B, and Bi the corresponding set of places of ki. (The
place ∏vi, where vi is a place of ki, lies over v if each vi does so.) For λ in P1(K)
write λ = ∏λi with λi in P1(ki); for each place w in ki write λi = αiw/βiw where
αiw,βiw are in ki and integral at w and at least one of them is a unit at w. For any λ
in K such that each F(λi,1) and G(λi,1) is nonzero, we define the function

L∗(B;K;F,G;λ ) : λ �→∏
Pi

(F(αiw,βiw),G(αiw,βiw))Pi (27)
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where w is the place associated with the prime Pi in ki and the product is taken over
all i and all primes Pi of ki not lying in Bi and such that G(αiw,βiw) is divisible by
Pi. As with (17), we can restrict the product to those Pi which divide G(αiw,βiw)
to an odd power. Note that the functions φ j,ψ j in the evaluation formula (25) are
the same for ki ⊃ k as they are for k. Now let a be a positive 0-cycle on P1 defined
over k and let a = ∪ai be its decomposition into irreducible components. Let λi be
a point of ai and write ki = k(λi). If K = ∏ki and λ = ∏λi, write

L∗(B;F,G;a) = L∗(B;K;F,G;λ ) = ∏iL(Bi;F,G;λi). (28)

This is legitimate, because the right hand side does not depend on the choice of the
λi. If K = k this L∗ is the same as the previous function L. Moreover L∗(a∪ b) =
L∗(a)L∗(b). We can define a topology on the set of positive 0-cycles a of given
degree N by means of the isomorphism between that set and the points on the N-
fold symmetric power of P1. With this topology, it is straightforward to extend to L∗
the results already obtained for L.

The product in (27) is finite; so there is a finite set S of primes of k, disjoint
from B and such that every Pi which appears in this product lies above a prime in
S . For each i we can write λi = αi/βi with αi,βi integers in ki. Let (αi,βi) = ai and
choose an integral ideal bi in ki which is prime to ai, in the same ideal class as ai

and such that no prime of ki which divides bi also divides G(αi,βi) or any φ j(αi,βi)
or ψ j(αi,βi) or lies above any prime in S . Let γi be such that (γi) = bi/ai and let
B1 be obtained from B by adjoining all the primes of k which lie below any prime
of ki which divides bi. For most purposes it costs us nothing to replace B by B1,
and we then have

λ = ∏λi = ∏(αiγi/βiγi) where αiγi×βiγi is in N 2(ki).

The following lemma is a trivial consequence of earlier results.

Lemma 8.4. Suppose that degF is even, and let L = 1 be a continuous condition
derived from the L and L ∗ = 1 the corresponding condition derived from the L∗.
For each v in B there is a function �∗(v;F,G;a) with values in {±1} which is a
continuous function of a in the v-adic topology and is such that

L ∗(B;F,G;a) = ∏
v∈B

�∗(v;F,G;a). (29)

9 Pencils of Conics

Let W be the surface fibred by the pencil of conics

a0(U,V )Y 2
0 + a1(U,V )Y 2

1 + a2(U,V )Y 2
2 = 0. (30)
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We normally expect this pencil to be presented in a form in which a0,a1,a2 are
homogeneous of the same degree. But this is not the most convenient form for the
arguments which follow. Instead we shall call the pencil reduced if a0,a1,a2 are
homogeneous elements of k[U,V ] square-free and coprime in pairs and such that

dega0 ≡ dega1 ≡ dega2 mod2.

After a linear transformation on U,V if necessary, we can also assume that a0a1a2

is not divisible by V . Clearly any pencil of conics can be put into reduced form; for
if ai has a squared factor f 2 we write f−1Yi for Yi, and if for example a0 and a1 have
a common factor g we write gY2 for Y2 and divide (30) by g. Suppose that (30) is
reduced and everywhere locally soluble. Let λ = α/β be a point of P1(k); whether
(30) is soluble at α ×β depends only on λ and not on the choice of α,β . Similar
statements hold for local solubility at a place v and for solubility in the adeles. Let
B be a finite set of places of k containing the infinite places, the primes dividing
2, those whose absolute norm does not exceed deg(a0a1a2), those at which any
coefficient of any ai is not integral, and any other primes p at which a0a1a2 does
not remain separable when reduced mod p. We also assume that B contains a base
for the ideal class group of k. Denote by c(U,V ) an irreducible factor of a0a1a2 in
k[U,V ]; we can assume that c(U,V ) has integer coefficients whose highest common
factor is not divisible by any prime outside B. To prove local solubility, we need
only check it at the places of B, because it is trivial at any other prime. Local
solubility of (30) at the place v is equivalent to (−a0a1,−a0a2)v = 1, which can be
written in the more symmetric form

(a0,−a1)v(a1,−a2)v(a2,−a0)v = (−1,−1)v. (31)

The singular fibres of the pencil are given by the values of λ at which a0a1a2

vanishes. If there is a singular fibre defined over k, then (30) is certainly soluble on
it; but little if any of the argument which follows makes sense there. We therefore
work not on P1 but on the subset L1 obtained by deleting the zeros of a0a1a2, and
not on W but on W0, the inverse image of L1 in W . Let λ ∈ k∪{∞} be a point of
L1(k), and write λ = α/β where α,β are integers of k coprime outside B; it will
not matter which pair α,β we choose.

There is a non-empty set N ⊂ L1(k), open in the topology induced by B, such
that the conic (30) is soluble at every place of B if and only if λ lies in N . Let p be
a prime of k not in B and consider the solubility of (30) in kp at the point λ . If none
of the ai(α,β ) is divisible by p, then local solubility of (30) is trivial. Otherwise
there is just one c such that c(α,β ) is divisible by p; to fix ideas, suppose that this c
divides a2. The condition for local solubility at p is then

(−a0(α,β )a1(α,β ),c(α,β ))p = 1 (32)

where the outer bracket is the multiplicative Hilbert symbol. Hence necessary con-
ditions for the local solubility of (30) at λ for all p outside B are the conditions like
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L(B;−a0a1,c;λ ) = ∏(−a0(α,β )a1(α,β ),c(α,β ))p = 1 (33)

where the product is taken over all p outside B which divide c(α,β ), and the func-
tion L is well defined since−a0a1 has even degree. There is one of these conditions
for each irreducible c which divides a0a1a2.

What makes the set of conditions (33) interesting is that they give not merely
a necessary but also a sufficient condition for solubility – at least if one assumes
Schinzel’s Hypothesis. In view of Lemma 8.3, it is enough to require the continuous
conditions derived from the conditions (33) to hold. The following theorem provides
the exact obstruction both to the Hasse principle and to weak approximation.

Theorem 9.1. Assume Schinzel’s Hypothesis. Let A ⊂N be the subset of L1(k)
at which all the continuous conditions derived from (33) hold and (30) is locally
soluble at each place in B. Then the λ in L1(k) at which (30) is soluble form a
dense subset of A in the topology induced by B.

Proof. Let α0 × β0 correspond to a point λ0 in A , and let N0 ⊂ A be an open
neighbourhood of λ0. We have to show that we can find λ2 in N0 such that (30) is
soluble at λ2; for this it is enough to show that (30) is everywhere locally soluble
there. Let ci run through the factors c. By Lemma 8.3 we can find α1,β1 in k∗,
integral and coprime outside B and such that λ1 = α1/β1 is in N0 and all the
conditions (33) hold at α1 × β1. By Lemma 7.1 we can now find α2 × β2 close
to α1×β1 and such that each ideal (ci(α2,β2)) is the product of a prime ideal pi

not in B and prime ideals in B. We claim that (30) is everywhere locally soluble
at α2×β2. Since N0 ⊂ A , local solubility at each place of B is automatic. If p is
a prime outside B which does not divide any of the a j(α2,β2) then (30) at α2×β2

is certainly soluble at p; so it only remains to consider the pi. To fix ideas, suppose
that ci(U,V ) is a factor of a2(U,V ). Taking α = α2,β = β2 and c = ci, the product
in (33) reduces to the single term with p = pi. In other words, (32) holds in this case,
and this proves local solubility at pi. ��

An apparently weaker result, but one for which it is easier to check the hypothe-
ses, is the following. Here the hypotheses give us the existence of the α1 × β1

generated in the proof of Theorem 9.1, and the rest of the proof is as there. The
advantage of this is that we do not need the arguments which follow (25).

Corollary 9.2. Assume Schinzel’s Hypothesis. Let A1 ⊂ k× k be the open set in
which none of the ai vanish, the conditions (33) hold and (30) is locally soluble at
each place in B. Then the α ×β for which (30) is soluble form a dense subset of
A1 in the topology induced by B.

The corresponding theorem for positive 0-cycles, or equivalently for 0-cycles of
degree 1, does not require Schinzel’s Hypothesis; instead we use Lemma 7.2 and
the notation introduced at (27). We apply Lemma 7.2 to the surface W0 fibred by the
pencil (30), again assuming that B satisfies the conditions listed after (30) and that
L1 has the same meaning as there.

Lemma 9.3. With the notation above, let N ≥ deg(a0a1a2) be a fixed integer, and
for each v in B let b′v be a positive 0-cycle on W0 of degree N and defined over kv.
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Then we can find a positive 0-cycle a of degree N on L1 defined over k and for each
v in B a positive 0-cycle bv on W0 of degree N and defined over kv, close to b′v and
such that the projection of each bv on P1 is a.

The proof of this Lemma is a straightforward application of the Chinese Remainder
Theorem. Its purpose is to show that the hypotheses of the following Theorem are
less restrictive than might appear.

Theorem 9.4. With the notation above, let N ≥ deg(a0a1a2) be a fixed integer. Let
a be a positive 0-cycle of degree N on L1 defined over k, and for each place v of
k suppose that bv is a positive 0-cycle on W0 of degree N and defined over kv; for
v in B suppose further that the projection of bv on L1 is a. If all the continuous
conditions derived from the conditions

L∗(B;−a0a1,c;a) = 1 (34)

hold, then there is a positive 0-cycle of degree N on W0 defined over k whose pro-
jection is arbitrarily close to a in the topology induced by B.

Proof. We must first show that for the purpose of proving this theorem we are al-
lowed to increase B. Suppose that B0 satisfies the conditions which were imposed
on B after (30), and let p be a prime of k not in B0. Suppose also that the hypothe-
ses of the theorem hold for B = B0 and a = a0. Having chosen bp we can find a
positive 0-cycle a′ on L1 of degree N and defined over k which is close at every v in
B0 to a and close at p to the projection of bp. Now

L∗(B0∪{p};−a0a1,c;a′) = L∗(B0;−a0a1,c;a′);

for writing both sides as products by means of (27), if there is a factor on the right
hand side which is not present on the left, that factor must come from p and is
therefore equal to 1. But a continuous condition for B0 holds at a′ if and only
if it holds at a, which it does by hypothesis. Hence the continuous conditions for
B0 ∪{p} hold at a′. Now suppose that the theorem holds for B0 ∪{p}; then there
is a positive 0-cycle b of degree N on W0 defined over k whose projection on L1 is
close to a′ in the topology induced by B0 ∪{p}. The same projection is close to a
in the topology induced by B0. So the theorem also holds for B0.

Note that if a is actually the projection of a positive 0-cycle of degree N in W0,
then the continuous conditions certainly hold in view of (28); thus imposing the
hypothesis that they all hold costs us nothing. To simplify the notation, we assume
henceforth that K is an algebraic number field; this will be true for the application
in this article because K will be constructed by means of Lemma 7.2. In view of the
previous paragraph, we can assume that B is so large that it satisfies the conditions
imposed on B in the statement of Lemma 7.2 and contains the additional place w
which was adjoined to B in the first paragraph of the proof of Lemma 7.2; and if b
is as in Lemma 7.2 we also adjoin to B all the primes in k which divide b. By the
analogue of Lemma 8.3, we can now choose a′′ close to a so that all the conditions
like L∗(B;−a0a1,c;a′′) = 1 hold. As was remarked in the previous paragraph, we
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can now increase B so that if λ0 = α0/β0 is a point of L1(K) in a′′ then α0,β0 are
coprime and integral except perhaps at primes of K above a prime in B. Now apply
Lemma 7.2 with M = 2, where we take the c(X ,1), normalized to be monic, to be
the Pi(X) and each Uv to be a small neighbourhood of the monic polynomial whose
roots determine a′′. Let G(X) be given by Lemma 7.2, and let a′ be the associated
0-cycle on L1(k) and λ a point of L1(K) in a′. For each v in B, the cycle a′ is close
to a′′ in the v-adic topology; so (30) at λ is soluble in Kw for each w above v, by
continuity. But λ = α/β with α,β coprime except at primes of K above a prime
of B. So

∏
P

(−a0(α,β )a1(α,β ),c(α,β ))P = L∗(B;−a0a1,c;α,β ) = 1,

where the product is taken over all primes P not above a prime in B and such that
c(α,β ) is divisible to an odd power by P. Here the first equality holds by definition
and the second one follows from the evaluation formula (25) by continuity. But if
c(X ,1) = Pi(X) then the product on the left reduces to the single term for which P is
the prime of K above pi whose existence was proved by means of (16). Hence (30)
at λ is locally soluble at this prime; and because these are the only primes not lying
above a prime of B which divide any c(α,β ) or any ai(α,β ) to an odd power, they
are the only primes not lying above a prime of B at which local solubility might
present any difficulty. Thus λ can be lifted to a point of the fibre above λ , which is
a conic, and the theorem now follows because weak approximation holds on conics.

��
Since (30) contains positive 0-cycles of degree 2 defined over k, it is trivial to

deduce from Theorem 9.4 the corresponding result for 0-cycles of degree 1; con-
versely, if we know the analogue of Theorem 9.4 for 0-cycles of degree 1 we can
deduce that (30) contains positive 0-cycles of some odd degree defined over k. It is
tempting to hope that if a pencil of conics contains 0-cycles of degree 1 then it con-
tains points; indeed, the corresponding result is true for Del Pezzo surfaces of degree
4, as is proved in Theorem 14.3. But this hope is false. A simple counterexample is
given by the pencil

Y 2
0 +Y2

1 −7(U2−UV −V 2)(U2 +UV −V 2)(U2−2V2)Y 2
2 = 0. (35)

This is insoluble in Q. For we can take B = {∞,2,3,5,7}, and the three possible
c(U,V ) are U2−UV −V 2, U2 +UV −V 2 and U2−2V 2. By (20) we have

L(B;−1,c) = (−1,c)∞(−1,c)2(−1,c)7,

the factors at 3 and 5 being trivial. Local solubility of (35) holds at each place; at
α ×β local solubility at 2 and at 7 requires respectively that 4|α and α2− 2β 2 is
divisible by an odd power of 7. Hence

(−1,α2±αβ −β 2)2 =−1, (−1,α2−2β 2)2 =−1
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and
(−1,α2±αβ −β 2)7 = 1, (−1,α2−2β 2)7 =−1.

To satisfy the conditions (33) we therefore need

(−1,α2±αβ −β 2)∞ =−1, (−1,α2−2β 2)∞ = 1;

but this is equivalent to α2±αβ −β 2 < 0 < α2−2β 2, which is impossible. Now let
K = Q(ρ) where ρ = 2cos(2π/7), so that ρ3 +ρ2−2ρ−1 = 0. If U = ρ2 +2ρ−3
and V = ρ2 + ρ−2 then

Y0 = (ρ−2)2(ρ2−ρ + 1), Y1 = (ρ−2)2(ρ2−1), Y2 = 1

gives a solution in K.
On pencils of conics the appropriate Brauer-Manin condition is a necessary and

sufficient condition for the Hasse principle and for weak approximation (in each
case subject to Schinzel’s Hypothesis) and for the existence of positive 0-cycles
of degree N for all large enough N. This is the same as saying that the appropri-
ate Brauer-Manin condition is equivalent to the necessary and sufficient conditions
stated in Theorems 9.1 and 9.4. That is the content of the following lemma.

Lemma 9.5. Let W0 be everywhere locally soluble. Then the continuous conditions
derived from (30) are collectively equivalent to the Brauer-Manin conditions for
the existence of points of W0 defined over k. The continuous conditions similarly
derived from the L∗(a) are collectively equivalent to the Brauer-Manin conditions
for the existence of positive 0-cycles of degree N on W0 defined over k.

Proof. The first assertion is proved for k = Q in [11], Sect. 8; as with Lemma 8.1, the
proof there can easily be extended to our more general case. The second sentence
follows trivially from the first in the light of (28). ��

10 2-Descent on Elliptic Curves

In this section we describe the process of 2-descent on elliptic curves defined over
an algebraic number field k which have the form

Γ : y2 = (x− c1)(x− c2)(x− c3)

– that is, elliptic curves all of whose 2-division points are rational. We can clearly
take the ci to lie in o, the ring of integers of k. Let B, the set of bad places, be any
finite set of places containing the even primes, the infinite places, all the odd primes
dividing (c1− c2)(c1− c3)(c2− c3) and a set of generators for the ideal class group
of k; thus B contains the primes of bad reduction for Γ .

The basic version of 2-descent, which over Q goes back to Fermat, is as follows.
To any point (x,y) on Γ (k) there correspond m1,m2,m3 in k∗ with m1m2m3 = m2 
= 0
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such that the three equations

miy
2
i = x− ci for i = 1,2,3 (36)

are simultaneously soluble. We can multiply the mi by non-zero squares; indeed we
should really think of them as elements of k∗/k∗2, with a suitable interpretation of
the equations which involve them. Denote by C (m) the curve given by the three
equations (36), where m = (m1,m2,m3). Looking for points of Γ (k) is the same as
looking for quadruples x,y1,y2,y3 which satisfy (36) for some m. If for example p
divides m1 and m2 to an odd power and therefore m3 to an even power, then x must
be an integer at p and therefore p|(c1− c2). Hence in looking for soluble C (m)
we need only consider the finitely many m for which the mi are units at all primes
outside B.

One question of interest is the effect of twisting on the arithmetic properties of
the curve Γ . If b is in k∗, the quadratic twist of Γ by b is defined to be the curve

Γb : y2 = (x−bc1)(x−bc2)(x−bc3),

where we can regard b as an element of k∗/k∗2. The curve Γb is often written in the
alternative form

v2 = b(u− c1)(u− c2)(u− c3).

The analogue of (36) for Γb is

miy
2
i = x−bci for i = 1,2,3;

we shall call the curve given by these three equations Cb(m). It is often useful to
compare C (m) and Cb(m) for the same m.

Provided one treats the mi as elements of k∗/k∗2, the triples m form an abelian
group under componentwise multiplication:

m′ ×m′′ �→m′m′′ = (m′1m′′1,m
′
2m′′2,m

′
3m′′3).

The m for which C (m) is everywhere locally soluble form a finite subgroup, called
the 2-Selmer group. This is computable, and it contains the group of those m for
which C (m) is actually soluble in k. This smaller group is Γ (k)/2Γ (k), where Γ (k)
is the Mordell-Weil group of Γ . The quotient of the 2-Selmer group by this smaller
group is 2X, the group of those elements of the Tate-Safarevic group which are
killed by 2. One of the key conjectures in the subject is that the order of X is finite
and hence a square.

The process of going from the curve Γ to the set of curves C (m), or the finite
subset which is the 2-Selmer group, is called a 2-descent, or sometimes a first de-
scent, and the curves C (m) themselves are called 2-coverings. The reason for this
terminology is that there is a commutative diagram
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Γ −→ Γ
‖ ↗

C (m)
(37)

in which the left hand map is biregular (but defined over k̄ rather than k), the top map
is multiplication by 2 and the diagonal map is given by y = my1y2y3. A 2-covering
which is everywhere locally soluble, and therefore in the 2-Selmer group, can also
be written in the form

η2 = f (ξ ) where f (ξ ) = aξ 4 + bξ 3 + cξ 2 + dξ + e,

and many 2-coverings do arise in this way; but a 2-covering which is not in the
2-Selmer group cannot always be put into this form.

We now put this process into more modern language. In what follows, italic cap-
itals will denote vector spaces over F2, the finite field of two elements, and each of
p and q will be either a finite prime or an infinite place. Write

Yp = k∗p/k∗2p , YB =⊕p∈BYp.

Let Vp denote the vector space of all triples (μ1,μ2,μ3) with each μi in Yp and
μ1μ2μ3 = 1; and write VB =⊕p∈BVp. This is the best way to introduce these spaces,
because it preserves symmetry; but the reader should note that the prevailing custom
in the literature is to define Vp as Yp×Yp, which is isomorphic to the Vp defined
above but not in a canonical way. Next, write XB = o∗B/o∗2B where o∗B is the group
of elements of k∗ which are units outside B; and let UB be the image in VB of
the group of triples (m1,m2,m3) such that the mi are in XB and m1m2m3 = 1. It is
known that the map XB→ YB is an embedding and dimUB = 1

2 dimVB; both these
depend on the requirement that B contains the even primes and the infinite places,
and the first of them depends also on the fact that B contains a base for the ideal
class group. Finally, if (x,y) is a point of Γ (kp) other than a 2-division point then
the product of the three components in the triple (x− c1,x− c2,x− c3) is y2 which
is in k∗2p ; so this triple has a natural image in Vp. We can supply the images of the
2-division points by continuity; for example the image of (c1,0) is

((c1− c2)(c1− c3),c1− c2,c1− c3), (38)

and the image of the point at infinity is the trivial triple (1,1,1), which is also the
product of the three triples like (38). Thus we obtain a map Γ (kp)→Vp. This map,
which is called the Kummer map, is a homomorphism. We denote its image by Wp;
clearly Wp is the set of those triples m for which (36) is soluble in kp. The 2-Selmer
group of Γ can now be identified with UB ∩WB where WB = ⊕p∈BWp; for as was
noted above, (36) is soluble at every prime outside B if and only if the elements of
m are in XB.
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Over the years, many people must have noticed that

dimWB = dimUB = 1
2 dimVB. (39)

The next major step, which explains and may well have been inspired by this rela-
tion, was taken by Tate. He introduced the bilinear form ep on Vp×Vp, defined by

ep(m′,m′′) = (m′1,m
′′
1)p(m′2,m

′′
2)p(m′3,m

′′
3)p.

Here (u,v)p is the multiplicative Hilbert symbol already defined in Sect. 8.
The bilinear form ep is non-degenerate and alternating on Vp ×Vp, so that

eB = ∏p∈B ep is a non-degenerate alternating bilinear form on VB ×VB. (For a
bilinear form with values in {±1}, “symmetric” and “skew-symmetric” are the
same and they each mean that e(m′,m′′) = e(m′′,m′); “alternating” means that also
e(m,m) = 1.) It is known from class field theory that UB is a maximal isotropic
subspace of VB. Tate showed that Wp is a maximal isotropic subspace of Vp, and
therefore WB is a maximal isotropic subspace of VB. (The proof of this, which is
difficult, can be found in Milne [54].) This explains (39); and it also shows that the
2-Selmer group of Γ can be identified with both the left and the right kernel of the
restriction of eB to UB×WB.

For both aesthetic and practical reasons, one would like to show that this restric-
tion is symmetric or skew-symmetric – these two properties being the same. But to
make such a statement meaningful we need an isomorphism between UB and WB ;
and though they have the same structure as vector spaces it is not obvious that there
is a natural isomorphism between them. The way round this obstacle was first shown
in [16]. It requires the construction inside each Vp of a maximal isotropic subspace
Kp such that VB = UB⊕KB where KB =⊕p∈BKp. Assuming that such spaces Kp

can be constructed, let tB : VB→UB be the projection along KB and write

U ′B = UB ∩ (WB + KB), W ′B = WB/(WB ∩KB) =
⊕

p∈B
W ′p

where W ′p = Wp/(Wp∩Kp). The map tB induces an isomorphism

τB : W ′B →U ′B,

and the bilinear function eB induces a bilinear function

e′B : U ′B×W ′B→ {±1}.

The bilinear functions U ′B ×U ′B → {±1} and W ′B×W ′B → {±1} defined respec-
tively by

θ �
B : u′1×u′2 �→ e′B(u′1,τ

−1
B (u′2)) and θ �

B : w′1×w′2 �→ e′B(τBw′1,w
′
2) (40)
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are symmetric. (For the proof, see [16].) Here the images of w′1 ×w′2 under the
second map and of τBw′1× τBw′2 under the first map are the same. The 2-Selmer
group of Γ is isomorphic to both the left and the right kernel of e′B, and hence also
to the kernels of the two maps (40).

There is considerable freedom in choosing the Kp, and this raises three obvious
questions:

• Is there a canonical choice of the Kp?
• How small can we make U ′ and W ′?
• Can we ensure that the functions (40) are not merely symmetric but alternating?

These questions were first raised and also to a large extent answered in [55]; proofs
of the assertions which follow can be found there. The motive for ensuring that the
functions (40) are alternating is that it implies that the ranks of these functions are
even; this means that their coranks, which are equal to the dimension of the 2-Selmer
group, are congruent mod 2 to dimU ′B and dimW ′B.

The answer to the first question appears to be negative, though there is little
freedom in the optimum choice of the Kp – particularly if one wishes to obtain not
merely Lemma 10.1 but Theorem 10.2. Since U ′B ⊃ UB ∩WB, the best possible
answer to the second question would be that we can achieve U ′B = UB∩WB ; we do
this by satisfying the stronger requirement

WB = (UB ∩WB)⊕ (KB ∩WB). (41)

For suppose that (41) holds; then WB + KB = (UB ∩WB)+ KB and it follows im-
mediately that

U ′B = UB ∩ (WB + KB) = UB ∩WB. (42)

The motivation for (41) is that we want to make WB∩KB as large as possible – that
is, to choose KB so that as much of it as possible is contained in WB. But because
KB must be complementary to UB, only the part of WB which is complementary to
WB ∩UB is available for this purpose.

Since the 2-Selmer group UB∩WB is identified with the left and right kernels of
each of the functions (40), if (42) holds then these functions are trivial and therefore
alternating. The formal statement of all this is as follows.

Lemma 10.1. We can choose maximal isotropic subspaces Kp ⊂ Vp for each p in
B so that VB = UB⊕KB. We can further ensure that

WB = (UB ∩WB)⊕ (KB ∩WB),

which implies U ′B = UB ∩WB . If so, the functions θ �
B and θ �

B defined in (40) are
trivial.

But the other properties of the Kp chosen in this way are not at all obvious. Hence it
is advantageous to consider other recipes for choosing the Kp, for which (41) does
not hold but we can still prove that the functions (40) are alternating.
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For this purpose we write B as the disjoint union of B′ and B′′, where we shall
always suppose that the even primes and the infinite places are all in B′. For any
odd prime p we denote by Tp the subset of Vp consisting of those triples (μ1,μ2,μ3)
with μ1μ2μ3 = 1 for which each μi is in o∗p/o∗2p – that is, each μi is the image of a
p-adic unit. The main point of the following theorem is that for p in B′′ it enables
us to replace the complicated inductive definition of Kp used in the proof of Lemma
10.1 by the much simpler choice Kp = Tp. How one chooses B′′ depends on the
particular application which one has in mind.

Theorem 10.2. Let B be the disjoint union of B′ and B′′, and suppose that B′
contains the even primes and the infinite places. We can construct maximal isotropic
subspaces Kp ⊂Vp such that VB = UB⊕KB,

WB′ = (UB′ ∩WB′)⊕ (KB′ ∩WB′) (43)

and Kp = Tp for all p in B′′; and (43) implies that U ′B′ = UB′ ∩WB′ . Moreover

U ′B = j∗U ′B′ ⊕ τBW ′B′′ = j∗U ′B′ ⊕
(⊕p∈B′′τBW ′p

)
, (44)

and the restriction of θ �
B to j∗U ′B′ × j∗U ′B′ is trivial.

If B′ also contains all the odd primes p such that the vp(ci− c j) are not all con-
gruent mod 2, then we can choose the Kp for p in B′ so that also θ �

B is alternating
on U ′B.

The appearance of j∗U ′B′ in and just after (44) calls for some explanation. Let u
be any element of UB′ ; then u is in UB. Moreover, for p in B′′ the image of u in Vp

is in Tp = Kp and therefore in Kp +Wp; hence u is in U ′B. In this way we define a
map U ′B′ →U ′B which is clearly an injection and which we denote by j∗.

Lemma 10.1 is the special case of Theorem 10.2 in which B′ = B and B′′
is empty. But the proof of Lemma 10.1 is a necessary step (and indeed the most
substantial step) in the proof of Theorem 10.2.

The main application of Theorem 10.2 is to twisted curves Γb, where we can
clearly take b to be an integer. Let S denote the set of bad primes for Γ itself and
let B ⊃S be the set of bad primes for Γb. If we are to apply any part of Theorem
10.2, B′′ must in practice consist entirely of primes which divide b and are not
in S . To describe the effect of twisting, we shall denote by db the dimension of
the 2-Selmer group of Γb regarded as a vector space over F2; we write d = d1 for
the dimension of the 2-Selmer group of Γ itself. It is now possible to prove results
about db−d, the change in the dimension of the 2-Selmer group as one goes from
Γ to Γb. There is reason to expect that statements about the parities of d and db will
be simpler and much easier to prove than statements about their actual values. The
two major statements known about db are Lemmas 10.3 and 10.4; both of these are
easy consequences of Theorem 10.2.

Lemma 10.3. If b is in o∗p for every p∈S , then db ≡ dim(US ∩WS ) mod 2 where
WS =⊕p∈S Wp and the Wp must be defined with respect to Γb and not with respect
to Γ . Thus db mod 2 only depends on the classes of b in the k∗p/k∗2p for p in S .
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Lemma 10.4. Let p be an odd prime in S such that

vp(c1− c2) > 0, vp(c1− c3) = vp(c2− c3) = 0.

Let b in k∗ be such that b is in k∗2q for all q in S other than p and b is a quadratic
non-residue at p. Then d and db have opposite parities.

11 Pencils of Curves of Genus 1

In this section we shall be concerned with pencils of 2-coverings of elliptic curves
defined over an algebraic number field k, where the underlying pencil of elliptic
curves has the form

E : Y 2 = (X− c1(U,V ))(X − c2(U,V ))(X− c3(U,V )). (45)

Here the ci(U,V ) are homogeneous polynomials in o[U,V ] all having the same even
degree. By means of a linear transformation on U,V we can ensure that the leading
coefficients of the ci(U,V ) are nonzero. Write

R(U,V ) = p12(U,V )p23(U,V )p31(U,V )

where pi j = ci− c j.
The 2-coverings of (45) are given by

mi(U,V )Y 2
i = X− ci(U,V ) for i = 1,2,3 (46)

where the mi(U,V ) are square-free homogeneous polynomials in o[U,V ] of even
degree such that m1m2m3 is a square. We should really regard the mi as homoge-
neous polynomials modulo squares, but this complicates the notation. Equation (46)
are equivalent to the three equations

miY
2
i −m jY

2
j = (c j− ci)Y 2

0 (47)

of which only two are independent. The sum of two 2-coverings is obtained by
multiplying the corresponding triples m = (m1,m2,m3) componentwise and then
removing squared factors. Denote by Γ = Γ (m;U,V ) the curve given by the three
equations (46) or the three equations (47) for particular values of m,U,V , and by
Ci j = Ci j(m;U,V ) the conic given by a single equation (47). There are natural maps
Γ →Ci j. Equation (47) also imply

m1(c2− c3)Y 2
1 + m2(c3− c1)Y 2

2 + m3(c1− c2)Y 2
3 = 0, (48)
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and for Γ to be soluble so too must be this conic. These are Brauer-Manin conditions;
they do not appear explicitly in the statement of Theorem 11.2 but they are implied
by the condition that N is not empty.

Our objective is to provide sufficient conditions for the solubility of a particular
pencil of curves Γ , where the pencil is assumed to be everywhere locally soluble. We
shall use a superscript 0 to denote a curve of this pencil or other objects connected
with it. We shall need to distinguish between S , the set of bad places for the pencil
of curves Γ , and the larger set B of bad places for the particular curve Γ 0(α,β )
on which we want to prove that there are rational points. Thus S is a finite set
containing the infinite places, the primes above 2, those which divide the resolvent
of any two coprime factors of R(U,V ) in o[U,V ] or have norm not greater than
deg(R(U,V)), and those which are bad in the sense of Sect. 9 for any of the pencils
of conics Ci j. (In particular, this ensures that S contains a base for the ideal class
group of k.) In terms of the definitions below, B must contain S and all the pkτ .
The additional prime p which we introduce at each step of the algorithm should be
thought of as being thereby adjoined to S .

We denote the irreducible factors of pi j(U,V ) in k[U,V ] by fkτ (U,V ), and we
assume that the coefficients of any fkτ are integers and that there is no prime outside
S which divides all of them. When we apply the results of Sect. 10 it will be with
U = α,V = β where α ×β is so chosen that each ideal ( fkτ (α,β )) is the product
of primes in S and one prime pkτ outside S ; to do this we appeal to Lemma
7.1. In what follows, we shall call the pkτ the Schinzel primes. The arguments of
Sect. 10 show that we can confine ourselves to those triples m whose components
take values in o∗B when U = α,V = β . Because of the constraint just stated on the
choice of α,β , this means that we can restrict the components of m to be products of
some of the fkτ (U,V ) by elements of o∗S . In view of the description of 2-descents in
Sect. 10, we can further restrict ourselves to the triples m such that m1m2m3 divides
R2 and mi is prime to p jk in k[U,V ] up to factors in S , where here and throughout
this section i, j,k is any permutation of 1,2,3.

We shall also assume that the pi j(U,V ) are coprime in k[U,V ]. The case when
this condition fails is also of interest, but the methods used and the conclusions are
quite different; for a more detailed account see [56]. This assumption is weaker than
that in [16], which was that R(U,V ) is square-free in k[U,V ], and it enables us to
bring the example of diagonal quartics within the scope of the general theory.

The parity conditions on the degrees of the ci and mi are needed to ensure that
the curves (45) and Γ with U = α,V = β only depend on λ = α/β and not on α,β
separately; otherwise we would not be dealing with pencils. But even if two of the
mi have odd degree, which can happen if R has factors of odd degree, the curve Γ
given by (46) or (47) is a 2-covering of E; and such 2-coverings do play a part in our
arguments. For given E , let G be the group of all triples (m1,m2,m3) satisfying the
conditions above, including that the degrees of the mi are even, and define G∗ ⊃ G
by dropping the condition that the mi have even degree. Provided we take the mi

modulo squares, both G and G∗ are finite; and either G or G∗ can be regarded as
defining those pencils of 2-coverings of the pencil E which are of number-theoretic
interest.
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Now suppose that we are given a triple m0 = (m0
1,m

0
2,m

0
3) in G. Denote by Γ 0 =

Γ (m0,U,V ) the curve of genus 1 given by the three equations (47) with m = m0,
and similarly for the C0

i j. For simplicity we assume that the elliptic curve (45) has
no primitive 4-division points defined over k(U,V ), and to avoid trivialities we also
assume that the 2-covering Γ 0 does not correspond to a 2-division point.

The only values of U/V for which Γ 0 can be soluble are ones for which Γ 0 is
everywhere locally soluble; so for any such value of U/V the 2-Selmer group of E
must contain the subgroup of order 8 generated by Γ 0 and the 2-coverings coming
from the 2-division points. We shall call this the inescapable part of the 2-Selmer
group. The essential tool in proving solubility will be the special case p = 2 of
Lemma 4.6, which we restate for ease of reference.

Lemma 11.1. Suppose that the Tate-Shafarevich group of E/k is finite and the 2-
Selmer group of E has order 8. Then every curve representing an element of the
2-Selmer group contains rational points.

As this shows, everything in this section will depend on the finiteness of X; and
everything will also depend on Schinzel’s Hypothesis.

As in Sect. 9, we need to work not in P1 but in the subset L1 obtained by deleting
the points λ = α/β at which R(α,β ) vanishes. The topology on L1(k) will be that
induced by S . There is an open set N ⊂ L1(k) such that Γ 0(α,β ) is soluble at
every place of S if and only if λ lies in N . Let us assume temporarily that we
are going to apply Lemma 7.1 to choose α,β so that each ideal ( fkτ (α,β )) is a
prime pkτ up to possible (and well determined) factors in S . Until we have chosen
α,β we do not know the pkτ ; but we do already know a set of generators of UB

as polynomials in U,V , and in the notation of Sect. 10 we also know the bilinear
form eB because of the results of Sect. 8. It is therefore possible to implement all
the apparatus of Sect. 10. Solubility of Γ 0(α,β ) at a particular Schinzel prime pkτ
is equivalent to the bilinear form eB defined in Sect. 10 taking the value 1 at each
m0×w, where w is either of the two generators of W associated with pkτ . This is
a Legendre-Jacobi condition, so it determines a certain open set Np ⊂ L1(k) where
p = pkτ . If we take any α/β not in Np and make no assumption about fkτ (α,β ),
then ∏eB(m0,w) taken over the w coming from the prime factors of fkτ (α,β ) not
in S will be the same Legendre-Jacobi function which we have just studied and will
therefore have the same value−1. In other words, Γ 0(α,β ) will be locally insoluble
at some prime dividing fkτ (α,β ). Thus for studying the solubility of (46) we can
replace N by the intersection of N with all the Np. In what follows we assume
that this new N is not empty.

In contrast to what happened in Sect. 9, nothing is gained by simply applying
Lemma 7.1 to choose α,β so that all the fkτ (α,β ) are prime up to possible factors
in S , because this might give rise to a 2-Selmer group too big for us to be able
to apply Lemma 11.1. What we do instead is most conveniently described as an
algorithm, which consists of repeatedly introducing a further well-chosen prime p
into S , with a corresponding extra condition on the set N of possible values of
U×V , in such a way that if we then apply Lemma 7.1 the dimension of the 2-Selmer
group is one less than it would have been before. If we can go on doing this as long as
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the 2-Selmer group remains too big, we shall eventually reach a situation to which
we can apply Lemma 11.1. However, this process cannot be always possible; for
otherwise we would be able to prove that the Hasse principle held for the pencil
(46), and this is known to be false. Hence there must be a potential obstruction to
the argument. This is provided by Condition D, which will be introduced below.
What we thereby obtain is Theorem 11.2 below.

The process of introducing a new prime p is as follows. We choose an fkτ and
integers θp,φp not both divisible by p and such that p‖ fkτ(θp,φp). Without loss of
generality we can assume that θp,φp are coprime. Choose integers γp,δp such that
θpδp−φpγp = 1, write

U = θpU1 + γpV1, V = φpU1 + δpV1

and impose on N the additional condition p2|V1. Thus at any point of N the value
of fkτ is exactly divisible by p, and the values of all the other functions f·· are prime
to p.

For given fkτ which p satisfy the condition that there exist αp,βp as above? Let
Kkτ = k[X ]/ fkτ(X ,1) be the field obtained by adjoining to k a root of fkτ , and let
ξkτ be the class of X in Kkτ ; thus fkτ (ξkτ ,1) = 0. The singular fibres of the pencil of
elliptic curves (45), as also those of the pencil of 2-coverings (46), correspond to the
roots of the fkτ . The reason for being interested in the singular fibres is as follows.
Let p be a prime of k not in S , and let αp,βp in o be such that p‖ fkτ(αp,βp);
such αp,βp exist if and only if there is a prime P in Kkτ whose relative norm over
k is p. This last condition may appear tiresome. But what one really does is to
choose a first-degree prime P in Kkτ and define p to be the prime below it in k. Now
norm P = p is automatic.

The arguments needed to validate each step of the algorithm are lengthy, and we
list them as (i)–(v) below. We impose further conditions on the additional prime p
which ensure (i); we then deduce (ii), (iii) and (iv). Finally we use Condition D to
show that unless the process is complete, we can choose p so that (v) holds. After all
this we choose α×β according to the recipe in Lemma 7.1 for the fkτ , and with the
additional property that L(S ;U,V ;α,β ) = 1 if there is any fkτ of odd degree. One
can satisfy this additional requirement by a slight modification of the construction
used to prove Lemma 7.1. Alternatively, one can render it unnecessary by replacing
U,V by homogeneous quadratic forms in U1,V1; this does not alter the values of the
functions L.

(i) We determine necessary and sufficient conditions for Γ (α,β ) to be locally sol-
uble at p. We use these immediately to choose p-adic conditions on N such that
Γ 0(α,β ) is locally soluble at p; but in (v) we shall also need them to ensure for
a particular m that the corresponding Γ (α,β ) is not locally soluble at p.

For (ii)–(iv) we assume that α×β satisfies the conditions of Lemma 7.1.

(ii) The bilinear form θ �
B : W ′B×W ′B → {±1} defined in (40) does not depend on

the choice of α×β and hence of the pkτ .
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By this we mean that if we change α,β , thereby replacing the old W ′ by a new
W ′ canonically isomorphic to it and replacing the old pkτ in B by the new ones,
then this isomorphism preserves θ �

B . The next result which we need, which is only
meaningful once we have proved (ii), is as follows:

(iii) We determine the effect on the function θ �
B of introducing a new prime p in the

way described above.
(iv) The curve Γ 0(α,β ) is locally soluble at pkτ .

By requiring that λ = α/β is in N we ensure that Γ 0(α,β ) is soluble in kv for
every v in S including p; and it is also soluble at all the Schinzel primes other than
possibly pkτ . Thus (i) and (iv) prove that the class of Γ 0(α,β ) is in the 2-Selmer
group of the curve E(α,β ) given by (45) provided that α,β are chosen according
to the recipe in Lemma 7.1. The pkτ are not determined until we know α and β ;
but this is unimportant because of (ii). Finally, the condition which we need for our
algorithm to achieve what we want is as follows:

(v) If m is in the kernel of the old θ �
B but not in the inescapable part of it, then we

can introduce a new prime p which removes m from the kernel and does not put
anything new into it.

It is in the proof of (v) that we need Condition D. Once we have (v), we can after
a sufficient number of steps satisfy the conditions of Lemma 11.1, and this implies
that Γ 0(α,β ) has rational solutions. The result of this process is Theorem 11.2.
A more sophisticated treatment of the solubility of pencils (46) can be found in
Chap. I of [14].

Theorem 11.2. Assume Schinzel’s Hypothesis and the finiteness of X, and sup-
pose that the three pi j(U,V ) are coprime in k[U,V ]. Suppose that the N con-
structed above is not empty and that Condition D holds. Then we can construct a
non-empty set A which lies in the closure of the set of λ in L1(k) at which Γ 0(α,β )
is soluble in k.

Theorem 11.2 gives a sufficient condition for the Hasse principle to hold, though the
condition is not always necessary. Indeed, we shall see at the end of this section that
we can replace Condition D by a potentially weaker Condition E; but probably even
the latter is not always necessary for solubility. The relation between Condition D
and the Brauer-Manin obstructions is addressed in [16].

Achieving (i). The condition that any particular Γ is soluble in kp throughout some
neighbourhood of αp×βp is that the reduction of Γ (αp,βp) mod p should contain
a point defined over o/p which is liftable to a point on Γ defined over kp. Denote
by Lkτ the least extension of Kkτ over which some absolutely irreducible component
of the singular fibre at ξkτ × 1 is defined; conveniently, all these components are
defined over the same least extension, which is normal over Kkτ . The decomposition
of Γ (αp,βp) mod p corresponds to the decomposition of the fibre Γ (ξkτ ,1); so we
can solve Γ in kp in a suitable neighbourhood of αp× βp if and only if P splits
completely in Lkτ .



Topics in Diophantine Equations 91

If fkτ‖pi j, each singular fibre given by fkτ = 0 of the pencil of curves Γ splits as
a pair of irreducible conics which meet in two points and are each defined over the
field Lkτ = Kkτ(

√
gkτ(ξkτ ,1)); here gkτ = mk if fkτ divides neither of mi and m j or

gkτ = mk p jk if fkτ divides both of them. The same holds if f 2
kτ |pi j and fkτ divides

neither mi nor m j, and again we have gkτ = mk. If f 2
kτ |pi j and fkτ divides both mi

and m j, then each singular fibre given by fkτ = 0 splits as a set of four lines which
form a skew quadrilateral, and each of these lines is defined over

Lkτ = Kkτ

(√
mk(ξkτ ,1),

√
p jk(ξkτ ,1)

)
. (49)

Write L0
kτ for the field corresponding to Γ 0 under this construction. To test for Con-

dition D, we need to list those m for which Lkτ is contained in L0
kτ . It is easy to

verify that they form a group, which contains m0 and the triples coming from the
2-division points.

Proof of (ii). We are allowed to choose α×β only within a set which is small in the
topology induced by S . In particular, this means that the power of any prime in S
which divides any fkτ (α,β ) is independent of α and β . Since the only other prime
which divides any particular fkτ (α,β ) is pkτ , which does so to the first power, the
ideal class of pkτ is fixed. If the place v is given by some pkτ then a generator of W ′v
can be lifted back to σ ×τ where each of σ and τ is either 1 or fkτ (α,β ); and if v is
in S the elements of a base for W ′v can be lifted back to elements σ×τ independent
of α,β with σ ,τ in o∗S . We choose a base for W ′B composed of these two kinds of

elements; then the value of θ �
B at any pair of elements of this base is a product of

expressions of the form (σ ′(α,β ),τ ′(α,β ))v where v is in B and each of σ ′ and
τ ′ is the product of an element of o∗S and possibly an fkτ . If v is in S the value
of this expression is independent of α,β . If v is given by pkτ then using symmetry
and (ξ ,−ξ )v = 1 if necessary we can reduce to the case when σ ′ is not divisible
by fkτ . If also τ ′ is not divisible by fkτ then (σ ′(α,β ),τ ′(α,β ))v = 1; otherwise
(σ ′(α,β ),τ ′(α,β ))v = L(S ;σ ′,τ ′;α,β ) is continuous.

Achieving (iii). When we introduce p we adjoin two more generators to W , and the
description in terms of U,V of the product of p and the new pkτ is the same as the
description of the old pkτ . We use Theorem 10.2 with B′′ = {p,pkτ} to describe
the change in W ′. In the notation of Sect. 10 all the triples in Wp have vp(mk) even.
Since Kp = Tp, the set of triples all whose components are units at p, it follows that
Wp ∩Kp has dimension 1 and so has W ′p. A similar argument holds for the primes
pkτ provided by Lemma 7.1, and shows that to each such prime there corresponds
one generator of W ′. Hence introducing p increases the dimension of W ′ by 1. If we
regard the θ � defined at (40) as being given by a matrix whose last two columns are
the only ones which depend on pkτ ,p respectively, the old θ � can be obtained from
the new one by adding together the last two rows and the last two columns.

Proof of (iv). As we have just noted,

e∗(m0,wold) = e∗(m0,wp)e∗(m0,wnew)
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where wold and wnew correspond to the old and the new pkτ . The first two factors
here are 1, so the third must be so.

Choice of p. Let wp be a lift to Wp of the non-trivial element of W ′p, and let m be an
element of UB∩WB which is not in the inescapable part of the 2-Selmer group. Thus
τ−1
B m is in the kernel of e∗B. Suppose that we can choose p so that the 2-covering

corresponding to m is locally insoluble at p. On the one hand this is equivalent
to e∗(τ−1

B m,wp) = −1. On the other hand it requires P to split completely in L0
kτ

but not in Lkτ . The condition below, which in the literature is called Condition D,
ensures that such a choice is possible. We shall see later that Condition D can be
replaced by a weaker condition, but one which is less natural and sometimes less
computationally convenient.

Condition D: If m is not in the inescapable subgroup of the 2-Selmer group, then there is a
pair k,τ such that the field Lkτ is not contained in L0

kτ .

By incorporating the definitions of Lkτ and L0
kτ into this condition, we can restate it

as follows:

The kernel of the composite map

m �→ ⊕k,τ gkτ (m) �→ ⊕k,τ K∗kτ/〈K∗2kτ ,Hkτ〉

is generated by the inescapable subgroup of the 2-Selmer group, where

gkτ =

{
mk if fk divides neither of mi and m j,

mk p jk if fk divides both of mi and m j,

and

Hkτ =

⎧
⎪⎨

⎪⎩

mk(ξkτ ,1) if fkτ divides neither of mi and m j,

mk(ξkτ ,1)p jk(ξkτ ,1) if fkτ‖pi j and fkτ divides mi and m j,

{mk(ξkτ ,1), p jk(ξkτ ,1)} if f 2
kτ‖pi j and fkτ divides mi and m j.

The m for which Lkτ is contained in L0
kτ for each subscript kτ are those which do

not satisfy Condition D. If m satisfies Condition D we can choose k,τ and a P
which splits in L0

kτ but not in Lkτ . The underlying p has the properties we want. This
process remove m from the 2-Selmer group without creating any new elements of
that group. So we have certainly decreased the dimension of the 2-Selmer group,
which is what we needed to show to justify the algorithm. In fact it is easy to show
that we have decreased it by exactly 1.

It will be seen that we have not used the full force of Condition D; indeed it is
stated for all elements of G∗, but we have only used it for those elements which
lie in the initial 2-Selmer group. These are the ones for which the corresponding
2-covering is locally soluble at each place in B. The proof of (ii) above shows that
local solubility in S implies local solubility at each pkτ ; and the proof of (iii) shows
that this 2-Selmer group, considered as a subgroup of G∗, does not vary as α ×β
varies within a small enough open set. We actually use Condition D only for the m
which lie in this 2-Selmer group; and to require merely that such m satisfy Condi-
tion D is weaker than the full Condition D. We call this weaker condition Condition
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E. Its disadvantage is that Condition D is independent of α and β , whereas Condi-
tion E is not; however Condition E becomes independent of α ×β when α ×β is
restricted to a small enough open set. A particularly favourable case is when the 2-
Selmer group has order 8, because then Condition E is trivial. I do not know whether
Condition E, together with the conditions imposed in Theorem 11.2, is necessary as
well as sufficient for global solubility, nor whether these conditions are together
equivalent to the Brauer-Manin conditions, though I doubt whether either of these
is true. However, the arguments in [11] do enable one to link Conditions D and E to
the Brauer-Manin obstructions.

12 Some Examples

In this section we consider three particular families of surfaces to which the ideas
of the previous section (suitably modified in the last two examples) can be applied.
The first family consists of diagonal quartic surfaces (51), subject to the additional
condition (52) which ensures that (51) contains a pencil of curves of genus 1 whose
Jacobian has rational 2-division points. The second family is a particular family
of Kummer surfaces, and the third consists of diagonal cubic surfaces. What these
last two examples have in common is that the argument does not use Schinzel’s
Hypothesis; more precisely, we only need to force one linear polynomial to take a
prime value, and this can be done by means of Dirichlet’s Theorem on primes in
arithmetic progression. But the price of this is that we have to apply Lemma 4.6 to
two pencils of elliptic curves rather than to one, and to make the process work the
constraints on the choice of additional primes associated with the two pencils must
not interfere with each other. Thus the proof requires some additional (but not very
restrictive) conditions which are unlikely to be actually needed for solubility. For
the third example we also need to require that the field k over which we work does
not contain

√−3.

12.1 Diagonal Quartic Surfaces

Let V be a smooth quartic surface whose equation can be put into the form AD = BC,
where A, . . . ,D are linearly independent homogeneous quadratics in X0, . . . ,X3. Such
a V is fibred by the pencil of curves of genus 1

yA = zB, yC = zD, (50)

which are 2-coverings of elliptic curves. Recall that if M1,M2 are the matrices asso-
ciated with the quadratic forms yA− zB and yC− zD respectively, then the Jacobian
of (50) can be written in the form Y 2 = f (Z) where f is the resolving cubic of the
quartic polynomial det(M1− XM2). Hence if A, . . . ,D are linear combinations of
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the X2
i then the 2-division points of the Jacobian of (50) are all rational. Over an

algebraic number field k the K3 surfaces whose equations have the form

a0X4
0 + a1X4

1 + a2X4
2 + a3X4

3 = 0 (51)

satisfy the condition above if and only if

a0a1a2a3 is a square. (52)

Full details of the argument which follows can be found in [17]. We shall always
assume that (51) is everywhere locally soluble and the ai are integral. The surfaces
(51) are very special within the family of nonsingular quartic surfaces for at least
two reasons: they are Kummer surfaces, and their Néron-Severi groups over C have
maximal rank, which is 20. But this is probably the simplest family of K3 surfaces
that can be written down explicitly.

It is known that the Néron-Severi group of (51) over C is generated by the 48 lines
on the surface. However, what is equally important for our purposes is the Néron-
Severi group over k. When k = Q there are now 282 possibilities for the Galois group
over Q of the least field of definition of the 48 lines; these have been tabulated by
Martin Bright in his Cambridge Ph.D. thesis [57], which can be found at

http://www.boojum.org.uk/maths/quartic-surfaces/

together with a good deal of other relevent material. The large number of cases
means that the calculation needed to be automated, and one interesting feature of
the thesis is that it shows that this is possible.

Write A = α0X2
0 + α1X2

1 + α2X2
2 + α3X2

3 and so on. Eliminating each of the four
variables Xν from (50) in turn, we obtain four equations of the form

di�X
2
i + d j�X

2
j + dk�X

2
k = 0, (53)

only two of which are linearly independent. Here i, j,k, � is any permutation of
1,2,3,4 and dμν is the value of the determinant formed by columns μ and ν of
the matrix (

α0y−β0z α1y−β1z α2y−β2z α3y−β3z
γ0y− δ0z γ1y− δ1z γ2y− δ2z γ3y− δ3z

)
.

We have the unexpected result that each dk� is a constant multiple of di j, where
i, j,k, � is any permutation of 0,1,2,3. We note the identity

d01d23 + d02d31 + d03d12 = 0,

which is frequently useful. The Jacobian of the curve (50) has the form

E : Y 2 = (X− c1)(X − c2)(X− c3)

http://www.boojum.org.uk/maths/quartic-surfaces/
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where
c1− c2 = d03d21, c2− c3 = d01d32, c3− c1 = d02d13,

and the map from the curve (50) to its Jacobian is given by

Y = d12d23d31X1X2X3/X3
0 , X− ci = di jdkiX

2
i /X2

0

where i, j,k is any permutation of 1,2,3. Although everything so far is homogeneous
in y,z, we have to work in k(y,z) rather than k(y/z), for reasons which are already
implicit in Sect. 8.

There is an obvious map from (51) to the quadric surface

a0Y 2
0 + a1Y 2

1 + a2Y
2
2 + a3Y

2
3 = 0. (54)

We have assumed that (51), and therefore (54), is everywhere locally soluble; so (54)
is soluble in k. From this and the fact that a0a1a2a3 is a square it follows that−a1 is
represented by a2Y 2

2 +a3Y 2
3 over k. In other words, there exist integers r1,r2,r3 and

h such that
a1r2

1 + a2r2
2 + a3r2

3 = 0, h2 = a0a1a2a3.

After rescaling (51) if necessary, we can take

A(X2) = hr2X2
0 + a1a3(r3X2

1 − r1X2
3 ),

B(X2) = hr3X2
0 −a1a2(r2X2

1 + r1X2
2 ),

C(X2) = a3hr3X2
0 −a1a2a3(r2X2

1 − r1X2
2 ),

D(X2) = −a2hr2X2
0 −a1a2a3(r3X2

1 + r1X2
3 );

and the di j are given by

d23 = a2
1a2a3r2

1(a3y2 + a2z2), d01 = (h/a2a3)d23,

d31 = a2
1a2a3r1(a3r2y2−2a3r3yz−a2r2z2), d02 = (h/a3a1)d31,

d12 = a2
1a2a3r1(a3r3y2 + 2a2r2yz−a2r3z2), d03 = (h/a1a2)d12.

These choices do not preserve the symmetry, but that loss appears to be unavoidable.
Changing the ri corresponds to a linear transformation on y,z; changing the sign of
h gives the pencil yA = zC,yB = zD instead of (50).

The 2-covering of E given by the triple (m1,m2,m3) with m1m2m3 = 1 is

miZ
2
i = X− ci for i = 1,2,3 and Y 2 = Z1Z2Z3.

As in Sect. 11, values associated with the particular 2-covering given by (50) will be
denoted by a superfix 0; the 2-covering itself is given by

m0
1 =−d21d31, m0

2 =−d12d32, m0
3 =−d13d23.
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We shall also need to know the 2-coverings corresponding to the 2-division points.
That corresponding to (c1,0), for example, is given by

m1 =−a0a1, m2 = d03d21, m3 = d02d31, (55)

which can alternatively be written

m1 =−a0a1, m2 =−h/a1a2, m3 = h/a3a1.

It follows from the expressions for the di j that, up to a squared factor, the dis-
criminant of di j is equal to −aia j; thus in particular di j has no repeated linear factor
and it is a product of two linear factors over k if and only if −aia j is in k∗2. If i, j,k
is a cyclic permutation of 1,2,3 then

d0i/d jk = a0ai/h = h/a jak.

Moreover the resultant of di j and dik is −4a2
i a jak, so that di j and dik cannot

have a common root. The pencil (50) has six singular fibres, given by the roots
of d01d02d03 = 0, and each singular fibre consists of four lines which form a skew
quadrilateral. Thus each of the 48 lines on (51) is part of a singular fibre of one of
the two pencils on V .

Martin Bright’s thesis contains a dictionary which gives the Néron-Severi group
of (51) over any field k. This group has rank at least 2 whenever (52) holds; subject
to (52), it has rank greater than 2 if and only if up to fourth powers there is a relation
of the form a j = 4ai or a j =−ai or aia j = aka�.

In order to apply Theorem 11.2, we must know when Condition D holds, and we
must evaluate the relevent Legendre-Jacobi functions. This is where a splitting of
cases becomes necessary. In what follows, we confine ourselves to the case when
none of the −aia j is in k∗2, which is equivalent to requiring that all the di j are
irreducible over k.

Lemma 12.1. Suppose that no −aia j is in k∗2. Then for any m which does not
satisfy Condition D, one of m and mm0 can be chosen to be independent of y and z.
Moreover the group of such m has order exactly 8 (and consists of the inescapable
part of the 2-Selmer group) if and only if a0a1a2a3 is not a fourth power and no aia j

is a square.

What happens in the exceptional cases is as follows. If for example a2a3 is a
square then (1,−a1a2,−a1a2) does not satisfy Condition D. Again, if h is in −k∗2
then (a1a3,a1a2,a2a3) does not satisfy Condition D, whereas if h is in k∗2 then
(a1a2,a2a3,a3a1) does not satisfy Condition D. In each of these cases, the group of
inescapable elements of the 2-Selmer group acquires one extra generator, which is
the m just listed; and this provides a straightforward description of Condition E. If
some aia j and one of ±h are both squares, then we acquire two extra generators in
this way.
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We can now state the main result of this subsection, which is simply the special-
ization of Theorem 11.2 to our case, and which therefore requires no further proof.
The set S of bad places consists of the infinite places, the primes which divide
2a0a1a2a3 and a basis for the ideal class group of k. Denote by A the closure of
the set of points α ×β in N 2 at which (50) is locally soluble for y = α,z = β at
each place of S and all the Legendre-Jacobi conditions associated with any pencil
of conics (53) hold.

Theorem 12.2. Suppose that (51) is everywhere locally soluble and such that
a0a1a2a3 is a square, and that no −aia j is in k∗2. Assume Schinzel’s Hypothesis
and the finiteness of X. If A is not empty and Condition D holds, then (51) con-
tains rational points.

As was remarked at the end of Sect. 11, we can here replace Condition D by the
weaker Condition E.

The solubility of the pencil of conics (53) is equivalent to three Legendre-Jacobi
conditions, of which a typical one is

L(B;−di�d j�,dk�) = 1. (56)

There are 12 conditions of this kind, but they are not all independent. Indeed in
the notation of Lemma 8.3 the continuous conditions, which form a subgroup there
called Λ0, are all Brauer-Manin; and Bright’s table shows that in the most general
case satisfying (52) there is only one algebraic Brauer-Manin condition. In general
the twelve conditions of the form (56) all reduce to F12F23F31 = 1 where

Fi j = L(B;−di�d j�,dk�;α,β ) = L(B;−dikd jk,d�k;α,β ).

If however one of the aia j is a square then the corresponding condition Fi j = 1 is
also in Λ0. The remarks which follow Lemma 12.1 show that Condition D cannot
then hold, but Condition E may still hold in some part of A . One can evaluate the
Fi j by using the formulae which follow (24). Of the surfaces (51) defined over Q
which satisfy (52) and have the ai integral with each |ai| < 16, there are just two
which are everywhere locally soluble but do not have a solution in Q. They are

2X4
0 + 9X4

1 = 6X4
2 + 12X4

3 and 4X4
0 + 9X4

1 = 8X4
2 + 8X4

3 .

The first of these fails the condition F12F23F31 = 1 and the second has a0a1 square
and fails the condition F01 = 1.

Using the methods of Cassels [58] we can carry out a second descent on some of
the surfaces considered in this subsection, and thereby prove that certain equations
(51) are insoluble or do not admit weak approximation. The prettiest result that has
been obtained in this way is as follows.

Lemma 12.3. Suppose that X4
0 +4X4

1 = W 2
0 −2W2

1 for X0,X1,W0,W1 in Z such that
no prime p≡ 7 mod 8 divides both W0 and W1. Then |W0| 
≡ 5 or 7 mod 8.
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This is a weak approximation property, but of a rather unusual sort; and it appears
unlikely that it corresponds to a Brauer-Manin condition.

12.2 Some Kummer Surfaces

In this subsection we consider Kummer surfaces of the form

Z2 = f (1)(X) f (2)(Y ) (57)

defined over an algebraic number field k, where the f (i) are separable quartic poly-
nomials. For (57) to be everywhere locally soluble, for each place v of k there must
exist cv in k∗v such that both the equations

U2 = cv f (1)(X) and V 2 = cv f (2)(Y )

are soluble in kv. For (57) to be soluble in k requires the stronger condition that there
exists c in k∗ such that both the equations

U2 = c f (1)(X) and V 2 = c f (2)(Y ) (58)

are everywhere locally soluble. For the existence of the cv to imply the existence of
c is a local-to-global theorem, and the obstruction to this turns out to be a Brauer-
Manin obstruction. In my view, this is the most interesting feature of the whole
argument.

To be able to use the methods of Sect. 11 on the pair of equations (58), we must
require that their Jacobians each have all their 2-division points rational. In this case
it turns out that the Brauer-Manin obstruction introduced in the previous paragraph
is trivial; in other words, we can always find the c that we need. Call one such value
c0; then we can replace c0 by any c which is close to c0 at all the bad places of
(57) and is such that the good primes p which divide it to an odd power are such
that both equations (58) are soluble in kp. To prove solubility of (57) we introduce
well-chosen primes into c in such a way as to reduce the orders of the 2-Selmer
groups of both the underlying Jacobians to 8. This requires some intricate but ele-
mentary arguments; and for these we need to assume that for each Jacobian there are
two primes which are bad in a specified way for that curve but which are good for
the other. Full details can be found in [23], but this is definitely not recommended
reading.

12.3 Diagonal Cubic Surfaces

In this subsection we consider diagonal cubic surfaces
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a0X3
0 + a1X3

1 = a2X3
2 + a3X3

3 (59)

over certain algebraic number fields k. Without loss of generality we can assume
that the ai in (59) are integers. To show that (59) has a rational solution it is enough
to show that there exists c in k∗ such that each of the two curves

a0X3
0 + a1X3

1 = cX3, and a2X3
2 + a3X3

3 = cX3 (60)

is soluble. The hypothesis that (59) is everywhere locally soluble implies that for
each place v in k there exists cv in k∗v such that each of

a0X3
0 + a1X3

1 = cvX3, and a2X3
2 + a3X3

3 = cvX3

is soluble in kv. The first step in the argument is to deduce from the existence of the
cv the existence of c in k∗ such that each of the two equations (60) is everywhere
locally soluble. In contrast with what happened in the previous subsection, such a c
always exists; and indeed if S is any given finite set of places of k, we can choose
c integral and such that c/cv is in k∗3v for each v in S . Following the methods of
Sect. 11, we denote by L1 the affine line with the origin deleted. Let S be a set of
bad places for the surface (59), which means that S must contain all the primes of
k dividing 3a0a1a2a3 and a basis for the ideal class group of k; and let B ⊃S be
a set of bad places for the pair of curves (60), so that B must also contain all the
primes dividing c. Under the topology induced by S , let A be the open subset of
L1(k) on which each of the two curves (60) is locally soluble at each place of S , let
c0 be a given point of A and let N0 ⊂A be an open neighbourhood of c0. Because
of the possible presence of Brauer-Manin obstructions, it is not necessarily true that
there exists c in N0 such that the two equations (60) are both soluble. But one may
still ask what additional assumptions are needed in order to prove solubility by the
methods of Sect. 11 – always of course on the basis that X is finite.

The Jacobians of the two curves (60) are

Y 3
0 +Y 3

1 = a0a1cY 3 and Y 3
2 +Y3

3 = a2a3cY 3 (61)

respectively. The obvious descent to apply to each of them is the ρ-descent, where
ρ =
√−3. Applying this to the elliptic curve

X3 +Y3 = AZ3 (62)

replaces it by the equations

ρX + ρ2Y = m1Z3
1 , ρ2X + ρY = m2Z3

2 , X +Y = AZ3
3/m1m2

where Z = Z1Z2Z3. Here m1,m2,Z1,Z2 are in K = k(ρ) and if ρ is not in k then
m1,m2 are conjugate over k, as are Z1,Z2; but Z3 is in k. It would appear natural to
work in K rather than k, since if (59) is soluble in K it is soluble in k. But actually
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our methods could not then be applied, for complex multiplication by ρ induces
an isomorphism on (62), so that the Mordell-Weil group of (62) over K has an even
number of generators of infinite order and there is no possibility of applying Lemma
4.6. Thus a prerequisite for applying the methods of Sect. 11 is the unexpected con-
straint: √−3 is not in k. (63)

This does however allow us to take k = Q, for example. But even if (63) holds, there
is considerable interplay between the descent theory over K and that over k; and it
seems necessary to make use of this interplay in the argument.

The basic idea is to write c as a product of primes in S (which are forced on
us by the choice of N0) and some other well-chosen primes; the latter make up
the set B \S . We need to choose the latter so that the ρ-Selmer group of each
of the curves (61) has order 9; and following the precedent of Sect. 11 we expect
to do this by adjoining additional primes one by one to B, always preserving the
local solubility of the curves (60) and keeping c within N0. The latter condition
simply means that each new prime p should be close to 1 in our topology and should
be such that a0/a1 and a2/a3 are in k∗3p . But here we encounter the final pair of
complications. To adjoin one more prime divides or multiplies the order of each ρ-
Selmer group by 3. If one of these orders has already been reduced to 9 we cannot
reduce it further; so adjoining one more prime can no longer improve the situation.
Instead we eventually reach the stage when we have to adjoin two more primes
simultaneously, in such a way that the order of one of the ρ-Selmer groups remains
unchanged, while the order of the other is divided by 9. To be able to reduce the
orders of both ρ-Selmer groups to 9, we therefore need the initial choice of c to
satisfy the following additional condition:

The product of the orders of the ρ-Selmer groups of the two curves (61) is a power of 9.

As should be clear from the preceding discussion, the truth or falsehood of this
statement depends only on N0 (provided it is small enough) and not on the value
of c within N0. In other words, it depends only on the choice of c0; and we need to
show that we can choose c0 so that (in addition to the previous requirements) this
condition holds at c0. Having done all this, we still need the equivalent of Condition
D or Condition E.

However, at the end of all these complications we do obtain Theorem 12.4 below;
the full details of the proof can be found in [18]. The sufficient conditions stated in
Theorem 12.4 are clumsy and could certainly be improved; but I do not believe that
this method is powerful enough to replace them by the Brauer-Manin conditions.

Theorem 12.4. Let k be an algebraic number field not containing the primitive cube
roots of unity. Assume that X is always finite. If (59) is everywhere locally soluble
and the ai are all cubefree, then each of the following criteria is sufficient for the
solubility of (59) in k.

(i) There exist primes p1,p3 of k not dividing 3 such that a1 is a non-unit at p1 and
a3 is a non-unit at p3, but for j = 1 or 3 the three ai with i 
= j are units at p j .
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(ii) There is a prime p of k not dividing 3 such that a1 is a non-unit at p but the
other ai are units there; and a2,a3,a4 are not all in the same coset of k∗3p .

(iii) There is a prime p of k not dividing 3 such that exactly two of the ai are units
at p, and (59) is not birationally equivalent to a plane over kp.

13 The Case of One Rational 2-Division Point

It is possible to carry out a 2-descent without using information about a field ex-
tension provided that the elliptic curve involved has one rational 2-division point
– though it is then necessary to implement the process in two stages. The details
of this process have been worked out, with increasing degrees of sophistication, in
[15, 59] and Chap. II of [14]. I sketch it in this section.

We are concerned with pencils of 2-coverings whose pencil of Jacobians has the
form

Y 2 = (X− c(U,V))(X2−d(U,V))

where c,d are homogeneous polynomials in k[U,V ] with degd = 2degc. We start
by recalling the standard machinery for 2-descent on

E ′ : Y 2 = (X− c)(X2−d)

for c,d in k and d not in k2.
If O′ is the point at infinity on E ′ and P′ the 2-division point (c,0) then there is

an isogeny φ ′ : E ′ → E ′′ = E ′/{O′,P′} where E ′′ is

E ′′ : Y 2
1 = (X1 + 2c)(X2

1 + 4(d− c2));

the places of bad reduction for E ′′ are the same as those for E ′. Explicitly, φ ′ is given
by

X1 =
d−X2

c−X
−2c, Y1 =

Y (X2−2cX + d)
(X− c)2 .

There is also a dual isogeny φ ′′ : E ′′ → E ′, and φ ′′ ◦φ ′ and φ ′ ◦φ ′′ are the doubling
maps on E ′ and E ′′ respectively. We are primarily interested in the case when neither
d nor c2− d is a square in k, so that E ′ and E ′′ each contain only one primitive 2-
division point defined over k.

The elements of H1(k,{O′,P′}) ∼ k∗/k∗2 classify the φ ′-coverings of E ′′; the
covering corresponding to the class of m′ is

V 2
1 = m′(X1 + 2c), V 2

2 = m′(X2
1 + 4(d− c2)) (64)

with the obvious two-to-one map to E ′′. The φ ′-covering corresponding to P′′ is
given by m′ = d. Similarly the φ ′′-coverings of E ′ are classified by the elements of
H1(k,{O′′,P′′})∼ k∗/k∗2, the covering corresponding to the class of m′′ being



102 P. Swinnerton-Dyer

W 2
1 = m′′(X − c), W 2

2 = m′′(X2−d). (65)

The φ ′′-covering corresponding to P′ is given by m′′ = c2−d. We denote by S′2 the
2-Selmer group of E ′, and by S′φ ,S′′φ the φ ′-Selmer group of E ′′ and the φ ′′-Selmer
group of E ′ respectively.

Write K = k(d1/2); then the group of 2-coverings of E ′ is naturally isomorphic
to K∗/K∗2, where the 2-covering corresponding to the class of a+bd1/2 is given by

Z2
1 = (a2−db2)(X − c), (Z2±d1/2Z3)2 = (a±bd1/2)(X ±d1/2).

In homogeneous form, this can be written

Z2
2 + dZ2

3 = aZ2
1/(a2−db2)+ (ac + bd)Z2

0,

2Z2Z3 = bZ2
1/(a2−db2)+ (a + bc)Z2

0.

}
(66)

Call this curve Γ ′; then the map Γ ′ → E ′ has degree 4 and is given by

X =
Z2

1

(a2−db2)Z2
0

+ c, Y =
Z1(Z2

2 −dZ2
3)

(a2−db2)Z3
0

.

The map Γ ′ → E ′ can be factorized as Γ ′ →C′′ → E ′, where C′′ is the φ ′′-covering
of E ′ given by (65) with m′′ = a2−db2 and the map Γ ′ →C′′ is

W1 = Z1/Z0, W2 = (Z2
2 −dZ2

3)/Z2
0 .

Conversely, suppose that we have a curve of genus 1 defined over k and given by
the equations

α0U2
0 + α1U2

1 + α2U2
2 + α3U2

3 + 2α4U2U3 = 0,

β0U2
0 + β1U2

1 + β2U2
2 + β3U2

3 + 2β4U2U3 = 0,

}
(67)

where the αi,βi are in o. We have just seen that any 2-covering of an elliptic curve
with one rational 2-division point can be put in this form, and we shall now prove
the converse. Write di j = αiβ j−α jβi; then the curve (67) takes the more convenient
form

d10U2
0 + d12U2

2 + 2d14U2U3 + d13U2
3 = 0,

d01U2
1 + d02U2

2 + 2d04U2U3 + d03U2
3 = 0.

}
(68)

If we write U0 = 2Z0(d2
14− d12d13) and U1 = Z1/4d34(d2

14− d12d13), this last pair
of equations can be identified with (66) provided that

a =−2(2d14d34 + d13d23)(d2
14−d12d13), b = d−1

01 d13(d2
14−d12d13),

c = 4d04d14−2d02d13−2d03d12, d = 4d2
01(d

2
23 + 4d24d34);

it also follows from these that
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c2−d = 16(d2
04−d02d03)(d2

14−d12d13),
m′′ = a2−db2 = 16d2

34(d
2
14−d12d13)3.

We assume that d(c2−d) 
= 0, so that (67) defines a nonsingular curve of genus 1.
Now let S be a finite set of places which contains the infinite places, the primes

which divide 2, the odd primes of bad reduction for E ′ (or E ′′) and a set of generators
for the ideal class group of k. For any v in S we write

V ′v = H1(kv,{O′,P′})∼ k∗v/k∗2v

and similarly for V ′′v ; and we denote by W ′v the image of E ′′(kv)/φ ′E ′(kv) in V ′v and
similarly for W ′′v . Thus m′ lies in W ′v if and only if Γ ′ is soluble over kv, and similarly
for W ′′v . There is a non-degenerate canonical pairing

V ′v ×V ′′v → {±1} (69)

induced by the Hilbert symbol, under which the orthogonal complement of W ′v is
W ′′v . As in Sect. 10, we write

V ′S =⊕v∈S V ′v , W ′S =⊕v∈S W ′v

and similarly for V ′′ and W ′′. The machinery in the first half of Sect. 10 needs to be
modified to take account of the changed circumstances, but the proofs involve no
new ideas.

Lemma 13.1. Let S0 consist of the infinite places, the even primes, and a set of
generators for the ideal class group of k. For each v in S there exist subspaces
K′v ⊂V ′v and K′′v ⊂V ′′v such that

(i) K′′v is the orthogonal complement of K′v under the pairing (69);
(ii) V ′S = U ′S ⊕K′S and V ′′S = U ′′S ⊕K′′S where U ′S ,U ′′S are the images of XS ×

XS = (o∗S /o∗2S )2 in V ′S and V ′′S respectively;
(iii) If v is not in S0 we can take K′v and K′′v to be the images of (o∗v/o∗2v )2.

It follows from (69) that there is a non-degenerate canonical pairing

V ′S ×V ′′S → {±1} (70)

and from (i) that K′′S = ⊕v∈S K′′v is the orthogonal complement of K′S under this
pairing.

Lemma 13.2. If S ⊃S0 then S′φ is isomorphic to each of U ′S ∩W ′S , the left kernel
of the map U ′S ×W ′′S →{±1} induced by (70), and the left kernel of the map W ′S ×
U ′′S → {±1} induced by (70). A similar result holds for S′′φ .

Let t ′S : V ′S →U ′S be the projection along K′S and similarly for t ′′S . We now
diverge from the notation of Sect. 10, writing
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U′S = U ′S ∩ (W ′S + K′S ), W′
S = W ′S /(W ′S ∩K′S )

and similarly for U′′S and W′′
S ; as in Sect. 10, the map t ′S induces an isomorphism

τ ′S : W′
S → U′S , and there is an analogous isomorphism τ ′′S : W′′

S → U′′S . The
pairing (70) induces pairings

U′S ×W′′
S →{±1}, W′

S ×U′′S →{±1} (71)

and the action of τ ′S × (τ ′′S )−1 takes the first pairing into the second. The left kernel
of either of these pairings is isomorphic to S′φ and the right kernel to S′′φ . The action
of τ ′S ×1 takes the first pairing into the pairing

W′
S ×W′′

S → {±1}.

Our objective is to prove the solubility in k of pencils of curves (67) under suit-
able conditions. The appropriate modification of Lemma 11.1 is as follows.

Lemma 13.3. Suppose that P′ is the only primitive 2-division point of E ′ defined
over k and similarly for P′′ on E ′′. If the orders of S′φ and S′′φ are 2 and 4 respectively
then the order of S′2 is at most 4.

Proof. Let Γ ′ be a 2-covering of E ′ and denote by C′′ the quotient of Γ ′ by the action
of the group {O′,P′}; then C′′ is a φ ′′-covering of E ′ and we have a commutative
diagram

E ′ φ ′−−−−→ E ′′ φ ′′−−−−→ E ′
∥∥∥

∥∥∥
∥∥∥

Γ ′ −−−−→ C′′ −−−−→ E ′

where the first two vertical double lines mean that Γ ′ and C′′ are principal homo-
geneous spaces for E ′ and E ′′ respectively. If Γ ′ is identified with the element f of
H1(k,E ′[2]) then C′′ is identified with φ ′ ◦ f as an element of H1(k,E ′′[φ ′′]). If Γ ′
is in S′2 then C′′ is in S′′φ ; so we can construct all the elements of S′2 by lifting back
the elements of S′′φ . But by hypothesis P′′ is not in φ ′E ′(k), so the two elements of
S′φ must correspond to the points O′′ and P′′ as members of E ′′(k)/φ ′E ′(k); hence
regarded as elements of S′2 they are equivalent. In other words, E ′′ regarded as an
element of S′′φ lifts back to only one element of S′2; so the same is true of each ele-
ment of S′′φ . ��

We now have to study simultaneously the φ ′-descent on E ′′ and the φ ′′-descent
on E ′. As in Sect. 11, by introducing a sequence of well-chosen primes we reduce S′φ
and S′′φ until we can apply Lemma 13.3; but the process is more complicated than in
Sect. 11. The strongest version of the argument is due to Wittenberg [14]; assuming
Schinzel’s Hypothesis and the finiteness of X, to prove solubility he needs little
more than the triviality of the Brauer-Manin obstruction.
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14 Del Pezzo Surfaces of Degree 4

Let V be a Del Pezzo surface of degree 4 (that is, the smooth intersection of two
quadrics in P4) defined over an algebraic number field k. Salberger and Skoroboga-
tov [60] have shown that the only obstruction to weak approximation on V is the
Brauer-Manin obstruction, and a more elementary proof can be found in [61].

Theorem 14.1. Suppose that V (k) is not empty. Let A be the subset of the adelic
space V (A) consisting of the points ∏Pv such that

∑ invv(A(Pv)) = 0 in Q/Z

for all A in the Brauer group Br(V ). Then the image of V (k) is dense in A .

The idea behind the proof in [61] is that we can use the existence of a point of V (k)
to fibre V by conics. Theorem 9.4 now allows us to find a positive 0-cycle of degree
8 on V defined over k satisfying pre-assigned approximation conditions; and the
proof is then completed by a modification of an argument of Coray [62]. Coray’s
result is Theorem 14.3 below; it will probably turn out to be a fundamental tool in
the Diophantine theory of Del Pezzo equations of degree 4. Lemma 14.2 is weaker
than Theorem 14.3, but appears to be a necessary step in the proof of the latter.

Lemma 14.2. Let V be a Del Pezzo surface of degree 4, defined over a field L of
characteristic 0. If V contains a positive 0-cycle of degree 2 and a positive 0-cycle
of odd degree n, both defined over L, then V (L) is not empty.

Proof. We can suppose V embedded in P4 as the intersection of two quadrics. We
proceed by induction on n. If the given 0-cycle of degree 2 consists of the two points
P′ and P′′ then we can suppose that they are conjugate over L and distinct, because
otherwise the lemma would be trivial. By a standard result, there are infinitely many
points on V defined over L(P′) and hence infinitely many positive 0-cycles of degree
2 defined over L. Choose d so that

2d(d + 1) > n > 2d(d−1)

and let {P′i ,P′′i } be 1
2{2d(d + 1)− n− 1} distinct pairs of points of V , the points

of each pair being conjugate over L. The hypersurfaces of degree d cut out on V a
system of curves of dimension 2d(d + 1); hence there is at least a pencil of such
curves passing through the P′i and P′′i and the points of the given 0-cycle of degree
n, and this pencil is defined over L. We have accounted for 2d(d + 1)− 1 of the
4d2 base points of the pencil; so the remaining ones form a positive 0-cycle of
degree 2d(d− 1)+ 1 defined over L. This completes the induction step unless n =
2d(d−1)+ 1.

In this latter case we must have d > 1 because if d = 1 then n = 1 and the lemma
is already proved; hence 2d(d + 1)− n− 1 = 4d− 2 ≥ 6. Instead of the previous
construction we now choose our pencil of curves to have double points at P′0 and
P′′0 and to pass through 1

2{2d(d + 1)− n− 7} other pairs P′i ,P′′i as well as through
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the points of the given 0-cycle of degree n. In this case each of P′0 and P′′0 is a base
point of the pencil with multiplicity 4; so we have accounted for 2d(d +1)+1 of the
base points of the pencil, and the remaining ones form a positive 0-cycle of degree
2d(d−1)−1 defined over L. This completes the induction step in this case. ��
Theorem 14.3. Let V be a del Pezzo surface of degree 4, defined over a field L of
characteristic 0. If V contains a 0-cycle of odd degree defined over L then V (L) is
not empty.

Proof. By decomposing the 0-cycle into its irreducible components, we can assume
that V contains a positive 0-cycle a of odd degree defined over L. We can write V
as the intersection of two quadrics, each defined over L; let W be one of them. We
can find a field L1 ⊃ L with [L1 : L] ≤ 2 and a point P on W defined over L1. The
lines on W through P are parametrised by the points of a conic, so we can find a
field L2 ⊃ L1 with [L2 : L1] ≤ 2 and a line � on W , passing through P and defined
over L2. The intersection of this line with another quadric containing V cuts out on
V a positive 0-cycle of degree 2 defined over L2. Applying Lemma 14.2 to a and
this 0-cycle, we obtain a point P2 on V defined over L2. Repeating this argument for
a and the positive 0-cycle of degree 2 consisting of P2 and its conjugate over L1, we
obtain a point P1 on V defined over L1; and one further repetition of the argument
gives us a point on V defined over L. ��

To use and then collapse a field extension in this way is a device which probably
has a number of uses. For such a collapse step to be feasible, the degree of the field
extension needs to be prime to the degree of the variety; and this leads one to phrase
the same property somewhat differently.

Question 14.4. Let V be a variety defined over a field K, not necessarily of a
number-theoretic kind. For what families of V is it true that if V contains a 0-cycle
of degree 1 defined over K then it contains a point defined over K?

As stated above, this is true for Del Pezzo surfaces of degree 4. For pencils of conics
it is in general false, even for algebraic number fields K, as was shown at the end
of Sect. 9. For Del Pezzo surfaces of degree 3 the question is open: I expect it to be
true for algebraic number fields K but false for general fields.

The methods of Sect. 13 have enabled Wittenberg [14] to prove the solubility
of almost all Del Pezzo surfaces of degree 4 on which there is no Brauer-Manin
obstruction. His starting point is as follows. Let V be a nonsingular Del Pezzo sur-
face of degree 4, defined over an algebraic number field k and everywhere locally
soluble. Then, after a field extension of odd degree, we can exhibit a family of hy-
perplane sections of V which is of the form considered in Sect. 13. This family is
parametrised by the points of P3 blown up along a certain curve and at four other
points. The construction, which was first sketched in [15], is as follows.

The surface V is the base locus of a pencil of quadrics; because V is nonsingular,
the pencil contains exactly 5 cones defined over k̄ and these are all distinct. Hence
one at least of them is defined over a field k1 which is of odd degree over k; and
by Theorem 14.3 it is enough to ask whether V contains points defined over k1.
Henceforth we work over k1. After a change of variables, we can assume that the
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singular quadric just described has vertex (1,0,0,0,0) and therefore an equation of
the form f (X1,X2,X3,X4) = 0. By absorbing multiples of the other Xi into X0, we
can write V in the form

f (X1,X2,X3,X4) = 0, aX2
0 + g(X1,X2,X3,X4) = 0 (72)

with a 
= 0. Now let P be any point on X0 = 0, let Q be the quadric of the pencil (72)
which passes through P, and let Π be the tangent hyperplane to Q at P. For general
P the curve of genus 1 in which Π meets V can be put in the form (68) and hence
is of the type considered in Sect. 13. For provided that P does not lie on f = 0, by a
further change of variables we can take P to be (0,1,0,0,0) and require

f (X1,X2,X3,X4) = bX2
1 + f1(X2,X3,X4).

The equation of Q has no term in X2
1 , so by a further change of variables we can

take it to have the form

aX2
0 + cX1X4 + h(X2,X3,X4) = 0 (73)

with c 
= 0; this is equivalent to requiring the equation of Π to be X4 = 0. Since V is
given by f = 0 and (73), its intersection with X4 = 0 has the required form.

This construction breaks down if P lies on V or is the vertex of one of the other
singular quadrics of the pencil, because then Π is no longer well-defined. To remedy
this, what we do is to choose a point P on X0 = 0 together with a hyperplane Π which
touches at P some quadric of the pencil (72). Thus P should be considered as a point
of the variety W obtained by blowing up X0 = 0 (which can be identified with P3)
along the curve V ∩{X0 = 0} and at the vertices of the other four singular quadrics
of the pencil.

Denote by U the variety over W whose fibres are the curves V ∩Π in the con-
struction above; then what we have obtained is a diagram

W ←−U −→V

in which the left hand map is a fibration. The right hand map here is not a fibration,
and it seems unlikely that there is even a subvariety of U on which the restriction
of the map is a fibration. But this is not important. What matters is the existence
of a section – that is, a map V →U such that the composite map V → U → V is
the identity; and for this we only need the map V → U to be rational rather than
everywhere defined. In the notation of (72) let P0 = (x0, . . . ,x4) be a point of V
with x0 
= 0, and choose P = (0,x1,x2,x3,x4). The equation of Π has no term in X0;
hence since P lies on Π so does P0. This defines the rational map V →U . Provided
V is everywhere locally soluble, so is U . If we can find a field extension k2/k1 of
odd degree such that U is soluble in k2, then V will also be soluble in k2 and two
applications of Theorem 14.3 will show that V is soluble in k.
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We cannot apply Wittenberg’s results cited in Sect. 13 to W directly, because W
is too big; but it is simple enough to find a line L defined over k1 in the P3 which
underlies W such that

• L is in sufficiently general position, and
• The inverse image of L in U is everywhere locally soluble.

To do this, we choose any P1 on X0 = 0 and defined over k1. The fibre above P1 is
locally soluble except at a finite set S of places. For each of these places there is
a point of U in the corresponding local field, and this maps down to a point of P3.
Using weak approximation on P3 we can therefore find a point P2 in P3 such that
the fibre above P2 is locally soluble at each place in S . We can now take L to be the
line P1P2.
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