
Chapter 2
Mutation and Random Genetic Drift

2.1 The Wright–Fisher Model and the Kingman Coalescent

Evolution is a random process. Random events enter in many ways, from errors in
copying genetic material to small and large scale environmental changes, but the
most basic source of randomness that we must understand is due to reproduction
in a finite population leading to random genetic drift. The simplest model of ran-
dom genetic drift was developed independently by Sewall Wright and R.A. Fisher
and is known as the Wright–Fisher model. We consider a population in which every
individual is equally likely to mate with every other and in which all individuals
experience the same conditions. Such a population is called panmictic. We also sup-
pose that the population is neutral (everyone has an equal chance of reproductive
success). Most species are either haploid meaning that they have a single copy of
each chromosome (for example, most bacteria), or diploid meaning that they have
two copies of each chromosome (for example, humans). We suppose that the pop-
ulation is haploid, so that each individual has exactly one parent. Although in a
diploid population individuals have two parents, each gene can be traced to a sin-
gle parental gene in the previous generation and so it is customary in this setting to
model the genes in a diploid population of size N as a haploid population of size
2N.1 As we shall see in Sect. 5.6, this device fails once we are interested in tracing
several genes at the same time.

Definition 2.1 (The neutral Wright–Fisher model). The neutral Wright–Fisher
model for a panmictic, haploid population of constant size N is described as fol-
lows. The population of N genes evolves in discrete generations. Generation (t +1)
is formed from generation t by choosing N genes uniformly at random with replace-
ment. That is, each gene in generation (t + 1) chooses its parent independently at
random from those present in generation t.

1 In fact we are assuming that the population is hermaphrodite here – so there are no separate
sexes – and we are allowing a small chance of self-fertilisation. For a population subdivided into
Nm males and Nf females we can still use the same model, but with an effective population size
4NmNf /(Nm +Nf ) replacing N, see Example 2.9.
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6 2 Mutation and Random Genetic Drift

From this definition it is an elementary matter to work out the genealogical trees
that relate individuals in a sample from the population. Suppose first that we take a
sample of size two. The probability that these two individuals share a common par-
ent in the previous generation is 1/N. If they do not, then the probability that their
parents had a common parent is 1/N, and so on. In other words, the time to the most
recent common ancestor (MRCA) of the two individuals in the sample has a geo-
metric distribution with success probability 1/N. (The probability that their most
recent common ancestor was T generations in the past is pqT−1 where p = 1/N and
q = 1− p.) In particular, the expected number of generations back to their MRCA
is N. Now typically we are interested in large populations, where our rather crude
models have some hope of having something meaningful to say. Then it makes sense
to measure time in units of size N and in those units the time to the MRCA of a sam-
ple of size two is approximately exponentially distributed with parameter one. More
generally, consider a sample of size k≥ 2. The probability of three (or more) individ-
uals from the sample sharing a common parent is O(1/N2) and similarly the chance
that two separate pairs of individuals are ‘siblings’ is O(1/N2). This means that the
time we must wait before we see such an event is O(N2) generations. But before this
happens (with probability tending to one as N→ ∞) all our ancestral lineages will
have coalesced through pairwise coalescence events (each of which occurs within
O(N) generations). Thus the time (in units of size N) before the present at which
we first see a ‘merger’ of lineages ancestral to our sample is approximately exponen-
tially distributed with rate

(k
2

)
and, when that merger takes place, it affects exactly

two lineages chosen uniformly at random from the
(k

2

)
pairs available. After that we

just trace the remaining
(k−1

2

)
pairs of lineages and the same picture holds.

Remark 2.2. Since we are dealing with a haploid population, each individual has
only one parent and the genealogical trees get smaller as we go backwards in time,
in contrast to our usual understanding of family trees (for a diploid population)
which grow as we trace backwards in time. We’ll return to this point in Sect. 2.7.

We shall loosely refer to the system of coalescing lineages that we have just
described as Kingman’s coalescent, but let us give a more formal definition. If we
label individuals in our sample {1,2, . . . ,k}, then our process of coalescing lineages
defines a continuous time Markov process, {πt}t≥0, on the equivalence relations on
[k] = {1,2, . . . ,k}. Each equivalence class of πt corresponds to an ancestor alive at
time t before the present. It consists of the labels of all individuals in our sample
descended from that ancestor.

Definition 2.3 (Kingman coalescent). A k-coalescent is a continuous time Markov
chain on Ek, the space of equivalence relations on [k], with transition rates qξ ,η
(ξ ,η ∈ Ek) given by

qξ ,η =
{

1 if η is obtained by coalescing two of the equivalence classes of ξ ,
0 otherwise.

The Kingman coalescent on N is a process of equivalence relations on N with the
property that, for each k, its restriction to [k] is a k-coalescent. By convention, we
take the initial condition to be the trivial partition into singletons.
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Remark 2.4 (Consistency). If we take a (k + l)-coalescent and restrict it to [k], then
we obtain a k-coalescent. In particular, if we take a sample of size k + l from the
population and restrict the genealogical trees relating the full sample to a randomly
chosen subsample of size k, then we arrive at the same trees as if we had just taken
a smaller sample in the first place. This sampling consistency is an essential part of
the interpretation of the model.

Existence of the k-coalescent is clear (it is a finite state space Markov chain with
bounded rates). The consistency allowed Kingman (1982) to pass to a projective
limit.

Remark 2.5 (Terminology). In what follows we shall sometimes say that the geneal-
ogy of a sample (or population) of size k is determined by the Kingman coalescent.
By this we mean that it is given by a k-coalescent.

To obtain the Kingman coalescent, we measured time in units of population size
N and passed to an infinite population limit. Now let’s examine what happens when
we let N→∞ in our Wright–Fisher model. Suppose that the gene in question has two
alleles which we label a and A say. For now we suppose that an offspring inherits the
allelic type of its parent. We try to characterise the process, {pt}t≥0, which records
the proportion of a-alleles in the population at each time t ≥ 0. Notice that in the
prelimiting model, {pt}t≥0 is a discrete time Markov chain on a finite state space
with traps at 0 and 1.

Definition 2.6 (Fixation). If the proportion of one of the alleles in the population
is one, then we say that the allele has fixed. The probability that a becomes fixed is
its fixation probability.

To characterise the distribution of {pt}t≥0, we consider how E[u(pt)] changes with
time for sufficiently nice functions u : [0,1]→ R. In the rescaling that we took to
obtain the Kingman coalescent, the model evolves at time intervals of length 1/N.
Evidently, if a proportion p of the population is of type a in the current generation,
then the expected number of type a individuals in the next generation is N p and the
variance of that number is N pq (where q = 1− p). Thus the mean allele frequency
remains the same and the variance is pq/N. Moreover E[ (p1/N− p)k

∣
∣ p0 = p] =

O(1/N2) for all k≥ 3. Now the evolution of the process is homogeneous in time, so
it is enough to consider what happens close to time zero. Using Taylor’s Theorem,
we obtain

d
dt

E [u(pt)| p0 = p]
∣
∣
∣
∣
t=0
≈

{
E

[
u(p1/N)

∣
∣ p0 = p

]−u(p)
}

1/N

= N

{
u′(p)E[ (p1/N− p)

∣
∣ p0 = p]

+
1
2

u′′(p)E[ (p1/N− p)2
∣
∣ p0 = p]+O

(
1

N2

)}

=
1
2

p(1− p)u′′(p)+O

(
1
N

)
.
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Thus, in the limit as N → ∞, if the process of allele frequencies converges to a
well-defined stochastic process, then we expect that

d
dt

E [u(pt)| p0 = p]
∣
∣
∣
∣
t=0

=
1
2

p(1− p)u′′(p). (2.1)

That is, we expect that in the limit, the distribution of the allele frequencies is gov-
erned by the solution to the Wright–Fisher stochastic differential equation:

d pt =
√

pt(1− pt)dWt , (2.2)

where {Wt}t≥0 is a standard Brownian motion.
What we have shown is that, at least for large populations evolving according

to the neutral Wright–Fisher model, if we measure time in units of N generations,
then the distribution of allele frequencies should be approximately governed by the
partial differential equation (2.1), and the genealogy of a sample from the popula-
tion should be well-approximated by the Kingman coalescent. Notice that it is the
random genetic drift, that is the random change in allele frequencies caused by the
random variation in individual reproduction, that causes coalescence of ancestral
lineages as we trace backwards in time.

In reality, a variety of factors affect the rate of genetic drift and these are often
summarised by using an effective population size.

Definition 2.7 (Effective population size). The effective population size Ne of a
population is the size of the Wright–Fisher population that would give the same rate
of random drift.

Remark 2.8. In fact this definition is incomplete as there are several ways to define
the rate of genetic drift and they do not necessarily yield the same expression for the
effective population size. For the Wright–Fisher model for a population of size N,
we have the following three properties:

1. The maximum nonunit eigenvalue of the transition matrix is 1−1/N.
2. The probability that two genes taken at random are descendants of the same

parent is 1/N.
3. Writing p(t) for the proportion of a-alleles in generation t and var(p(t)) for the

corresponding variance, given p(t), var(p(t + 1)) = p(t)(1− p(t))/N.

One can try to find an Ne corresponding to any of these properties, and this leads to
eigenvalue effective population size, inbreeding effective population size and vari-
ance effective population size. Ewens (1982) discusses this in more detail. Nordborg
and Krone (2002) define the coalescent effective size as the amount by which time
must be rescaled in order to recover the Kingman coalescent as the genealogy in
the limit as population size tends to infinity. Such an effective size may not exist,
but there are strong arguments for not defining an effective population size in set-
tings where one cannot (asymptotically) reduce to Kingman’s coalescent. This is
discussed further in Sjödin et al. (2005).

For a diploid population, modelled as a haploid population of size 2N, the corre-
sponding quantity will be 2Ne.
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Example 2.9 (Populations that are subdivided into males and females). Suppose
that a diploid population is subdivided into Nm males and Nf females, then

Ne =
4NmNf

Nm + Nf
. (2.3)

To see why, take a sample of two genes from the current generation. Each sits in a
diploid individual and has probability 1/2 of being inherited from the father of that
individual and 1/2 of being inherited from the mother.2 If they are both inherited
from fathers, which happens with probability 1/4, then they have probability 1/2Nm

of being descended from the same gene, and similarly, if both are inherited from a
female they came from the same parental gene with probability 1/2Nf . Thus the
chance of coalescence in the previous generation is

1
4

1
2Nm

+
1
4

1
2Nf

=
Nm + Nf

8NmNf
=

1
2Ne

with Ne given by (2.3).
What we have derived here is the inbreeding effective population size, but the

methods of Sect. 6.3 can be used to show that in this example this corresponds to
the coalescent effective population size (see Nordborg and Krone (2002) for more
details.) ��

So how does (2.2) do as a model? Of course it is too simplistic to apply to
most naturally occurring populations, but we can compare it to experimental data.
Buri (1956) reports an experiment on populations of Drosophila melanogaster. Just
over one hundred populations were propagated, each from eight males and eight
females. The experiment measures the frequency of an allele of a gene that slightly
alters the eye colour (without affecting fitness or reproductive success of the car-
rier). We’ll denote it by a. He reports the change in the variance in allele frequency
across the different populations with time. All populations are started with exactly
half a and half A (which in this context just means ‘not a’) alleles. The variance
starts at zero (all populations have the same frequencies) and then grows because of
the random genetic drift until it reaches a maximum when each population consists
either entirely of a-alleles or entirely of A-alleles.

We write vt for the variance in allele frequency across populations at time t in
our rescaled time units, vt = E[p2

t ]−E[pt ]2. Using (2.1) and the Markov property of
{p(t)}t≥0 we have that

d
dt

E[pt ] = 0,
d
dt

E[p2
t ] = E[pt(1− pt)] and

d
dt

E[pt(1− pt)] =−E[pt(1− pt)].

2 We are ignoring the possibility that we have sampled two distinct genes from the same individual.
If this happens, then in the previous generation the ancestral lineages were necessarily in different
individuals (the mother and father) and so correcting for this makes negligible difference to the
inbreeding effective population size.
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Combining these gives that vt ≈ p0(1 − p0)(1 − exp(−t)). Writing Vt for the
variance after t generations (in other words changing back to ‘real’ time units) this
becomes

Vt ≈ p0(1− p0)(1− exp(−t/2N)).

The 2N is because Drosophila are diploid and in this case N = 16.3 The theoretical
prediction for the rate of increase in the variance turns out to be not very accurate,
but it becomes good when instead of substituting the actual population size, one
substitutes a smaller, effective, population size. Buri reports a best fit of Ne = 11.5.
Buri’s data and the theoretical predictions for Ne = 16 and Ne = 11.5 are plotted in
the graph in Fig. 2.1.

Remark 2.10 (Large populations). The population size N = 16 does not perhaps
seem particularly large. However, calculating directly with the Wright–Fisher model
gives a variance after t generations of

p0(1− p0)
(

1− 1
N

)t

.
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Fig. 2.1 Testing Wright’s model of genetic drift. The graph shows experimental results of
Buri (1956) based on just over 100 populations of Drosophila melanogaster, each propagated from
8 males and 8 females. Variance in allele frequency is plotted against time (in generations). Circles
are data points, the dotted line is the theoretical prediction for Ne = 16 and the solid line is the
theoretical prediction with Ne = 11.5

3 Although the population was subdivided into males and females, the experiment maintained equal
numbers of males and females so that the effective population size Ne = 4NmNf /(Nm + Nf ) = N
(see Example 2.9).
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Hence at the end of the experiment (after 19 generations) we are using exp(−19/32)
as an approximation to (1−1/32)19, giving a relative error of less that 1%.

But why did we need to use an effective population size here? At first sight
Buri’s populations appear to satisfy the assumptions of the Wright–Fisher model:
they are panmictic and constant size, generation times are discrete and the allele un-
der consideration does not affect fitness. In fact it is the Wright–Fisher reproduction
mechanism itself that is at fault. It forces the variance of the offspring of a single
individual to be (1− 1/N), but this does not reflect the true offspring distribution
in the population. To see how offspring variance feeds into the effective population
size we must consider a slightly more general model.

2.2 The Cannings Model

First a definition.

Definition 2.11 (Exchangeable random vector). A random vector (ν1, . . . ,νN)
is said to be exchangeable if its law is invariant under any permutation of the
coordinates. That is,

(ν1, . . . ,νN) d= (νπ(1), . . . ,νπ(N))

for any permutation π = (π(1), . . . ,π(N)) of {1, . . . ,N}.
Definition 2.12 (Neutral Cannings Model). Consider a panmictic, haploid popu-
lation of constant size N. Labelling the individuals in generation t by {1, . . . ,N}, in
a neutral Cannings model, generation t + 1 is determined by an exchangeable ran-
dom vector (ν1(t), . . . ,νN(t)) with ∑N

k=1 νk(t) = N. Here, νk(t) denotes the number
of children of the kth individual and the vectors {(ν1(t), . . . ,νN(t))}t∈N are assumed
to be independent and identically distributed.

Notice that, mathematically, neutrality is captured by exchangeability.
The Wright–Fisher model is the special case of the Cannings model in which

(ν1(t), . . . ,νN(t)) has the multinomial distribution with N trials and equal weights.
Let’s examine the genealogy of a sample from a large population evolving ac-

cording to a more general Cannings model. Let cN denote the probability that two
individuals chosen at random from some generation have a common parent in the
previous generation. Then (dropping the argument t)

cN =
E[ν1(ν1−1)]

N−1
.

To see this, condition on the vector (ν1,ν2, . . . ,νN) that determines the division
of offspring into families. The chance that two offspring (sampled at random and
without replacement) both fall among the ν1 individuals that make up the first
family is just ν1(ν1− 1)/N(N− 1). Now average over the distribution of the vec-
tor (ν1,ν2, . . . ,νN). This gives the probability that both offspring are in the first
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family. Using exchangeability, the probability that they both belong to the same
family (but any one of the N available) is just N times this probability, that is
E[ν1(ν1−1)/(N−1)] as required. (For the Wright–Fisher model, cN = 1/N.) The
time until the MRCA of a random sample of size two from the population will be
geometric with success probability cN . This will determine the right time scaling to
get convergence to a nontrivial limit as N→∞. We are going to assume that cN→ 0
as N → ∞. Now consider a sample of size three. The chance that they all have a
common parent is

E[ν1(ν1−1)(ν1−2)]
(N−1)(N−2)

.

Thus, if we measure time in units of 1/cN, provided that

E[ν1(ν1−1)(ν1−2)]
N2cN

→ 0 as N→ ∞, (2.4)

in the limit as N → ∞ we will only ever see pairwise mergers. In fact it turns
out Möhle (2000) that the condition in (2.4) guarantees both that cN → 0 and that

E [ν1(ν−1)ν2(ν2−1)]
N2cN

→ 0 as N→ ∞,

so that, measuring time in units of 1/cN , asymptotically we will not see simultane-
ous mergers of two different pairs of ancestral lineages. In the limit as N → ∞ we
recover Kingman’s coalescent.

Lemma 2.13. If we sample k individuals from a population evolving according to
the neutral Cannings model of Definition 2.12 and if the condition (2.4) is satisfied,
then for large N, when measured in time units of 1/cN generations, the genealogy
of the sample is approximately a k-coalescent.

Similar calculations to those that we did for the Wright–Fisher model show that,
again measuring time in units of 1/cN generations and under assumption (2.4),
the distribution of allele frequencies for a sufficiently large population evolving
according to the Cannings model will be governed (approximately) by the partial
differential equation (2.1). The only difference from the Wright–Fisher setting is
that now when we wish to compare to data we must remember that cN is (approx-
imately) var(ν1)/N, where var denotes variance. In our previous language, the
effective population size is Ne = N/var(ν1). In particular, the greater the variance
in offspring number, the smaller the effective population size and the faster the rate
of random drift.

Remark 2.14 (Robustness of Kingman’s coalescent). In passing to an infinite
population limit, we aim to find an approximation that reflects the key features
of our population (in this case that it is neutral, panmictic and of constant size),
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but which is insensitive to the fine details of the prelimiting model. As we can
already see, the Kingman coalescent approximates a wide variety of local structures
and it is this robustness that makes it such a powerful tool. Forwards in time we
have taken a diffusion approximation, approximating the Wright–Fisher model by a
Wright–Fisher diffusion. The importance of diffusion approximations in population
genetics can be traced to the seminal work of Feller (1951).

2.3 Selfing

In footnote 1 we remarked that in considering a haploid population of size 2N
in place of a diploid population of size N, since each individual samples its two
parents independently with replacement, we are allowing a small probability of self-
fertilisation. For that model, the probability of self-fertilisation is very small (for
large populations), but for many plant populations a significant proportion of off-
spring are produced through self-fertilisation, or selfing. What effect does this have
on the genealogy of a sample from such a population?

We consider a population of N diploid individuals. Let us write s for the expected
fraction of offspring to be produced by selfing (in which case both genes in the
offspring are sampled from the same parent) and 1− s for the expected fraction
to be produced by random mating. To understand what is happening we trace the
history of two ancestral lineages. At any time in the past they can be in one of three
states:

1. Two lineages in distinct individuals;
2. two lineages in the same individual;
3. coalesced.

Suppose that the two lineages are in distinct individuals. They will remain in this
state for a geometrically distributed number of generations with parameter 1/N.
At that time, with probability 1/2 they are derived from the same parental chromo-
some and they coalesce and with probability 1/2 they move to the second state, two
lineages in the same individual. If this individual was produced by selfing, which
happens with probability s + O(1/N),4 then with probability 1/2 the lineages are
derived from the same parental chromosome, and so they coalesce, and with prob-
ability 1/2 they are derived from different parental chromosomes and they remain
in state 2. Thus two lineages in state 2 remain there for a geometrically distributed
number of generations with parameter

s
2

+ 1− s+O

(
1
N

)

at which time the lineages coalesce with probability

4 The O(1/N) correction in these calculations is because random mating carries a small probability
of selfing.
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s/2
s/2 +(1− s)

+O

(
1
N

)
≈ s

2− s
,

otherwise the system returns to the first state. In particular, we only stay in the
second state for O(1) generations.

If we measure time in units of N generations and let N→∞, then the second state
becomes instantaneous. If the process starts in this state, then it instantaneously
coalesces (with probability s/(2− s)) or else moves to the first state. Similarly a
proportion s/(2− s) of transitions from the first state to the second state will be
followed by an instantaneous coalescence while the rest will be followed by instan-
taneous return to the first state. The overall rate of transition from the first to the
third state (in rescaled time) is then

1
2

+
1
2

s
2− s

=
1

2− s
.

To see this, the first term corresponds to the (rescaled) rate at which two lineages in
distinct individuals sample the same parental chromosome, the second is the rate at
which they sample different chromosomes within the same individual – that is move
to the now instantaneous state 2 – multiplied by the probability that they exit state
2 through coalescence. Alternatively, by measuring time in units of (2− s)N, a pair
of lineages waits an exponentially distributed amount of time with parameter one
before coalescing.

This argument can be extended to arbitrary finite samples from the population.
It is tedious because we must keep track of many possible states. The argument
above is from Nordborg and Donnelly (1997). A rigorous mathematical proof (using
the techniques of Sect. 6.3) can be found in Möhle (1998). We have the following
result.

Lemma 2.15. In a diploid population as above in which a portion s of offspring are
produced by selfing and the remainder by random mating, as the population size N
tends to infinity, the genealogy of a sample is determined by a Kingman coalescent
in which each pair of lineages coalesces at rate 2Ne where the effective population
size Ne = 2−s

2 N.

2.4 Adding Mutations

A mutation is formally defined as a “heritable change in the genetic material (DNA
or RNA) of an organism”. Mutations occur in many forms, but for simplicity we
concentrate on point mutations which occur when there is a change from one base
pair to another at a single position in the DNA sequence. Because of the redundancy
in the genetic code some point mutations do not lead to a change in the sequence
of amino acids. These are called synonymous mutations. Mutations are the ultimate
source of all genetic variation; without them there would be no evolution. Although
mutation rates are relatively slow, the mixing of mutations from different lineages
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that results from genetic recombination (see Sect. 5.6) rapidly leads to an enormous
number of combinations on which natural selection can act. Mutation rates vary
according to the type of mutation, the location on the genome and the organism
involved, with the highest rates being in viruses.5

Typically in our models we assume a constant probability μ per individual per
generation of a mutation at a given base or more generally at a given locus. If
we follow a particular ancestral lineage in our population, then we must wait a
geometrically distributed number of generations (with mean 1/μ) until we see a
mutation. Assuming that 2Neμ , that is the mutation rate multiplied by the effec-
tive population size, is of order one, this will, in rescaled time, be approximately
exponential. Moreover, under this condition, the probability that we see both a co-
alescence and a mutation in our sample in a single generation is O(1/N2

e ). So just
as in our derivation of the Kingman coalescent, we see that if there are currently k
lineages ancestral to our sample, the time (in rescaled units) we must trace back un-
til we see some event is (approximately) the minimum of k independent exponential
random variables each with parameter 2Neμ and an independent exponential ran-
dom variable with parameter

(k
2

)
. Another way to say this is we can add mutations

to Kingman’s coalescent by simply superposing a Poisson process of mutations on
the ancestral lineages. Notice that in order to ensure that the types in the sample are
consistent with the pattern of mutations stemming from such a Poisson process, a
type must first be assigned to the MRCA and then we work our way back through
the coalescent tree assigning types to ancestral lineages. This is illustrated by exam-
ple in Fig. 2.2. There are several important models of mutation. Perhaps the simplest
is the parent-independent mutation model.

1 2 3 4 5

Fig. 2.2 Adding mutations to the Kingman coalescent. Mutations are added to the Kingman
coalescent by throwing down an independent Poisson process of mutations on each branch. In
order to ensure that the types in the sample are consistent with the pattern of mutations, one must
first assign a type to the MRCA and then work back through the tree. In this example, we have
used ‘×’ to denote a mutation on a branch of the coalescent tree. Notice that here the individuals
labelled 1 and 2 in the sample must have the same type

5 See Fig. 12.23 in Barton et al. (2007). Rates shown there vary from O(10−4) per base pair per
generation in RNA viruses like HIV to O(10−10) or O(10−11) in organisms like humans and mice.
By contrast, there is a relatively uniform rate of mutation per genome per replication across diverse
organisms.
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Definition 2.16 (Parent independent mutation). In the parent-independent muta-
tion model, a gene is assumed to occur in one of a finite number of types. Mutations
occur at a constant rate per individual, independent of the current type of the indi-
vidual. The type created by the mutation event is chosen according to a probability
distribution which is also independent of the type of the parent.

More generally one can allow the probability of mutation to different types to
depend on the current state of an individual, in which case the type of a lineage
is governed by a Markov chain on the space of possible types.

Definition 2.17 (Infinitely many alleles model). In the infinitely many alleles
model, every time a mutation occurs, it is to a new allele, never seen before in
the population.

The infinitely many alleles model can be seen as the limit of the parent-independent
mutation model when the number of alleles tends to infinity. It is useful in providing
a link between the classical notion of probability of identity and the coalescent.
In the infinitely many alleles model, two genes will be identical (that is they will
have the same allelic state) if there has been no mutation since their MRCA. If their
MRCA occurred T generations in the past, and the mutation rate per individual per
generation is μ , then we see that this has probability (1− μ)2T ≈ e−2μ̃τ , where
τ = T/Ne is the time to the MRCA in the coalescent timescale and μ̃ = Neμ is
the scaled mutation rate. Averaging out over the distribution of τ , the probability
of identity is E[exp(−2μ̃τ)], that is the Laplace transform of the distribution of the
time, τ , to the MRCA.

Remark 2.18 (Mutation rates and nucleotide diversity). Since the expected num-
ber of generations since the MRCA of two genes sampled at random from a diploid
population (under Kingman’s coalescent) is 2Ne, on average we expect them to dif-
fer by 4Neμ mutations per base pair. This can be counted directly if we are dealing
with DNA sequences. The proportion of nucleotides that differ between two ran-
domly chosen sequences is called the nucleotide diversity and is usually denoted
by π . The crucial parameter 4Neμ is denoted by θ . Notice then that if we measure
time in units of 2Ne generations (as is usual for the Kingman coalescent for a diploid
population) then the rate at which we see mutations falling on each ancestral lineage
is θ/2. This explains the choice of scaling for the mutation rate in much of what fol-
lows. We shall use the same notation when μ is no longer the mutation rate per base
pair, but rather the mutation rate for a locus or a whole gene.

If we sample a single nucleotide at random then with high probability all
individuals in our sample will be identical. (A locus is usually defined to be poly-
morphic if the frequency of the most common type is less than 0.99. In humans,
the chance of heterozygosity at a randomly chosen nucleotide is about 0.0008.
In Drosophila it is an order of magnitude bigger, but still only about 1%, Lynch and
Conery (2003), Fig. 1.) If the rate of mutation does not vary too greatly between
bases then this justifies the so-called infinitely many sites model in which each
time we see a polymorphic site in our sample we assume that it is due to a unique
mutation.
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Definition 2.19 (Infinitely many sites model). In the infinitely many sites model,
every time a mutation occurs on a lineage it is at a new position on the DNA
sequence.

It is sometimes convenient to model the genome as continuous, for example as [0,1],
in which case we suppose that each new mutation occurs at a position chosen ac-
cording to an independent uniformly distributed random variable on [0,1].

Notice that whereas in the infinitely many alleles model individuals only carry
information about the most recent mutation on their ancestral lineage, in the in-
finitely many sites model they retain information about all mutations experienced
by their ancestors.

2.5 Inferring Genealogies From Data

The genealogy of a sample from a population contains a great deal of information,
but we cannot observe it directly. Instead we try to infer it from the pattern of mu-
tations in the sample. We assume the infinitely many sites mutation model. Once
a mutation occurs, it will be carried by all descendants of that individual and from
this we can reconstruct at least partial information about the genealogical trees.
If we suppose, for simplicity, that we know which is the ancestral type at each lo-
cus, then we can construct the so-called gene tree. The gene tree has mutations
as its vertices. Figure 2.3 shows how this works in an example. Although a given
pattern of mutations may be consistent with several different coalescent trees, if it
is compatible with this model then it will be consistent with an essentially unique
gene tree. The gene tree is unique up to permutations of labels along single lineages
(for example 1 and 2 in the example in Fig. 2.3). However, there may be many
different corresponding coalescent trees with mutation. For example, the gene tree
in Fig. 2.3 is compatible with the coalescent tree of Fig. 2.4. It is also compatible
with the coalescent in which b and c coalesce before a and b. More generally, if
there are insufficient mutations then coalescent trees with many different topologies

1 2 3 4 5 6 7

a

b

c

e

d 5

3

4
7

6

2

1

Fig. 2.3 Reconstructing a gene tree. The picture on the left represents a possible pattern of
mutations in a sample of size 5. We suppose for simplicity that we know which is the ancestral
type at each locus, so that an ‘×’ in the picture indicates that an individual carries a mutation at
that locus. On the right is a gene tree compatible with this pattern
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Fig. 2.4 Gene trees and coalescent trees. A given gene tree may be compatible with more than
one coalescent tree. The coalescent tree on the right is compatible with the gene tree on the left.
It would also be compatible with one in which b and c coalesce before a and b

may be compatible with a gene tree. (As an extreme example suppose that there
were just one mutation shared by all but one individual in the sample.)

There are simple conditions to check that data is compatible with this model
and efficient algorithms for reconstructing the gene trees. If the ancestral type is
not known, then an unrooted tree is constructed. To recover a rooted tree one can
compare to a more distantly related sequence (called an outgroup).

This procedure tells us something about the shape of the genealogical tree, but
nothing about the lengths of the edges. However, since mutations are assumed to fall
at an (approximately) exponential rate, some information about the time represented
by an edge is available from the number of mutations occurring there. For much
more on ancestral inference from gene trees we refer to Griffiths (2002). In practice,
of course, things are not quite this simple. There are two principal problems. The
first is convergence: if a site is evolving quickly, or if two sequences in our sample
are very distantly related, then the same mutation may occur twice. The second is
recombination, which we’ll describe in more detail in Sect. 5.6. The result of recom-
bination is that different stretches of our DNA sequence have different genealogies.

2.6 Some Properties of Kingman’s Coalescent

We now return to Kingman’s coalescent and record some of its elementary proper-
ties (and some of their consequences).

Lemma 2.20. Let Wk denote the time to the most recent common ancestor of a
sample of k genes whose genealogy is determined by Kingman’s coalescent. Then

E[Wk] = 2

(
1− 1

k

)
.

Proof. Since Wk = Tk +Tk−1+ · · ·+T2 where Ti is exponentially distributed with rate( i
2

)
we have
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E[Wk] =
k

∑
i=2

2
i(i−1)

= 2
k

∑
i=2

[
1

i−1
− 1

i

]

= 2

(
1− 1

k

)
.

��
Thus the mean time to the MRCA of the whole population (k infinite) is only

twice that for a sample of size two. The picture is that for a large sample, as we
trace backwards in time, we see a burst of quick coalescence followed by a long
period with just a few ancestors. As a result, adding more and more individuals to
our sample adds surprisingly little information. Moreover, since, in ‘real’ time, the
standard deviation of the time when there are exactly two ancestral lineages is Ne

generations (or twice that for a diploid population), the tree is always highly variable
irrespective of the sample size. Figure 2.5 is a simulation of the Kingman coalescent
for a sample of size 1,000.

Fig. 2.5 Simulation of the Kingman coalescent. The picture is a single realisation in a simulation
(courtesy of Bob Griffiths) of a Kingman coalescent for a sample of size 1,000. Notice the initial
period of very rapid coalescence. For a large proportion of the time back to the MRCA, only two
or three ancestral lineages remain
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Lemma 2.21. Let L(k) denote the total length of the genealogical tree relating a
sample of size k. Under the Kingman coalescent, L(k)/2 is distributed as the maxi-
mum of (k−1) independent exponential random variables. In particular,

1
2

L(k)− logk
d−→ X as k→ ∞,

where X has a Gumbel distribution with density exp(−x− e−x).

Proof. The length of the tree here is measured until the time of the MRCA of the
sample. Notice that if E is an exponentially distributed random variable with pa-
rameter one, then for γ > 0, writing Xγ = E/γ , we have P[Xγ > t] = P[E > γt] =
exp(−γt), so that Xγ is exponentially distributed with parameter γ .

Now, in this notation, for each 2≤ j ≤ k, the portion of L(k) corresponding to the
time when there are exactly j ancestral lineages is jX( j

2)
and the random variables

X( j
2)

are independent for different j. Thus

L(k) =
k

∑
j=2

jX( j
2)

=
k

∑
j=2

j
( j

2

)E j

=
k

∑
j=2

2
j−1

E j,

where the E j are independent exponentially distributed random variables with pa-
rameter one. From this

1
2

L(k) =
k−1

∑
i=1

1
i

Ei+1 =
k−1

∑
i=1

Xi =
k−2

∑
j=1

Xk− j−1, (2.5)

where the random variables Xi are independent exponential random variables with
parameter i.

Now suppose that we have k−1 independent exponential random variables, each
with parameter one, and arrange them in increasing order, E(1) < E(2) < · · · <
E(k−1). Then E(1) has an exponential distribution with parameter (k−1) and, as a re-
sult of the lack of memory property of the exponential distribution, for 1≤ j≤ k−2,
E( j+1)−E( j) has an exponential distribution with parameter k− j−1. Thus the right
hand side of (2.5) is distributed exactly as the maximum of k−1 independent expo-
nentially distributed random variables, each with parameter one.

In particular,

P

[
1
2

L(k) < x

]
= (P[E1 < x])k−1 =

(
1− e−x)k−1

,
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and so

P

[
1
2

L(k)− logk < x

]
=

(
1− e−(x+logk)

)k−1
for x >− logk

=
(

1− 1
k

e−x
)k−1

→ exp(−e−x) as k→ ∞.

��
Remark 2.22. Although L(k) has mean 2logk, the variance, var(L(k)), is bounded
as k→ ∞.

Conditional on L(k), under the infinitely many sites model, the number of mutations
that we see in our sample is Poisson with parameter θL(k)/2 (recall Remark 2.18).
Each site at which we see a mutation is called a segregating site or SNP (single nu-
cleotide polymorphism). Writing S(k) for the number of segregating sites, we see that

2S(k)−θL(k)
√

2θL(k)

is asymptotically normally distributed with mean zero and variance one. Thus if we
know the asymptotic distribution of L(k) we can deduce the asymptotic distribution
of S(k).

Definition 2.23 (Watterson’s estimator). Watterson proposed the following esti-
mator for the mutation rate:

θ̂ =
2S(k)

E[L(k)]
=

S(k)

∑k−1
i=1

1
i

.

As a result of Lemma 2.21 we see that Watterson’s estimator is asymptotically
normal. However, since L(k) grows like logk, in practice the convergence is
extremely slow.

2.7 Genealogies and Pedigrees

We have seen that under our neutral population models, in finite time everyone in
our population traces back to a single common ancestor. It follows immediately
(by symmetry) that if an allele starts with frequency p0 in the population, and there
is no mutation, then the probability that it is eventually fixed (that is, carried by
everyone) is just p0. As a special case, the probability that a particular gene present
in a single individual now will leave descendants in the indefinite future is 1/N.
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On the other hand, if we trace back family trees in a diploid population, then each
individual has two parents, four grandparents and so on and, in a finite population,
we quickly exhaust the population. Of course, in practice the ancestors are not all
unique, but nonetheless we expect a significant proportion of the population to be
included somewhere in our family tree. We shall refer to this family tree as the
pedigree of the individual.

The following lemma illustrates the fact that if we trace far enough back in time,
most individuals in the ancestral population will be in the pedigree of a given indi-
vidual now.

Lemma 2.24. Suppose that in a large diploid (but for simplicity hermaphrodite)
population of size N, evolving in discrete generations, each individual chooses two
parents uniformly at random from the previous generation. Then the probability that
a randomly chosen individual from the population t generations in the past is in the
pedigree of a given individual in the current population converges to about 0.8 as
t→ ∞.

Idea of Proof. First note that since N is large, the random number of descendants
left by a single individual is approximately Poisson with parameter two (being, if
we ignore the possibility of an individual choosing the same parent twice, Binomial
with 2N trials and success probability 1/N). Let P(t) be the probability that an
individual alive t generations ago does not belong to the pedigree of our chosen
individual. Then, since none of that individual’s descendants can be in the pedigree,
we have P(t + 1)≈ exp(−2 + 2P(t)).6

The equation p = exp(−2 + 2p) can be solved (at least numerically). To see
this, we first rearrange to obtain (−2p)exp(−2p) =−2exp(−2). Now the equation
z = W (z)exp(W (z)) defines the Lambert W function, also known as the product
log function. In general it is multivalued, but for z ∈ (−1/e,0) there are just two
branches and choosing the one with W (z)≥−1 gives a unique solution. This yields
p =−W (−2e−2)/2 which is close to 0.2. ��

The same calculation tells us that the 80% of individuals that are in the pedi-
gree of our chosen individual are actually in the pedigree of everyone in the current
population. The conclusion is that although most of us will have descendants alive
into the indefinite future, a particular gene is highly unlikely to be transmitted.

In fact much finer results than these are known. Chang (1999) shows that if we go
back ∼ log2 N generations7 then we can expect to see an individual in the popula-
tion who is ancestral to every present-day individual. Tracing back ∼ 1.77log2 N
generations all those individuals who are ancestors will be ancestors of every
present-day individual.

6 Here we are supposing that the probability of being in the pedigree is independent for each of
the Poisson number of individuals. Although not quite true, the idea is that this probability is
determined while the family trees of descendants of the different individuals are still small, before
the dependence becomes important. We refer to Chang (1999) for a rigorous proof.
7 We are using the notation f (N)∼ g(N) to mean f (N)/g(N)→ 1 as N→ ∞.
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Remark 2.25. In Baird et al. (2003) a branching process model is considered which
traces the pedigree descendants of an individual forwards in time in a diploid
population and asks whether that individual contributes any genetic material to the
population t generations into the future. The genome is represented by the interval
[0,1]. As a result of recombination (see Sect. 5.6), each offspring inherits, with equal
probability, either the block [0,U ] or the block [U,1] of genome from the ‘pedigree
parent’, with the complement coming from the other parent (assumed unrelated).
The random variable U is uniformly distributed on [0,1] and is independent for
each offspring. Whereas the probability of transmission of a particular gene in such
a branching process model is O(1/t) (corresponding to the probability that a criti-
cal branching process survives until time t) if one asks whether some material from
a block of genome has been transmitted, the rate of decay of survival probability
is much slower (of O(1/ logt)). This effect is akin to the birthday problem, since
we are just asking that some block be transmitted, we are not specifying a particu-
lar block.

2.8 The Moran Model

We now return to the main theme of this chapter, random genetic drift, and intro-
duce a second important model, the Moran model (due to Moran (1958)). Although
less popular with biologists than the Wright–Fisher model, mathematically it is of-
ten more convenient. For example, in a population divided into two allelic types (as
in Sect. 2.1), the frequency of the a-allele is governed by a birth and death process
which greatly simplifies its analysis. Moreover, as we shall see, the genealogy of
a sample from a population evolving according to a Moran model is exactly deter-
mined by Kingman’s coalescent.

There are two essential differences between the Wright–Fisher model and the
Moran model:

1. Whereas the Wright–Fisher model evolves in discrete generations, in the Moran
model generations overlap.

2. In the Wright–Fisher model an individual can have up to N offspring, but in the
Moran model an individual always has zero or two offspring.

Definition 2.26 (The neutral Moran model). A population of N genes evolves ac-
cording to the Moran model if at exponential rate

(N
2

)
a pair of genes is sampled

uniformly at random from the population, one dies and the other splits in two.

Remark 2.27. There is no agreement in the literature as to how to choose the rate at
which pairs of individuals are chosen, this choice is convenient as it means that the
genealogy of the population is determined by Kingman’s coalescent, with no need
for a further time change. With this choice of parameters, therefore, we can com-
pare the predictions of the Moran model to those of the Wright–Fisher or Cannings
models in the coalescent timescale. However, some care is needed in interpreting
the model in ‘real’ time units.
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Remark 2.28. The embedded discrete time Markov jump chain is a Cannings model
in which the vector (ν1(t), . . . ,νN(t)) is uniformly distributed on all the permuta-
tions of (2,0,1,1, . . . ,1).

A more formal way to describe the model is as follows. We suppose that individuals
in our population at time zero are labelled 1, . . . ,N. Associated to each pair of labels
(i, j) is an independent rate one Poisson process that we denote by π(i, j). Since
there are only a finite number of these, the points of distinct π(i, j)’s are distinct. At a
point of the Poisson process π(i, j), the individuals (genes) currently labelled (i, j) are
involved in a reproduction event in which one dies and the other reproduces (with
equal probabilities). The two offspring adopt the labels i and j. This is represented
graphically in Fig. 2.6.

We can recover the ancestry of a sample by tracing backwards in time. If an
ancestral line is at the tip of an arrow, then it coalesces with that at the root. If it
is at the root it will be unaffected. For the population of Fig. 2.6 this is illustrated
in Fig. 2.7. It is not hard to convince oneself that the genealogical trees relating
individuals in a random sample are then precisely those generated by Kingman’s
coalescent. For example, follow a sample of size two backwards in time. The labels
of the two individuals will change with time, let’s call them (i(t), j(t)) say, but
because of the lack of memory property of the exponential distribution, the time
until we see an arrow joining the pair (i(t), j(t)) is still going to be exponential
parameter one; if a label changes before coalescence, we simply piece together the
random time before the label change with the remaining random time after the label
change until we see coalescence. In particular then we see that, for large populations,
from the point of view of the genealogy of a sample it makes little difference whether
we consider a Wright–Fisher model or a Moran model.

Remark 2.29 (Adding mutations). We should like to add mutations to the Moran
model in such a way that we can readily make comparisons with the Wright–Fisher
model. For this reason, we separate the processes of mutation and reproduction so

time

1

2

3

5

6

4

Fig. 2.6 Graphical representation of the Moran model. We draw an arrow between the lines
labelled (i, j) at each point of π(i, j). The arrow i→ j indicates that i reproduced and j died, i← j
indicates that j reproduced and i died
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Fig. 2.7 Genealogies under the Moran model. The picture on the right shows the genealogical
trees relating individuals in the population on the left, tracing back from time t to time 0

that mutations fall on the genealogical tree relating individuals in the sample accord-
ing to a Poisson process, just as in Sect. 2.4. Since we are already in the timescale of
the Kingman coalescent (c.f. Remark 2.27), it is natural to suppose that each indi-
vidual accumulates mutations at a constant rate (irrespective of population size).
In order to incorporate a range of different mutation models, we model this by
supposing that in between reproduction events, the type of each individual, inde-
pendently, evolves according to a mutation process (typically, but not necessarily, a
finite state space Markov chain).

2.9 The Site Frequency Spectrum

In this section we exploit the relationship with the Moran model to continue our
investigation of the Kingman coalescent.

The simplest statistic for a sample under the infinitely many sites mutation model
is the number of segregating sites, whose distribution we discussed in Sect. 2.6, but
one can also ask for more detailed information.

Definition 2.30 (Site frequency spectrum). For a sample of size k under the in-
finitely many sites mutation model, write Mj(k) for the number of sites at which
exactly j individuals carry a mutation. The vector (M1(k),M2(k), . . . ,Mk(k)) is
called the site frequency spectrum of the sample.

This is illustrated in Fig. 2.8.

Lemma 2.31. Suppose that the genealogy of a sample is determined by the King-
man coalescent and that mutations occur at rate θ/2 along each ancestral lineage.
Under the infinitely many sites mutation model we have

E[Mj(k)] =
θ
j
. (2.6)
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Fig. 2.8 The site frequency spectrum. In the example depicted here there are seven mutations,
four of which are singletons, one occurs three times and two appear twice. (We are assuming that
we know the ancestral type at each locus.) The site frequency spectrum is (4,2,1,0,0)

Proof of Lemma 2.31. We use the relationship between the Kingman coalescent and
the Moran model. We emphasise that the ‘population’ in the Moran model below is
not that from which we have sampled. It will have size k, the number of individuals
in the sample. Suppose that a mutation arose at time−t (that is t before the present)
and denote individuals in our sample carrying that mutation as type a. For the corre-
sponding Moran model (with population size k), we think of the mutation as arising
at time zero and of the sample as the whole population at time t.

From the point of view of the Moran model, the probability that we see j type
a individuals in the sample is the probability that a mutation arising on a single
individual at time zero is carried by j individuals at time t later. We write Xt for
the number of type a individuals at time t and p(t, i, j) = P[Xt = j|X0 = i]. In this
notation, the probability that there are exactly j type a individuals in the sample is
p(t,1, j).

Since, under the infinitely many sites model, each mutation occurs at a different
point on the genome and mutations occur at rate θ/2 per individual (and the popula-
tion size is k), the expected total number of sites at which we see a mutation carried
by exactly j individuals is just

E[Mj(k)] =
∫ ∞

0
k

θ
2

p(t,1, j)dt. (2.7)

Now G(i, j) ≡ ∫ ∞
0 p(t, i, j)dt is just the expected total time that the process {Xt}t≥0

spends in site j if it started from i and our next task is to calculate this.
Note that if Xs = i, then it moves to a new value at rate i(k− i) (which is just

the number of the
(k

2

)
ways of sampling a pair from the population in which the

two individuals sampled are of different types) and when it does move, it is equally
likely to move to i−1 or i+ 1. Let

Ti = inf{t > 0 : Xt = i}

denote the first hitting time of site i. Then since 0 is a trap for the process we have

G(1, j) = P[Tj < T0
∣
∣X0 = 1] ·G( j, j).
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Now, because it is just a timechange of a simple random walk, for 0≤ i≤ j,

P[T0 < Tj
∣
∣X0 = i] =

j− i
j

,

and similarly, for j ≤ l ≤ k,

P[Tk < Tj
∣∣X0 = l] =

l− j
k− j

.

Thus, partitioning on whether the first jump out of j is to j−1 or to j + 1, we find
that if it is currently at j, the probability that this is the last visit that Xt makes to j is

ρ =
1
2

1
j
+

1
2

1
k− j

=
1
2

k
j(k− j)

.

In other words, if we start from j, the number of visits to j (including the current
one) before either the allele is fixed in the population or it is lost is geometric with
parameter ρ . Each visit lasts an exponentially distributed time with mean 1

j(k− j) .
Thus

G(1, j) =
1
j
G( j, j) =

1
j

1
ρ

1
j(k− j)

=
2
k j

.

Substituting into (2.7) completes the proof. ��
Remark 2.32. The remarkable fact about this result is that the site frequency spec-
trum is almost independent of k. Increasing k only changes the allowed classes. The
sceptical reader can work directly and, by conditioning on the first event as one
traces backwards in time in the Kingman coalescent, check that the expected num-
ber of singletons is independent of k. This approach rapidly becomes tedious when
checking the corresponding result for the other terms in the spectrum.

2.10 The Lookdown Process

The consistency of the k-coalescents for different values of k ∈ N allows us to re-
cover all of them as projections of a single stochastic process, Kingman’s coalescent.
Since genealogical trees for the Moran model are precisely governed by the King-
man coalescent, it is reasonable to hope that we can also construct Moran models
corresponding to different population sizes as projections of a single stochastic pro-
cess. This is at the heart of the powerful Donnelly and Kurtz lookdown process.

To see how it works, we exploit the connection with the Kingman coalescent.
Suppose that the population at the present time is labelled {1,2, . . . ,N}. Recall that
the full description of the Kingman coalescent (or rather the N-coalescent) is as a
process taking values among the set of equivalence relations on {1,2, . . . ,N}, with
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each ancestral lineage corresponding to a single equivalence class. Now suppose
that we label each equivalence class by its smallest element. If blocks with labels
i < j coalesce, then after the coalescence the new block is necessarily labelled i.
In our graphical representation of the Moran model, this just dictates the direction
of the arrow corresponding to that coalescence event; it will always be the individual
with the smaller label that gave birth. Backwards in time, our process is equivalent
to one in which, as before, at the points of a rate one Poisson process π(i, j) arrows
are drawn joining the labels i and j, but now the arrows are always in the same
direction (upwards with our convention). The genealogies are still determined by
the Kingman coalescent, we have simply chosen a convenient labelling, and so in
particular they are precisely those of the Moran model. But what about forwards in
time? What we saw backwards in time was that choosing the direction of the arrows
corresponded to choosing a particular labelling of the population. If the distribution
of the population is exchangeable, that is it doesn’t depend on the labelling, then
forwards in time too we should not have changed the distribution in our population.
Our next task will be to check this, but first we need a formal definition.

Definition 2.33 (The N-particle lookdown process). The N-particle lookdown
process will be denoted by the vector (ζ1(t), . . . ,ζN(t)). Each index is thought of as
representing a ‘level’, with ζi(t) denoting the allelic type of the individual at level i
at time t. The evolution of the process is described as follows. The individual at level
k is equipped with an exponential clock with rate (k− 1), independent of all other
individuals. At the times determined by the corresponding Poisson process it selects
a level uniformly at random from {1,2, . . . ,k−1} and adopts the current type of the
individual at that level. The levels of the individuals involved in the event do not
change. In between lookdown events the type at each level evolves, independently,
according to the mutation process.

Remark 2.34. Because of our convention over the interpretation of arrows, it is
not at all clear from the above why one should call this the lookdown process.
The explanation is that at rate (k− 1) the kth individual ‘looks down’ to a level
chosen uniformly at random from those below and adopts the type of the individual
at that level.

To see that the lookdown process and the Moran model produce the same distri-
bution of types in the population, provided we start from an exchangeable initial
condition, we examine their infinitesimal generators. Recall the definition of the
generator of a continuous time Markov process.

Definition 2.35 (Generator of a continuous time Markov process). Let {Xt}t≥0

be a real-valued continuous time Markov process. For simplicity suppose that it is
time homogeneous. For a function f : R→R define

L f (x) = lim
δ t↓0

E[ f (Xδ t)− f (x)|X0 = x]
δ t
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if the limit exists. We’ll call the set D(L ) of functions for which the limit exists the
domain of L , and the operator L , acting on D(L ), the infinitesimal generator of
{Xt}t≥0.

If we know L , then we can write down a differential equation for the way
that E[ f (Xt)] evolves with time. If L f is defined for sufficiently many different
functions then this completely characterises the finite dimensional distributions of
{Xt}t≥0.

Let us write E for the space of possible allelic types for individuals in our
population. The Moran model for a population of size N is then simply a contin-
uous time Markov chain on EN and its infinitesimal generator, KN , evaluated on a
function f : EN → R, is given by

KN f (x1,x2, . . . ,xN) =
N

∑
i=1

Ai f (x1,x2, . . . ,xN)

+
1
2

N

∑
i=1

N

∑
j=1

[Φi j f (x1, . . . ,xN)− f (x1, . . . ,xN)] , (2.8)

where Φi j f (x1, . . . ,xN) is the function obtained from f by replacing x j by xi. The
operator Ai is the generator of the mutation process, A, acting on the ith coordinate.
(Recall that in the Moran model mutation was superposed as a Markov process
along lineages.)

The generator of the N-particle lookdown process, LN is given by

LN f (x1,x2, . . . ,xN) =
N

∑
i=1

Ai f (x1,x2, . . . ,xN)

+ ∑
1≤i< j≤N

[Φi j f (x1,x2 . . . ,xN)− f (x1,x2 . . . ,xN)] . (2.9)

Assuming that we start both processes from the same exchangeable initial condition,
we should like to show that the types (ζ1(t),ζ2(t), . . . ,ζN(t)) under the lookdown
model and the types (Z1(t),Z2(t), . . . ,ZN(t)), say, under the original Moran process
have the same distribution for each fixed t > 0, even though the processes are man-
ifestly different. Following Dawson (1993), we must check that the generators of
the two processes agree on symmetric functions. Observe first that any symmetric
function, f , satisfies

f (x1,x2, . . . ,xN) =
1

N! ∑
π

f
(
xπ(1),xπ(2), . . . ,xπ(N)

)
,

where the sum is over all permutations of {1,2, . . . ,N}. Substituting this expression
for f into (2.9), we recover (2.8). In other words, the generators of (ζ1,ζ2, . . . ,ζN)
and (Z1,Z2, . . . ,ZN) agree on symmetric functions as required. (We are implicitly
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assuming uniqueness of the distribution on symmetric functions corresponding to
this generator. It follows from duality with the N-coalescent, but we don’t allow that
to detain us here.)

The key observation now is that our Nth lookdown process is simply the first
N levels of the (N + k)th lookdown process for any k ≥ 1. The infinite lookdown
process can then be constructed as a projective limit.

Theorem 2.36 (Donnelly and Kurtz 1996). There is an infinite exchangeable par-
ticle system {Wi, i ∈ N} such that for each N,

(W1,W2, . . . ,WN) D= (ζ1,ζ2, . . . ,ζN) ,

where ζ1,ζ2, . . . ,ζN is the N-particle lookdown process.

Remark 2.37. In fact more is true. It is known that the sequence of empirical mea-
sures 1

N ∑N
i=1 δZi(t) converges to a Fleming–Viot superprocess as N → ∞. Donnelly

and Kurtz also show that

Y = lim
N→∞

1
N

N

∑
i=1

δWi ,

is a Fleming–Viot superprocess. A rapid introduction to Fleming–Viot superpro-
cesses and further references can be found, for example, in Etheridge (2000). Rather
than introduce the general Fleming–Viot superprocess, which takes its values among
probability measures on the type space E , in Sect. 2.11 we shall consider what this
limit looks like in the special case when E is a two-point set representing two alleles
a and A, in which case it is enough to specify the evolution of the proportion of type
a individuals in the population.

Since the genealogy of a sample of size k from the Moran model is a k-coalescent,
and since we’ve seen that the genealogy of the first k levels in the lookdown process
is also a k-coalescent, with this labelling we have a nice consistent way of sampling
from a Moran model of arbitrary size. The genealogy of the sample is that of the first
k levels in the lookdown process. The evolution of those levels does not depend on
the population size – because we only ever look ‘down’ we don’t see the population
size N at all.

2.11 A More Simplistic Limit

Instead of discussing general Fleming–Viot superprocesses (which would allow us
to consider essentially arbitrary type spaces) we now turn to identifying the limiting
model for allele frequencies when our population is subdivided into just two types
which, as usual, we label a and A. Just as in our discussion of the rescaled Wright–
Fisher model, we consider the proportion, pt , of individuals of type a at time t.

The only possible mutations are between the two types. We suppose that each
type a individual mutates to type A at rate ν1 and each type A individual mutates to
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type a at rate ν2. Recall that for the Moran model we are already in the timescale of
the Kingman coalescent and so we should think of νi = Nμi where μ1 and μ2 are
the true mutation rates.

Remark 2.38. The idea that we can mutate backwards and forwards between types
may seem at odds with our discussion of mutations in Sect. 2.4. Models of this
type were introduced long before biologists knew about, and had access to, DNA
sequences. Classically one might imagine a small number of alleles defined through
phenotype, for example colour. In modern terms one can justify the model by pool-
ing sequences into classes according to the corresponding phenotype.

The generator for the birth-death process of allele frequencies under the Moran
model for a population of size N is then

LN f (p) =
(

N
2

)
p(1− p)

(
f

(
p +

1
N

)
− f (p)

)

+
(

N
2

)
p(1− p)

(
f

(
p− 1

N

)
− f (p)

)

+Nν1 p

(
f

(
p− 1

N

)
− f (p)

)
+ Nν2(1− p)

(
f

(
p +

1
N

)
− f (p)

)
.

(2.10)

To see this, note that the reproduction events in the Moran model take place at
the points of a Poisson process with rate

(N
2

)
and at the time of such a transition

there will only be a change in allele frequencies if the two individuals chosen to be
involved in the reproduction event are of different allelic types. Thus, if the current
proportion of a alleles in the population is p, then

p �→ p +
1
N

with probability p(1− p),

p �→ p− 1
N

with probability p(1− p)

and there is no change with probability 1− 2p(1− p). The chance that we see a
reproduction event in a time interval of length δ t is

(
N
2

)
δ t +O((δ t)2)

and the probability of seeing more than one transition is O((δ t)2). For mutation
events, at total rate N pν1, one of the N p type a individuals will mutate to type
A, resulting in a reduction of p by 1/N and at total rate N(1− p)ν2 one of the
N(1− p) type A individuals will mutate to type a. Putting all this together gives that
for f : [0,1]→R and p = i/N for some i∈ {0,1, . . . ,N}, LN f (p) is given by (2.10).

To see what our population process will look like for large N we take f to
be three times continuously differentiable, and use Taylor’s Theorem to find an
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approximation for LN f . Thus

LN f (p) =
(

N
2

)
p(1− p)

(
f (p)+

1
N

f ′(p)+
1

2N2 f ′′(p)+O

(
1

N3

)
− f (p)

)

+
(

N
2

)
p(1− p)

(
f (p)− 1

N
f ′(p)+

1
2N2 f ′′(p)+O

(
1

N3

)
− f (p)

)

+N pν1

(
f (p)− 1

N
f ′(p)+O

(
1

N2

)
− f (p)

)

+N(1− p)ν2

(
f (p)+

1
N

f ′(p)+O

(
1

N2

)
− f (p)

)

=
1
2

p(1− p) f ′′(p)+ ((1− p)ν2− pν1) f ′(p)+O

(
1
N

)
.

We have proved the following.

Lemma 2.39. As N → ∞, the generator LN of the process of allele frequencies
under the neutral Moran model with mutation converges to L , the generator of the
Wright–Fisher diffusion with mutation, which is given by

L f (p) =
d
dt

E [ f (pt )|p0 = p]
∣
∣∣
∣
t=0

=
1
2

p(1− p) f ′′(p)+ (ν2− (ν1 + ν2)p) f ′(p).

(2.11)

Remark 2.40. Notice, in particular, that if we set ν1 = ν2 = 0 we obtain

L f (p) =
1
2

p(1− p) f ′′(p),

which is exactly the generator that we obtained in the large population limit from
our Wright–Fisher model. It is not hard to extend the work that we did there to
include mutations and recover the full generator (2.11).

What we have written down is the generator of a one-dimensional diffusion.
We should like to be able to use the convergence of generators that we have verified
to justify using the corresponding one-dimensional diffusion as an approximation
to the process of allele frequencies under the Moran, the Wright–Fisher and the
Cannings models (on suitable timescales). We defer the statement of a theorem that
provides that justification until Sect. 3.2. Evidently we also need to know that there
is a unique Markov process with generator (2.11) and that we can actually calculate
quantities of interest for it. Happily both are true.


	Some Mathematical Models from Population Genetics
	2 Mutation and Random Genetic Drift
	2.1 The Wright--Fisher Model and the Kingman Coalescent
	2.2 The Cannings Model
	2.3 Selfing
	2.4 Adding Mutations
	2.5 Inferring Genealogies From Data
	2.6 Some Properties of Kingman's Coalescent
	2.7 Genealogies and Pedigrees
	2.8 The Moran Model
	2.9 The Site Frequency Spectrum
	2.10 The Lookdown Process
	2.11 A More Simplistic Limit




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


