CONTENTS

Pref	Preface Yolumes in Series	
1.	A Thermodynamic Approach for the Targeting of Nucleic Acid Structures Using Their Complementary Single Strands Hui-Ting Lee, Caroline Carr, Hollie Siebler, Lela Waters, Irine Khutsishvili, Fany Iseka, Brian Domack, Chris M. Olsen, and Luis A. Marky	1
	 Introduction Materials and Methods Results and Discussion Conclusions Acknowledgments References 	2 4 8 23 24 24
2.	Thermodynamics of Biological Processes Hernan G. Garcia, Jane Kondev, Nigel Orme, Julie A. Theriot, and Rob Phillips	27
	 Introduction: Thermodynamics is Not Just for Dead Stuff States and Weights from the Boltzmann Rule Binding Reactions and Biological Thermodynamics The Unreasonable Effectiveness of Random-Walk Models Conclusions Acknowledgments References 	28 29 33 52 55 56
3.	Protein Stability in the Presence of Cosolutes Luis Marcelo F. Holthauzen, Matthew Auton, Mikhail Sinev, and Jörg Rösgen	61
	 Introduction Isothermal Folding/Unfolding of Protein in the Presence of Stabilizing/Denaturing Osmolyte Isothermal Protein (Un)Folding in the Presence of Osmolyte Mixtures 	62 64 78

	4. Osmolyte-Induced Unfolding at Variable Temperature	86			
	5. Thermal Unfolding in the Presence of Osmolytes	92			
	6. Where Do the Little Equations Come From?	101			
	Acknowledgment	121			
	References	121			
4.	Small-Angle X-ray Scattering Studies of Peptide-Lipid Interactions Using the Mouse Paneth Cell				
	lpha-Defensin Cryptdin-4	127			
	Abhijit Mishra, Kenneth P. Tai, Nathan W. Schmidt, André J. Ouellette, and Gerard C. L. Wong				
	1. Introduction	128			
	2. X-Rays as Structural Probes of Biological Systems Under				
	Biomimetic Conditions	132			
	3. Preparation of Peptide-Lipid Complexes for X-Ray				
	Measurements	137			
	4. Summary	145			
	Acknowledgments	145			
	References	145			
5.	Synergy of Molecular Dynamics and Isothermal				
	Titration Calorimetry in Studies of Allostery	151			
	Rebecca Strawn, Thomas Stockner, Milan Melichercik,				
	Lihua Jin, Wei-Feng Xue, Jannette Carey, and Rüdiger Ettrich				
	1. Allostery	152			
	2. Arginine Repressor	154			
	3. Preparation for Simulations	157			
	4. Sampling of States	159			
	5. Equilibration	160			
	6. Observing System Motions	163			
	7. Correlated Motions	163			
	8. Structural Features of Correlated Motions	164			
	9. Arg Residues Promote Rotation and Oscillation	167			
	10. Structural Correlates of Rotational Oscillation	169			
	11. Single-Arginine Simulations	169			
	12. Rotational Ensembles	170			
	13. Energetic Contributions	173			
	14. Reconciliation with Crystallographic Data	177			
	15. Complementarity and Synergy of MD and ITC	179			
	16. Prospects	184			
	Acknowledgement	186			
	References	186			

6.	Using Tryptophan Fluorescence to Measure the Stability of Membrane Proteins Folded in Liposomes			
	C. Preston Moon and Karen G. Fleming			
	1. Introduction	190		
	2. Issues with Managing Light Scattering from Liposomes	191		
	3. Using Tryptophan Spectral Properties to Monitor Membrane			
	Protein Folding into Liposomes	200		
	4. Choosing an Appropriate Tryptophan Spectral Property			
	to Measure the Thermodynamic Stabilities of Folded			
	Membrane Proteins	205		
	5. Conclusions	207		
	6. Materials and Methods	209		
	Acknowledgments	210		
	References	210		
7.	Non-B Conformations of CAG Repeats Using 2-Aminopurine	213		
	Natalya N. Degtyareva and Jeffrey T. Petty			
	1. Introduction	214		
	2. Materials and Methods	216		
	3. Structure and Thermodynamics of Isolated and Integrated (CAG) ₈	223		
	4. Conclusions	229		
	Acknowledgments	229		
	References	229		
8.	Disulfide Bond-Mediated Passenger Domain Stalling			
	as a Structural Probe of Autotransporter Outer Membrane			
	Secretion In Vivo	233		
	Jonathan P. Renn and Patricia L. Clark			
	1. Protein Secretion: An Essential Component of Bacterial Virulence	234		
	2. The Autotransporter Secretion Pathway	234		
	3. Overview of Cys-Loop Stalling	236		
	4. Architecture and Processing of AT Passenger Domains	236		
	5. Heterologous Passenger Domain Secretion	239		
	6. Selecting a Model Autotransporter for Cys-Loop Stalling	240		
	7. Disulfide Mediated Passenger Domain Stalling	241		
	8. Methods to Measure OM Secretion and Folding of the	244		
	Stalled AT Passenger Applications: Using Cyc Loop Stalling to Define the Mechanism	244		
	9. Applications: Using Cys-Loop Stalling to Define the Mechanism of AT OM Secretion	248		
	References	248 249		
	Neiciences	247		

9.	Strategies for the Thermodynamic Characterization of Linked Binding/Local Folding Reactions Within the Native State: Application to the LID Domain of Adenylate Kinase		
		om <i>Escherichia coli</i> avis P. Schrank, W. Austin Elam, Jing Li, and Vincent J. Hilser	253
		•	254
		Introduction	254
	2. 3.		256
		Binding Reactions	260
	4.	Strategies for Quantitative Interpretation of Measured	
		Enthalpies for a Linked Folding and Binding System	265
	5.	Interplay of Local Mutational Effects, Global Stability,	
		and Binding Affinity	268
	6.	Success of the Strategy in Preserving Structure	273
	7.		
		Mutation Strategy	274
	8.	How Similar Are Local and Global Unfolding?	276
	9.	- · · · · · · · · · · · · · · ·	279
	Re	ferences	280
10.	Fluorescence-Detected Sedimentation in Dilute and Highly		
	Co	oncentrated Solutions	283
	Joi	nathan S. Kingsbury and Thomas M. Laue	
	1.	Overview of AUC	284
	2.	Fluorescence Optics for the Ultracentrifuge	285
	3.	Advantages of AU-FDS	287
	4.	Sample Requirements for Fluorescence Detection	288
	5.	Applications of AU-FDS	293
	6.	Current Challenges for AU-FDS	298
	7.	Conclusion	301
	Re	ferences	302
Auti	hor	Index	305
Subject Index			