Contents

Ack	enowledgeme	ents .		•				•	
Pre	face .						•	•	
Int	RODUCTION								
1.1	Definition	on and U	se of	the Ter	m H	eavy	Metal		
1.2	Sources	of Heavy	Meta	als in tl	ne Ei	nviron	ment		
1.3	Biologic	al Indica	tors a	nd Mo	nitor	s.			
1.4	Philosop	ohy of M	onitor	ing					
1.5	Why Bio	ological?							
1.6	Criteria	for Sele	ecting	Good	Bio	logica	ıl Mo	onitor	ing
	Materia	ls/Species	· .					•	
1.7	Conclud	ling Rema	arks						
2.1 2.2		inical Pro	spect						
2.3		hemical F							1
74	2.4 Use of Herbaria in Geobotanical and Biogeochemical								
2.7		. •							
	Prospect	·	٠		•	•	•	•	•
2.5		·							•
2.5	Prospect	ions .	•		•		RBORN	е Не	AVY
2.5 Тн	Prospect Conclus	ions .	N FOR		ORIN	g Aif	RBORN	Е Не	AVY
2.5 Тн	Prospect Conclusion E Use of V TAL Deposit Backgro	ions .	N FOR	Monit	ORIN	G А іғ	•	Е Не	AVY

X Contents

	3A.2	Particulate Transfer to Vegetation	60					
	3A.3	Vegetation as a Monitoring Agent	83					
	3A.4	Aerial Versus Soil Origins of Metals in Plant Samples	84					
	3A.5	Exposure Periods	91					
	3A.6	Use of Leaves	93					
	3A.7	Surface Characteristics of Vegetation, Especially						
		Leaves	96					
	3B	Examples of the Use of Vegetation Monitoring Surveys						
		for Aerial Deposition of Metals	98					
	3B.1	Roadside Locations	99					
	3B.2	Smelters and Other Point Sources	10:					
	3B.3	General Industrial or Urban Areas with Diffuse or						
		Unidentified Sources	11:					
	3B.4	Use of Tree Bark	11					
	3B.5	Use of Epiphytic Vascular Plants, Mosses, Lichens,						
		Micro-organisms and Fungi	12					
	3B.6	Specific Use of Vegetation for Assessing Potential						
		Hazards to Human and Domestic Animal Health .	14					
4	PLAN	Plants as Monitors of Soil Contamination						
	4.1	Introduction	15					
	4.2	Metal Distribution in Soils	15					
	4.3	Characteristics of Metal Uptake by Roots	17					
	4.4	Metal Tolerance and its Relevance to the Use of						
		Higher Plants as Monitors of Soil Contamination .	20					
	4.5	Interpretation of Monitoring Results, Conclusions and						
		Recommendations	21					
1.70								
5	THE	Use of Terrestrial Animals as Monitors and						
	INDIC	cators of Environmental Contamination by Heavy						
	META	ALS	22					
	5.1	Introduction	22					
	5.2	Invertebrates as Monitors and Indicators	22					
	5.3	Other Animals as Monitors	27					
	5.4		30					
	J. 7	Conclusions	31					
6	Tur	Use of Imported Biological Materials as Monitoring						
U	AGEN		3					
	AUE	115)					
	6.1	Introduction	3					

Contents	X

	6.2	6.2 Preparation, Exposure and Analysis of Moss-bags							
	6.3	Advantages and Disadvantages of Moss-bags	316						
	6.4	Examples of the Use of Sphagnum Moss-bags in the							
		Field	325						
	6.5	Wind Tunnel Studies of Moss-bag Characteristics .	327						
	6.6	Empirical Calibration of Moss-bags Against Air-filter							
		Samplers, Deposit Gauges, Plant and Soil Surfaces .	330						
	6.7	Relationships with Other Collection Materials	335						
	6.8	Conclusions	336						
7	RETROSPECTIVE AND HISTORICAL MONITORING								
	7.1	Introduction	337						
	7,2	Tree-ring Analysis	337						
	7.3	Use of Tree Ring-widths as a Measure of Pollution .	349						
	7,4	Use of Peat Samples	350						
	7,5	Use of Herbarium Specimens of Bryophytes and							
		Lichens	354						
	7.6	Use of Preserved Higher Plant Specimens	355						
	7.7	Use of Animal Specimens	356						
	7.8	Conclusions	357						
8	BIOLOGICAL MONITORING IN PERSPECTIVE								
	8.1		358						
	8.2	Introduction	359						
	8.3	Related Studies	363						
		Selection of Material and Aims of Study							
	8.4	Sampling Standards and Cross-calibration.	368						
	8.5	Conclusions	372						
RE	FEREN	CES	374						
Sp	ecies a	and Subject Index	461						