Contents

Fo	reword		v
Pr	eface		vii
Τe	ensor	Analysis	1
1.	Prelir	minaries	3
	1.1	The Vector Concept Revisited	3
	1.2	A First Look at Tensors	4
	1.3	Assumed Background	5
	1.4	More on the Notion of a Vector	7
	1.5	Problems	9
2.	Trans	sformations and Vectors	11
	2.1	Change of Basis	11
	2.2	Dual Bases	12
	2.3	Transformation to the Reciprocal Frame	17
	2.4	Transformation Between General Frames	18
	2.5	Covariant and Contravariant Components	21
	2.6	The Cross Product in Index Notation	22
	2.7	Norms on the Space of Vectors	24
	2.8	Closing Remarks	27
	2.9	Problems	27
3.	Tenso	brs	29
	3.1	Dyadic Quantities and Tensors	29

xi

Tensor Analysis with Applications in Mechanics

	3.2	Tensors From an Operator Viewpoint	30
	3.3	Dyadic Components Under Transformation	34
	3.4	More Dyadic Operations	36
	3.5	Properties of Second-Order Tensors	40
	3.6	Eigenvalues and Eigenvectors of a Second-Order Symmet-	
		ric Tensor	44
	3.7	The Cayley–Hamilton Theorem	48
	3.8	Other Properties of Second-Order Tensors	49
	3.9	Extending the Dyad Idea	56
	3.10	Tensors of the Fourth and Higher Orders	58
	3.11	Functions of Tensorial Arguments	60
	3.12	Norms for Tensors, and Some Spaces	66
	3.13	Differentiation of Tensorial Functions	70
	3.14	Problems	77
4.	Tenso	or Fields	85
	4.1	Vector Fields	85
	4.2	Differentials and the Nabla Operator	94
	4.3	Differentiation of a Vector Function	98
	4.4	Derivatives of the Frame Vectors	99
	4.5	Christoffel Coefficients and their Properties	100
	4.6	Covariant Differentiation	105
	4.7	Covariant Derivative of a Second-Order Tensor	106
	4.8	Differential Operations	108
	4.9	Orthogonal Coordinate Systems	113
	4.10	Some Formulas of Integration	117
	4.11	Problems	119
5.	Elem	ents of Differential Geometry	125
	5.1	Elementary Facts from the Theory of Curves	126
	5.2	The Torsion of a Curve	132
	5.3	Frenet–Serret Equations	135
	5.4	Elements of the Theory of Surfaces	137
	5.5	The Second Fundamental Form of a Surface	148
	5.6	Derivation Formulas	153
	5.7	Implicit Representation of a Curve: Contact of Curves	156
	5.8	Osculating Paraboloid	162
	5.9	The Principal Curvatures of a Surface	164

5.10	Surfaces of Revolution	168
5.11	Natural Equations of a Curve	170
5.12	A Word About Rigor	173
5.13	Conclusion	175
5.14	Problems	175

Applications in Mechanics

6.	Linea	ar Elasticity	181
	6.1	Stress Tensor	181
	6.2	Strain Tensor	190
	6.3	Equation of Motion	193
	6.4	Hooke's Law	194
	6.5	Equilibrium Equations in Displacements	200
	6.6	Boundary Conditions and Boundary Value Problems	202
	6.7	Equilibrium Equations in Stresses	203
	6.8	Uniqueness of Solution for the Boundary Value Problems	
		of Elasticity	205
	6.9	Betti's Reciprocity Theorem	206
	6.10	Minimum Total Energy Principle	208
	6.11	Ritz's Method	216
	6.12	Rayleigh's Variational Principle	221
	6.13	Plane Waves	227
	6.14	Plane Problems of Elasticity	230
	6.15	Problems	232
7.	Linea	ar Elastic Shells	237
	7.1	Some Useful Formulas of Surface Theory	239
	7.2	Kinematics in a Neighborhood of Σ	242
	7.3	Shell Equilibrium Equations	244
	7.4	Shell Deformation and Strains; Kirchhoff's Hypotheses	249
	7.5	Shell Energy	256
	7.6	Boundary Conditions	259
	7.7	A Few Remarks on the Kirchhoff–Love Theory	261
	7.8	Plate Theory	263
	7.9	On Non-Classical Theories of Plates and Shells	277

xiii

179

ŧ

Appendix B	Hints and Answers	315
	、	
Bibliography		355
Index		359

xìv