
Chapter 2
Discrete Time and Sampled Data Systems

2.1 Discrete Time Systems

In this book, we investigate model predictive control for discrete time nonlinear
control systems of the form

x+ = f (x,u). (2.1)

Here, the transition map f : X × U → X assigns the state x+ ∈ X at the next time
instant to each pair of state x ∈ X and control value u ∈ U . The state space X and
the control value space U are arbitrary metric spaces, i.e., sets in which we can
measure distances between two elements x, y ∈ X or u,v ∈ U by metrics dX(x, y)

or dU (u, v), respectively. Readers less familiar with metric spaces may think of
X = R

d and U = R
m for d,m ∈ N with the Euclidean metrics dX(x, y) = ‖x − y‖

and dU (u, v) = ‖u−v‖ induced by the usual Euclidean norm ‖·‖, although some of
our examples use different spaces. While most of the systems we consider possess
continuous transition maps f , we do not require continuity in general.

The set of finite control sequences u(0), . . . , u(N − 1) for N ∈ N will be denoted
by UN and the set of infinite control sequences u(0), u(1), u(2), . . . by U∞. Note
that we may interpret the control sequences as functions u : {0, . . . ,N − 1} → U or
u : N0 → U , respectively. For either type of control sequences we will briefly write
u(·) or simply u if there is no ambiguity. With N∞ we denote the natural numbers
including ∞ and with N0 the natural numbers including 0.

A trajectory of (2.1) is obtained as follows: given an initial value x0 ∈ X and a
control sequence u(·) ∈ UK for K ∈ N∞, we define the trajectory xu(k) iteratively
via

xu(0) = x0, xu(k + 1) = f
(
xu(k), u(k)

)
, (2.2)

for all k ∈ N0 if K = ∞ and for k = 0,1, . . . ,K − 1 otherwise. Whenever we want
to emphasize the dependence on the initial value we write xu(k, x0).

An important basic property of the trajectories is the cocycle property: given an
initial value x0 ∈ X, a control u ∈ UN and time instants k1, k2 ∈ {0, . . . ,N −1} with
k1 ≤ k2 the solution trajectory satisfies

xu(k2, x0) = xu(·+k1)

(
k2 − k1, xu(k1, x0)

)
. (2.3)
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Here, the shifted control sequence u(· + k1) ∈ UN−k1 is given by

u(· + k1)(k) := u(k + k1), k ∈ {0, . . . ,N − k1 − 1}, (2.4)

i.e., if the sequence u consists of the N elements u(0), u(1), . . . , u(N − 1), then
the sequence ũ = u(· + k1) consists of the N − k1 elements ũ(0) = u(k1), ũ(1) =
u(k1 + 1), . . . , ũ(N − k1 − 1) = u(N − 1). With this definition, the identity (2.3) is
easily proved by induction using (2.2).

We illustrate our class of models by three simple examples—the first two being
in fact linear.

Example 2.1 One of the simplest examples of a control system of type (2.1) is
given by X = U = R and

x+ = x + u =: f (x,u).

This system can be interpreted as a very simple model of a vehicle on an infinite
straight road in which u ∈ R is the traveled distance in the period until the next time
instant. For u > 0 the vehicle moves right and for u < 0 it moves left.

Example 2.2 A slightly more involved version of Example 2.1 is obtained if we
consider the state x = (x1, x2)

� ∈ X = R
2, where x1 represents the position and x2

the velocity of the vehicle. With the dynamics
(

x+
1

x+
2

)
=

(
x1 + x2 + u/2

x2 + u

)
=: f (x,u)

on an appropriate time scale the control u ∈ U = R can be interpreted as the (con-
stant) acceleration in the period until the next time instant. For a formal derivation
of this model from a continuous time system, see Example 2.6, below.

Example 2.3 Another variant of Example 2.1 is obtained if we consider the vehicle
on a road which forms an ellipse, cf. Fig. 2.1, in which half of the ellipse is shown.

Here, the set of possible states is given by

X =
{
x ∈ R

2
∣∣∣∣

∥∥∥∥

(
x1

2x2

)∥∥∥∥ = 1

}
.

Fig. 2.1 Illustration of
Example 2.3
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Since X is a compact subset of R
2 (more precisely a submanifold, but we will

not need this particular geometric structure) we can use the metric induced by the
Euclidean norm on R

2, i.e., dX(x, y) = ‖x − y‖. Defining the dynamics
(

x+
1

x+
2

)
=

(
sin(ϑ(x) + u)

cos(ϑ(x) + u)/2

)
=: f (x,u)

with u ∈ U = R and

ϑ(x) =
{

arccos 2x2, x1 ≥ 0,

2π − arccos 2x2, x1 < 0

the vehicle moves on the ellipse with traveled distance u ∈ U = R in the next time
step, where the traveled distance is now expressed in terms of the angle ϑ . For u > 0
the vehicle moves clockwise and for u < 0 it moves counterclockwise.

The main purpose of these very simple examples is to provide test cases which we
will use in order to illustrate various effects in model predictive control. Due to their
simplicity we can intuitively guess what a reasonable controller should do and often
even analytically compute different optimal controllers. This enables us to compare
the behavior of the NMPC controller with our intuition and other controllers. More
sophisticated models will be introduced in the next section.

As outlined in the introduction, the model (2.1) will serve for generating the
predictions xu(k, x(n)) which we need in the optimization algorithm of our NMPC
scheme, i.e., (2.1) will play the role of the model (1.1) used in the introduction.
Clearly, in general we cannot expect that this mathematical model produces exact
predictions for the trajectories of the real process to be controlled. Nevertheless,
during Chaps. 3–7 and in Sects. 8.1–8.4 of this book we will suppose this idealized
assumption. In other words, given the NMPC-feedback law μ : X → U , we assume
that the resulting closed-loop system satisfies

x+ = f
(
x,μ(x)

)
(2.5)

with f from (2.1). We will refer to (2.5) as the nominal closed-loop system.
There are several good reasons for using this idealized assumption: First, satis-

factory behavior of the nominal NMPC closed loop is a natural necessary condition
for the correctness of our controller—if we cannot ensure proper functioning in the
absence of modeling errors we can hardly expect the method to work under real life
conditions. Second, the assumption that the prediction is based on an exact model
of the process considerably simplifies the analysis and thus allows us to derive suf-
ficient conditions under which NMPC works in a simplified setting. Last, based on
these conditions for the nominal model (2.5), we can investigate additional robust-
ness conditions which ensure satisfactory performance also for the realistic case in
which (2.5) is only an approximate model for the real closed-loop behavior. This
issue will be treated in Sects. 8.5–8.9.
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2.2 Sampled Data Systems

Most models of real life processes in technical and other applications are given as
continuous time models, usually in form of differential equations. In order to convert
these models into the discrete time form (2.1) we introduce the concept of sampling.

Let us assume that the control system under consideration is given by a finite-
dimensional ordinary differential equation

ẋ(t) = fc

(
x(t), v(t)

)
(2.6)

with vector field fc : R
d × R

m → R
d , control function v : R → R

m, and unknown
function x : R → R

d , where ẋ is the usual short notation for the derivative dx/dt

and d,m ∈ N are the dimensions of the state and the control vector. Here, we use
the slightly unusual symbol v for the control function in order to emphasize the
difference between the continuous time control function v(·) in (2.6) and the discrete
time control sequence u(·) in (2.1).

Caratheodory’s Theorem (see, e.g., [15, Theorem 54]) states conditions on fc and
v under which (2.6) has a unique solution. For its application we need the following
assumption.

Assumption 2.4 The vector field fc : R
d × R

m → R
d is continuous and Lipschitz

in its first argument in the following sense: for each r > 0 there exists a constant
L > 0 such that the inequality

∥∥fc(x, v) − fc(y, v)
∥∥ ≤ L‖x − y‖

holds for all x, y ∈ R
d and all v ∈ R

m with ‖x‖ ≤ r , ‖y‖ ≤ r and ‖v‖ ≤ r .

Under Assumption 2.4, Caratheodory’s Theorem yields that for each initial value
x0 ∈ R

d , each initial time t0 ∈ R and each locally Lebesgue integrable control func-
tion v : R → R

m equation (2.6) has a unique solution x(t) with x(t0) = x0 defined
for all times t contained in some open interval I ⊆ R with t0 ∈ I . We denote this
solution by ϕ(t, t0, x0, v).

We further denote the space of locally Lebesgue integrable control functions
mapping R into R

m by L∞(R,R
m). For a precise definition of this space see, e.g.,

[15, Sect. C.1]. Readers not familiar with Lebesgue measure theory may always
think of v being piecewise continuous, which is the approach taken in [7, Chap. 3].
Since the space of piecewise continuous functions is a subset of L∞(R,R

m), ex-
istence and uniqueness holds for these control functions as well. Note that if we
consider (2.6) only for times t from an interval [t0, t1] then it is sufficient to
specify the control function v for these times t ∈ [t0, t1], i.e., it is sufficient to
consider v ∈ L∞([t0, t1],R

m). Furthermore, note that two Caratheodory solutions
ϕ(t, t0, x0, v1) and ϕ(t, t0, x0, v2) for v1, v2 ∈ L∞(R,R

m) coincide if v1 and v2 co-
incide for almost all τ ∈ [t0, t], where almost all means that v1(τ ) 
= v2(τ ) may hold
for τ ∈ T ⊂ [t0, t] where T is a set with zero Lebesgue measure. Since, in particular,
sets T with only finitely many values have zero Lebesgue measure, this implies that
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for any v ∈ L∞(R,R
m) the solution ϕ(t, t0, x0, v) does not change if we change the

value of v(τ) for finitely many times τ ∈ [t0, t].1
The idea of sampling consists of defining a discrete time system (2.1) such that

the trajectories of this discrete time system and the continuous time system coincide
at the sampling times t0 < t1 < t2 < · · · < tN , i.e.,

ϕ(tn, t0, x0, v) = xu(n, x0), n = 0,1,2, . . . ,N, (2.7)

provided the continuous time control function v : R → R
m and the discrete time

control sequence u(·) ∈ UN are chosen appropriately. Before we investigate how
this appropriate choice can be done, cf. Theorem 2.7, below, we need to specify the
discrete time system (2.1) which allows for such a choice.

Throughout this book we use equidistant sampling times tn = nT , n ∈ N0, with
sampling period T > 0. For this choice, we claim that

x+ = f (x,u) := ϕ(T ,0, x,u) (2.8)

for x ∈ R
d and u ∈ L∞([0, T ],R

m) is the desired discrete time system (2.1) for
which (2.7) can be satisfied. Clearly, f (x,u) is only well defined if the solution
ϕ(t,0, x,u) exists for the time t = T . Unless explicitly stated otherwise, we will
tacitly assume that this is the case whenever using f (x,u) from (2.8).

Before we explain the precise relation between u in (2.8) and u(·) and ν(·) in
(2.7), cf. Theorem 2.7, below, we first look at possible choices of u in (2.8). In
general, u in (2.8) may be any function in L∞([0, T ],R

m), i.e., any measurable
continuous time control function defined on one sampling interval. This suggests
that we should use U = L∞([0, T ],R

m) in (2.1) when f is defined by (2.8). How-
ever, other—much simpler—choices of U as appropriate subsets of L∞([0, T ],R

m)

are often possible and reasonable. This is illustrated by the following examples and
discussed after Theorem 2.7 in more detail.

Example 2.5 Consider the continuous time control system

ẋ(t) = v(t)

with n = m = 1. It is easily verified that the solutions of this system are given by

ϕ(t,0, x0, v) = x0 +
∫ t

0
v(τ) dτ.

Hence, for U = L∞([0, T ],R) we obtain (2.8) as

x+ = f (x,u) = x +
∫ T

0
u(τ) dτ.

1Strictly speaking, L∞ functions are not even defined pointwise but rather via equivalence classes
which identify all functions v ∈ L∞(R,R

m) which coincide for almost all t ∈ R. However, in order
not to overload the presentation with technicalities we prefer the slightly heuristic explanation
given here.
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If we restrict ourselves to constant control functions u(t) ≡ u ∈ R (for ease of no-
tation we use the same symbol u for the function and for its constant value), which
corresponds to choosing U = R, then f simplifies to

f (x,u) = x + T u.

If we further specify T = 1, then this is exactly Example 2.1.

Example 2.6 Consider the continuous time control system
(

ẋ1(t)

ẋ2(t)

)
=

(
x2(t)

v(t)

)

with n = 2 and m = 1. In this model, if we interpret x1(t) as the position of a vehicle
at time t , then x2(t) = ẋ1(t) is its velocity and v(t) = ẋ2(t) its acceleration.

Again, one easily computes the solutions of this system with initial value x0 =
(x01, x02)

� as

ϕ(t,0, x0, v) =
(

x01 + ∫ t

0 x2(τ ) dτ

x02 + ∫ t

0 v(τ) dτ

)
=

(
x01 + ∫ t

0 (x02 + ∫ τ

0 v(s) ds) dτ

x02 + ∫ t

0 v(τ) dτ

)
.

Hence, for U = L∞([0, T ],R) and x = (x1, x2)
� we obtain (2.8) as

x+ = f (x,u) =
(

x1 + T x2 + ∫ T

0

∫ t

0 u(s) ds dt

x2 + ∫ T

0 u(t) dt

)
.

If we restrict ourselves to constant control functions u(t) ≡ u ∈ R (again using the
same symbol u for the function and for its constant value), i.e., U = R, then f

simplifies to

f (x,u) =
(

x1 + T x2 + T 2u/2
x2 + T u

)
.

If we further specify T = 1, then this is exactly Example 2.2.

In order to see how the control inputs v(·) in (2.6) and u(·) in (2.8) need to be
related such that (2.8) ensures (2.7), we use that the continuous time trajectories
satisfy the identity

ϕ(t, t0, x0, v) = ϕ
(
t − s, t0 − s, x0, v(· + s)

)
(2.9)

for all t, s ∈ R, provided, of course, the solutions exist for the respective times. Here
v(· + s) : R → R

m denotes the shifted control function, i.e., v(· + s)(t) = v(t + s),
see also (2.4). This identity is illustrated in Fig. 2.2: changing ϕ(t, t0 − s, x0, v(· +
s)) to ϕ(t − s, t0 − s, x0, v(· + s)) implies a shift of the upper graph by s to the right
after which the two graphs coincide.

Identity (2.9) follows from the fact that x(t) = ϕ(t − s, t0 − s, x0, v(· + s)) satis-
fies

ẋ(t) = d

dt
ϕ
(
t − s, t0 − s, x0, v(· + s)

)

= f
(
ϕ
(
t − s, t0 − s, x0, v(· + s)

)
, v(· + s)(t − s)

) = f
(
x(t), v(t)

)
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Fig. 2.2 Illustration of equality (2.9)

and

x(t0) = ϕ
(
t0 − s, t0 − s, x0, v(· + s)

) = x0.

Hence, both functions in (2.9) satisfy (2.6) with the same control function and fulfill
the same initial condition. Consequently, they coincide by uniqueness of the solu-
tion.

Using a similar uniqueness argument one sees that the solutions ϕ satisfy the
cocycle property

ϕ(t, t0, x0, v) = ϕ
(
t, s, ϕ(s, t0, x0, v), v

)
(2.10)

for all t, s ∈ R, again provided all solutions in this equation exist for the respective
times. This is the continuous time version of the discrete time cocycle property
(2.3). Note that in (2.3) we have combined the discrete time counterparts of (2.9)
and (2.10) into one equation since by (2.2) the discrete time trajectories always start
at time 0.

With the help of (2.9) and (2.10) we can now prove the following theorem.

Theorem 2.7 Assume that (2.6) satisfies Assumption 2.4 and let x0 ∈ R
d and v ∈

L∞([t0, tN ],R
m) be given such that ϕ(tn, t0, x0, v) exists for all sampling times tn =

nT , n = 0, . . . ,N with T > 0. Define the control sequence u(·) ∈ UN with U =
L∞([0, T ],R

m) by

u(n) = v|[tn,tn+1](· + tn), n = 0, . . . ,N − 1, (2.11)

where v|[tn,tn+1] denotes the restriction of v onto the interval [tn, tn+1]. Then

ϕ(tn, t0, x0, v) = xu(n, x0) (2.12)

holds for n = 0, . . . ,N and the trajectory of the discrete time system (2.1) defined
by (2.8).
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Conversely, given u(·) ∈ UN with U = L∞([0, T ],R
m), then (2.12) holds for

n = 0, . . . ,N for any v ∈ L∞([t0, tN ],R
m) satisfying

v(t) = u(n)(t − tn) for almost all t ∈ [tn, tn+1] and all n = 0, . . . ,N − 1,

(2.13)

provided ϕ(tn, t0, x0, v) exists for all sampling times tn = nT , n = 0, . . . ,N .

Proof We prove the assertion by induction over n. For n = 0 we can use the initial
conditions to get

xu(t0, u) = x0 = ϕ(t0, t0, x0, v).

For the induction step n → n + 1 assume (2.12) for tn as induction assumption.
Then by definition of xu we get

xu(n + 1, x0) = f
(
xu(n, x0), u(n)

) = ϕ
(
T ,0, xu(n, x0), u(n)

)

= ϕ
(
T ,0, ϕ(tn, t0, x0, v), v(· + tn)

)

= ϕ
(
tn+1, tn, ϕ(tn, t0, x0, v), v

)

= ϕ(tn+1, t0, x0, v),

where we used the induction assumption in the third equality, (2.9) in the fourth
equality and (2.10) in the last equality.

The converse statement follows by observing that applying (2.11) for any v sat-
isfying (2.13) yields a sequence of control functions u(0), . . . , u(N − 1) whose el-
ements coincide with the original ones for almost all t ∈ [0, T ]. �

Remark 2.8 At first glance it may seem that the condition on v in (2.13) is not
well defined at the sampling times tn: from (2.13) for n − 1 and t = tn we obtain
v(tn) = u(n − 1)(tn − tn−1) while (2.13) for n and t = tn yields v(tn) = u(n)(0)

and, of course, the values u(n − 1)(tn − tn−1) and u(n)(0) need not coincide. How-
ever, this does not pose a problem because the set of sampling times tn in (2.13)
is finite and thus the solutions ϕ(t, t0, x0, v) do not depend on the values v(tn),
n = 0, . . . ,N −1, cf. the discussion after Assumption 2.4. Formally, this is reflected
in the words almost all in (2.13), which in particular imply that (2.13) is satisfied
regardless of how v(tn), n = 0, . . . ,N − 1 is chosen.

Theorem 2.7 shows that we can reproduce every continuous time solution at the
sampling times if we choose U = L∞([0, T ],R

m). Although this is a nice property
for our subsequent theoretical investigations, usually this is not a good choice for
practical purposes in an NMPC context: recall from the introduction that in NMPC
we want to optimize over the sequence u(0), . . . , u(N − 1) ∈ UN in order to de-
termine the feedback value μ(x(n)) = u(0) ∈ U . Using U = L∞([0, T ],R

m), each
element of this sequence and hence also μ(x(n)) is an element from a very large
infinite-dimensional function space. In practice, such a general feedback concept
is impossible to implement. Furthermore, although theoretically it is well possible
to optimize over sequences from this space, for practical algorithms we will have
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Fig. 2.3 Illustration of zero order hold: the sequence u(n) ∈ R
m on the left corresponds to the

piecewise constant control functions with ν(t) = u(n) for almost all t ∈ [tn, tn+1] on the right

to restrict ourselves to finite-dimensional sets, i.e., to subsets U ⊂ L∞([0, T ],R
m)

whose elements can be represented by finitely many parameters.
A popular way to achieve this—which is also straightforward to implement in

technical applications—is via zero order hold, where we choose U to be the space
of constant functions, which we can identify with R

m, cf. also the Examples 2.5 and
2.6. For u(n) ∈ U , the continuous time control functions v generated by (2.13) are
then piecewise constant on the sampling intervals, i.e., v(t) = u(n) for almost all
t ∈ [tn, tn+1], as illustrated in Fig. 2.3. Recall from Remark 2.8 that the fact that the
sampling intervals overlap at the sampling instants tn does not pose a problem.

Consequently, the feedback μ(x(n)) is a single control value from R
m to be used

as a constant control signal on the sampling interval [tn, tn+1]. This is also the choice
we will use in Chap. 9 on numerical methods for solving (2.6) and which is imple-
mented in our NMPC software, cf. the Appendix. In our theoretical investigations,
we will nevertheless allow for arbitrary U ⊆ L∞([0, T ],R

m).
Other possible choices of U can be obtained, e.g., by polynomials u : [0, T ] →

R
m resulting in piecewise polynomial control functions v. Yet another choice can

be obtained by multirate sampling, in which we introduce a smaller sampling period
τ = T/K for some K ∈ N, K ≥ 2 and choose U to be the space of functions which
are constant on the intervals [jτ, (j +1)τ ), j = 0, . . . ,K −1. In all cases the time n

in the discrete time system (2.1) corresponds to the time tn = nT in the continuous
time system.

Remark 2.9 The particular choice of U affects various properties of the resulting
discrete time system. For instance, in Chap. 5 we will need the sets XN which
contain all initial values x0 for which we can find a control sequence u(·) with
xu(N,x0) ∈ X0 for some given set X0. Obviously, for sampling with zero order
hold, i.e., for U = R

m, this set XN will be smaller than for multirate sampling or for
sampling with U = L∞([0, T ],R

m). For this reason, we will formulate all assump-
tions needed in the subsequent chapters directly in terms of the discrete time system
(2.1) rather than for the continuous time system (2.6), cf. also Remark 6.7.
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Fig. 2.4 Schematical sketch
of the inverted pendulum on a
cart problem: The pendulum
(with unit mass m = 1) is
attached to a cart which can
be controlled using the
acceleration force u. Via the
joint, this force will have an
effect on the dynamics of the
pendulum

When using sampled data models, the map f from (2.8) is usually not available
in exact analytical form but only as a numerical approximation. We will discuss this
issue in detail in Chap. 9.

We end this section by three further examples we will use for illustration pur-
poses later in this book.

Example 2.10 A standard example in control theory is the inverted pendulum on a
cart problem shown in Fig. 2.4.

This problem has two types of equilibria, the stable downright position and the
unstable upright position. A typical task is to stabilize one of the unstable upright
equilibria. Normalizing the mass of the pendulum to 1, the dynamics of this system
can be expressed via the system of ordinary differential equations

ẋ1(t) = x2(t),

ẋ2(t) = −g

l
sin

(
x1(t)

) − u(t) cos
(
x1(t)

) − kL

l
x2(t)

∣∣x2(t)
∣∣ − kR sgn

(
x2(t)

)
,

ẋ3(t) = x4(t),

ẋ4(t) = u(t)

with gravitational force g, length of the pendulum l, air friction constant kL and
rotational friction constant kR . Here, x1 denotes the angle of the pendulum, x2 the
angular velocity of the pendulum, x3 the position and x4 the velocity of the cart. For
this system the upright unstable equilibria are of the form ((2k + 1)π,0,0,0)� for
k ∈ Z.

Our model thus presented deviates from other variants often found in the liter-
ature, see, e.g., [2, 9], in terms of the types of friction we included. Instead of the
linear friction model often considered, here we use a nonlinear air friction term
kL

l
x2(t)|x2(t)| and a rotational discontinuous Coulomb friction term kR sgn(x2(t)).
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The air friction term captures the fact that the force induced by the air friction grows
quadratically with the speed of the pendulum mass. The Coulomb friction term is
derived from first principles using Coulomb’s law, see, e.g., [17] for an introduction
and a description of the mathematical and numerical difficulties related to discon-
tinuous friction terms. We consider this type of modeling as more appropriate in an
NMPC context, since it describes the evolution of the dynamics more accurately,
especially around the upright equilibria which we want to stabilize. For short time
intervals, these nonlinear effect may be neglected, but within the NMPC design we
have to predict the future development of the system for rather long periods, which
may render the linear friction model inappropriate.

Unfortunately, these friction terms pose problems both theoretically and numer-
ically:

ẋ2(t) = −g

l
sin

(
x1(t)

) − u(t) cos
(
x1(t)

) − kL

l
x2(t)

∣
∣x2(t)

∣
∣

︸ ︷︷ ︸
not C2

− kR sgn
(
x2(t)

)

︸ ︷︷ ︸
discontinuous

.

The rotational Coulomb friction term is discontinuous in x2(t), hence Assump-
tion 2.4, which is needed for Caratheodory’s existence and uniqueness theorem,
is not satisfied. In addition, the air friction term is only once continuously differen-
tiable in x2(t), which poses problems when using higher order numerical methods
for solving the ODE for computing the NMPC predictions, cf. the discussion before
Theorem 9.5 in Chap. 9.

Hence, for the friction terms we use smooth approximations, which allow us to
approximate the behavior of the original equation:

ẋ1(t) = x2(t), (2.14)

ẋ2(t) = −g

l
sin

(
x1(t)

) − kL

l
arctan

(
1000x2(t)

)
x2

2(t) − u(t) cos
(
x1(t)

)

− kR

(
4ax2(t)

1 + 4(ax2(t))2
+ 2 arctan(bx2(t))

π

)
, (2.15)

ẋ3(t) = x4(t), (2.16)

ẋ4(t) = u(t). (2.17)

In some examples in this book we will also use the linear variant of this system.
To obtain it, a transformation of coordinates is applied which shifts one unstable
equilibrium to the origin and then the system is linearized. Using a simplified set of
parameters including only the gravitational constant g and a linear friction constant
k, this leads to the linear control system

ẋ(t) =
⎛

⎜
⎝

0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

⎞

⎟
⎠x(t) +

⎛

⎜
⎝

0
1
0
1

⎞

⎟
⎠u(t). (2.18)

Example 2.11 In contrast to the inverted pendulum example where our task was
to stabilize one of the upright equilibria, the control task for the arm/rotor/platform
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Fig. 2.5 Graphical
illustration of the
arm/rotor/platform (ARP)
problem, see also [1,
Sect. 7.3]: The arm (A) is
driven by a motor (R) via a
flexible joint. This motor is
mounted on a platform (P )
which is again flexibly
connected to a fixed base (B).
Moreover, we assume that
there is no vertical force and
that the rotational motion of
the platform is not present

(ARP) model illustrated in Fig. 2.5 (the meaning of the different elements A, R, P
and B in the model is indicated in the description of this figure) is a digital redesign
problem, see [4, 12].

Such problems consist of two separate steps: First, a continuous time control sig-
nal v(t) derived from a continuous time feedback law is designed which—in the
case considered here—solves a tracking problem. Since continuous time control
laws may perform poorly under sampling, in a second step, the trajectory corre-
sponding to v(t) is used as a reference function to compute a digital control using
NMPC such that the resulting sampled data closed-loop mimics the behavior of the
continuous time reference trajectory. Compared to a direct formulation of a tracking
problem, this approach is advantageous since the resulting NMPC problem is easier
to solve. Here, we describe the model and explain the derivation of continuous time
control function v(t). Numerical results for the corresponding NMPC controller are
given in Example 7.21 in Chap. 7.

Using the Lagrange formalism and a change of coordinates detailed in [1,
Sect. 7.3], the ARP model can be described by the differential equation system

ẋ1(t) = x2(t) + x6(t)x3(t), (2.19)

ẋ2(t) = − k1

M
x1(t) − b1

M
x2(t) + x6(t)x4(t) − mr

M2
b1x6(t), (2.20)

ẋ3(t) = −x6(t)x1(t) + x4(t), (2.21)

ẋ4(t) = −x6(t)x2(t) − k1

M
x3(t) − b1

M
x4(t) + mr

M2
k1, (2.22)

ẋ5(t) = x6(t), (2.23)

ẋ6(t) = −a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − p1x1(t) − p2x2(t),

(2.24)

ẋ7(t) = x8(t), (2.25)

ẋ8(t) = a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t) + 1

J
v(t) (2.26)
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where

a1 = k3M

MI − (mr)2
, a4 = k3

J
, p1 = mr

MI − (mr)2
k1,

a2 = b3M
2 − b1(mr)2

M[MI − (mr)2] , a5 = b3

J
, p2 = mr

MI − (mr)2
b1.

a3 = b3M

MI − (mr)2
, a6 = b4

J
,

Here, M represents the total mass of arm, rotor and platform and m is the mass of
arm, r denotes the distance from the A/R joint to the arm center of mass and I , J

and D are the moment of inertia of the arm about the A/R joint, of the rotor and of
the platform, respectively. Moreover, k1, k2 and k3 denote the translational spring
constant of the P/B connection as well as the rotational spring constants of the P/B
connection and the A/R joint. Last, b1, b2, b3 and b4 describe the translational fric-
tion coefficient of P/B connection as well as the rotational friction coefficients of the
P/B, A/R and R/P connection, respectively. The coordinates x1 and x2 correspond
to the (transformed) x position of P and its velocity of the platform in direction x

whereas x3 and x4 represent the (transformed) y position of P and the respective
velocity. The remaining coordinates x5 and x7 denote the angles θ and α and the
coordinates x6 and x8 the corresponding angular velocities.

Our design goal is to regulate the system such that the position of the arm relative
to the platform, i.e. the angle x5, tracks a given reference signal. Note that this task
is not simple since both connections of the rotor are flexible. Here, we assume that
the reference signal and its derivatives are known and available to the controller.
Moreover, we assume that the relative positions and velocities x5, x6, x7 and x8 are
supplied to the controller.

In order to derive the continuous time feedback, we follow the backstepping ap-
proach from [1] using the output

ζ(t) = x5(t) − a3

a1 − a2a3

[
x6(t) − a3x7(t)

]
. (2.27)

The output has relative degree 4, that is, the control v(t) appears explicitly within
the fourth derivative of ζ(t). Expressing ζ (4)(t) by the known data, we obtain the
continuous time input signal2

v(t) = J

a2
1 + a3[p] · [[ ∂F (x6(t))

∂x6(t)
] · [η(t)] + [ ∂G(x6(t))

∂x6(t)
]]

(
−(−a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)

])

(
−a2

1 + a1a2(a2 − a3) + (
a3[p] · [F (

x6(t)
) − (a1 + a2a3)[p]])

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)

] +
[
∂G(x6(t))

∂x6(t)

]]

2For details of the derivation see [13, Sect. 7.3].
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+ 2a3[p]
[
∂F (x6(t))

∂x6(t)

]
· [[F (

x6(t)
)] · [η(t)

] + [
G

(
x6(t)

)]])

− (
a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t)

)

(
a2

1 + a3

(
a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)

]

+
[
∂G(x6(t))

∂x6(t)

]]
− a1(a2 − a3)

))

− (
a3[p] · [F (

x6(t)
)] − a1[p]) · [F (

x6(t)
)] · [[F (

x6(t)
)] · [η(t)

]

+ [
G

(
x6(t)

)]]

− (−a1
(
x6(t) − x8(t)

) − [p] · [[F (
x6(t)

)] · [η(t)
] + [

G
(
x6(t)

)]])

(
−a1(a2 − a3) + a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)

] +
[
∂G(x6(t))

∂x6(t)

]])

+ (a1 − a2a3)v̂(t)

)
(2.28)

where we used the abbreviations
[
η(t)

] := (
x1(t) x2(t) x3(t) x4(t)

)T
,

[
χ(t)

] := (
x5(t) x6(t) x7(t) x8(t)

)T
,

[
F

(
x6(t)

)] :=
⎛

⎜
⎝

0 1 x6(t) 0
− k1

M
− b1

M
0 x6(t)

−x6(t) 0 0 1
0 −x6(t) − k1

M
− b1

M

⎞

⎟
⎠ ,

[
G

(
x6(t)

)] :=
⎛

⎜
⎝

0
−mrb1

M2 x6(t)

0
mrk1
M2

⎞

⎟
⎠ ,

[A] :=
⎛

⎜
⎝

0 1 0 0
−a1 −a2 a1 a3

0 0 0 1
a4 a5 −a4 −(a5 + a6)

⎞

⎟
⎠ ,

[E] :=
⎛

⎜
⎝

0 0
−p1 −p2

0 0
0 0

⎞

⎟
⎠ , [B] :=

⎛

⎜
⎝

0
0
0
1
J

⎞

⎟
⎠

as well as the row vector [p] := (p1 p2 0 0). In (2.28), we added the function v̂(t),
which we will now use as the new input. Given a desired reference ζref(·) for the
output (2.27), we can track this reference by setting v̂ in (2.28) as

v̂(t) := ζ
(4)
ref (t) − c3

(
ζ (3)(t) − ζ

(3)
ref (t)

) − c2
(
ζ̈ (t) − ζ̈ref(t)

)

− c1
(
ζ̇ (t) − ζ̇ref(t)

) − c0
(
ζ(t) − ζref(t)

)
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with design parameters ci ∈ R, ci ≥ 0. These parameters are degrees of freedom
within the design of the continuous time feedback which can be used as tuning
parameters, e.g., to reduce the transient time or the overshoot.

Example 2.12 Another class of systems fitting our framework, which actually goes
beyond the setting we used for introducing sampled data systems, are infinite-
dimensional systems induced by partial differential equations (PDEs). In this ex-
ample, we slightly change our notation in order to be consistent with the usual PDE
notation.

In the following controlled parabolic PDE (2.29) the solution y(t, x) with y :
R ×  → R depends on time t as well as on a one-dimensional state variable x ∈
 = (0,L) for a parameter L > 0. Thus, the state of the system at each time t is
now a continuous function y(t, ·) :  → R and x becomes an independent variable.
The control v in this example is a so-called distributed control, i.e., a measurable
function v : R ×  → R. The evolution of the state is defined by the equation

yt (t, x) = θyxx(t, x) − yx(t, x) + ρ
(
y(t, x) − y(t, x)3) + v(t, x) (2.29)

for x ∈  and t ≥ 0 together with the initial condition y(0, x) = y0(x) and the
boundary conditions y(t,0) = y(0,L) = 0.

Here yt and yx denote the partial derivatives with respect to t and x, respectively
and yxx denotes the second partial derivative with respect to x. The parameters θ

and ρ are positive constants. Of course, in order to ensure that (2.29) is well defined,
we need to interpret this equation in an appropriate weak sense and make sure that
for the chosen class of control functions a solution to (2.29) exists in appropriate
function spaces. For details on these issues we refer to, e.g., [10] or [18]. As we
will see later in Example 6.27, for suitable values of the parameters θ and ρ the
uncontrolled equation, i.e., (2.29) with v ≡ 0, has an unstable equilibrium y∗ ≡ 0
which can be stabilized by NMPC.

Using the letter z for the state of the discrete time system associated to the sam-
pled data solution of (2.29), we can abstractly write this system as

z+ = f (z,u)

with z and z+ being continuous functions from  to R. The function f maps y0 = z

to the solution y(T , x) of (2.29) at the sampling time T using the measurable control
function u = v : [0, T ] ×  → R. Thus, it maps continuous functions to continuous
functions; again we omit the exact details of the respective functions spaces.

As in the ordinary differential equation case, we can restrict ourselves to the zero
order hold situation, i.e., to control functions u(t, x) which are constant in t ∈ [0, T ].
The corresponding control functions v generated via (2.11) are again constant in t on
each sampling interval [tn, tn+1). Note, however, that in our distributed control con-
text both u and v are still arbitrary measurable—i.e., in particular non-constant—
functions in x.

For sampled data systems, the nominal closed-loop system (2.5) corresponds to
the closed-loop sampled data system

ẋ(t) = fc

(
x(t),μ

(
x(tn)

)
(t − tn)

)
, t ∈ [tn, tn+1), n = 0,1,2, . . . (2.30)
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whose solution with initial value x0 ∈ X we denote by ϕ(t, t0, x0,μ). Note that
the argument “(t − tn)” of μ(x(tn)) can be dropped in case of sampling with zero
order hold when—as usual—we interpret the control value μ(x(tn)) ∈ U = R

m as a
constant control function.

2.3 Stability of Discrete Time Systems

In the introduction, we already specified the main goal of model predictive control,
namely to control the state x(n) of the system toward a reference trajectory xref(n)

and then keep it close to this reference. In this section we formalize what we mean by
“toward” and “close to” using concepts from stability theory of nonlinear systems.

We first consider the case where xref is constant, i.e., where xref ≡ x∗ holds for
some x∗ ∈ X. We assume that the states x(n) are generated by a difference equation
of the form

x+ = g(x) (2.31)

for a not necessarily continuous map g : X → X via the usual iteration x(n + 1) =
g(x(n)). As before, we write x(n, x0) for the trajectory satisfying the initial condi-
tion x(0, x0) = x0 ∈ X. Allowing g to be discontinuous is important for our NMPC
application, because g will later represent the nominal closed-loop system (2.5) con-
trolled by the NMPC-feedback law μ, i.e., g(x) = f (x,μ(x)). Since μ is obtained
as an outcome of an optimization algorithm, in general we cannot expect μ to be
continuous and thus g will in general be discontinuous, too.

Nonlinear stability properties can be expressed conveniently via so-called com-
parison functions, which were first introduced by Hahn in 1967 [5] and popularized
in nonlinear control theory during the 1990s by Sontag, particularly in the context
of input-to-state stability [14]. Although we mainly deal with discrete time systems,
we stick to the usual continuous time definition of these functions using the notation
R

+
0 = [0,∞).

Definition 2.13 We define the following classes of comparison functions:

K := {
α : R

+
0 → R

+
0

∣∣ α is continuous & strictly increasing with α(0) = 0
}
,

K∞ := {
α : R

+
0 → R

+
0

∣∣ α ∈ K, α is unbounded
}
,

L :=
{
δ : R

+
0 → R

+
0

∣∣∣ δ is continuous & strictly decreasing with lim
t→∞ δ(t) = 0

}
,

K L := {
β : R

+
0 × R

+
0 → R

+
0

∣∣ β is continuous, β(·, t) ∈ K, β(r, ·) ∈ L
}
.

The graph of a typical function β ∈ K L is shown in Fig. 2.6.
Using this function, we can now introduce the concept of asymptotic stability.

Here, for arbitrary x1, x2 ∈ X we denote the distance from x1 to x2 by

|x1|x2 := dX(x1, x2).
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Fig. 2.6 Illustration of a typical class K L function

Furthermore, we use the ball

Bη(x∗) := {
x ∈ X

∣∣ |x|x∗ < η
}

and we say that a set Y ⊆ X is forward invariant for (2.31) if g(x) ∈ Y holds for all
x ∈ Y .

Definition 2.14 Let x∗ ∈ X be an equilibrium for (2.31), i.e., g(x∗) = x∗. Then we
say that x∗ is locally asymptotically stable if there exist η > 0 and a function β ∈ K L
such that the inequality

∣∣x(n, x0)
∣∣
x∗ ≤ β

(|x0|x∗ , n
)

(2.32)

holds for all x0 ∈ Bη(x∗) and all n ∈ N0.
We say that x∗ is asymptotically stable on a forward invariant set Y with x∗ ∈ Y

if there exists β ∈ K L such that (2.32) holds for all x0 ∈ Y and all n ∈ N0 and we
say that x∗ is globally asymptotically stable if x∗ is asymptotically stable on Y = X.

If one of these properties holds then β is called attraction rate.

Note that asymptotic stability on a forward invariant set Y implies local asymp-
totic stability if Y contains a ball Bη(x∗). However, we do not necessarily require
this property.

Asymptotic stability thus defined consists of two main ingredients.

(i) The smaller the initial distance from x0 to x∗ is, the smaller the distance from
x(n) to x∗ becomes for all future n, or formally: for each ε > 0 there exists δ > 0
such that |x(n, x0)|x∗ ≤ ε holds for all n ∈ N0 and all x0 ∈ Y (or x0 ∈ Bη(x∗))
with |x0|x∗ ≤ δ.

This fact is easily seen by choosing δ so small that β(δ,0) ≤ ε holds, which
is possible since β(·,0) ∈ K. Since β is decreasing in its second argument, for
|x0|x∗ ≤ δ from (2.32) we obtain

∣∣x(n, x0)
∣∣
x∗ ≤ β

(|x0|x∗ , n
) ≤ β

(|x0|x∗ ,0
) ≤ β(δ,0) ≤ ε.
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Fig. 2.7 Sketch of
asymptotic stability (left) as
opposed to practical
asymptotic stability (right)

(ii) As the system evolves, the distance from x(n, x0) to x∗ becomes arbitrarily
small, or formally: for each ε > 0 and each R > 0 there exists N > 0 such
that |x(n, x0)|x∗ ≤ ε holds for all n ≥ N and all x0 ∈ Y (or x0 ∈ Bη(x∗)) with
|x0|x∗ ≤ R. This property easily follows from (2.32) by choosing N > 0 with
β(R,N) ≤ ε and exploiting the monotonicity properties of β .

These two properties are known as (i) stability (in the sense of Lyapunov) and (ii)
attraction. In the literature, asymptotic stability is often defined via these two prop-
erties. In fact, for continuous time (and continuous) systems (i) and (ii) are known to
be equivalent to the continuous time counterpart of Definition 2.14, cf. [8, Sect. 3].
We conjecture that the arguments in this reference can be modified in order to prove
that equivalence also holds for our discontinuous discrete time setting.

Asymptotic stability includes the desired properties of the NMPC closed loop
described earlier: whenever we are already close to the reference equilibrium we
want to stay close; otherwise we want to move toward the equilibrium.

Asymptotic stability also includes that eventually the distance of the closed-loop
solution to the equilibrium x∗ becomes arbitrarily small. Occasionally, this may
be too demanding. In the following chapters, this is for instance the case if the
system is subject to perturbations or modeling errors, cf. Sects. 8.5–8.9 or if in
NMPC without stabilizing terminal constraints the system cannot be controlled to
x∗ sufficiently fast, cf. Sect. 6.7. In this case, one can relax the asymptotic stability
definition to practical asymptotic stability as follows. Here we only consider the
case of asymptotic stability on a forward invariant set Y .

Definition 2.15 Let Y be a forward invariant set and let P ⊂ Y be a subset of Y .
Then we say that a point x∗ ∈ P is P -practically asymptotically stable on Y if there
exists β ∈ K L such that (2.32) holds for all x0 ∈ Y and all n ∈ N0 with x(n, x0) /∈ P .

Figure 2.7 illustrates practical asymptotic stability (on the right) as opposed to
“usual” asymptotic stability (on the left).

This definition is typically used with P contained in a small ball around the
equilibrium, i.e., P ⊆ Bδ(x∗) for some small δ > 0. In this case one obtains the
estimate

∣
∣x(n, x0)

∣
∣
x∗ ≤ max

{
β
(|x0|x∗ , n

)
, δ

}
(2.33)

for all x0 ∈ Y and all n ∈ N0, i.e., the system behaves like an asymptotically stable
system until it reaches the ball Bδ(x∗). Note that x∗ does not need to be an equilib-
rium in Definition 2.15.
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For general non-constant reference functions xref : N0 → X we can easily extend
Definition 2.14 if we take into account that the objects under consideration become
time varying in two ways: (i) the distance under consideration varies with n and
(ii) the system (2.31) under consideration varies with n. While (i) is immediate, (ii)
follows from the fact that with time varying reference also the feedback law μ is
time varying, i.e., we obtain a feedback law of the type μ(n,x(n)). Consequently,
we now need to consider systems

x+ = g(n, x) (2.34)

with g of the form g(n, x) = f (x,μ(n, x)). Furthermore, we now have to take the
initial time n0 into account: while the solutions of (2.31) look the same for all initial
times n0 (which is why we only considered n0 = 0) now we need to keep track of
this value. To this end, by x(n,n0, x0) we denote the solution of (2.34) with initial
condition x(n0, n0, x0) = x0 at time n0. The appropriate modification of Defini-
tion 2.14 then looks as follows. Here we say that a time-dependent family of sets
Y(n) ⊆ X, n ∈ N0 is forward invariant if g(n, x) ∈ Y(n + 1) holds for all n ∈ N0
and all x ∈ Y(n).

Definition 2.16 Let xref : N0 → X be a trajectory for (2.31), i.e., xref(n + 1) =
g(xref(n)) for all n ∈ N0. Then we say that xref is locally uniformly asymptotically
stable if there exists η > 0 and a function β ∈ K L such that the inequality

∣∣x(n,n0, x0)
∣∣
xref(n)

≤ β
(|x0|xref(n0)

, n − n0
)

(2.35)

holds for all x0 ∈ Bη(x
ref(n0)) and all n0, n ∈ N0 with n ≥ n0.

We say that x∗ is uniformly asymptotically stable on a forward invariant family
of sets Y(n) with xref(n) ∈ Y(n) if there exists β ∈ K L such that (2.35) holds for all
n0, n ∈ N0 with n ≥ n0 and all x0 ∈ Y(n0) and we say that x∗ is globally uniformly
asymptotically stable if x∗ is asymptotically stable on Y(n) = X for all n0 ∈ N0.

If one of these properties hold then β is called (uniform) attraction rate.

The term “uniform” describes the fact that the bound β(|x0|xref(n0)
, n − n0) only

depends on the elapsed time n − n0 but not on the initial time n0. If this were the
case, i.e., if we needed different β for different initial times n0, then we would call
the asymptotic stability “nonuniform”. For a comprehensive discussion of nonuni-
form stability notions and their representation via time-dependent K L functions we
refer to [3].

As in the time-invariant case, asymptotic stability on a forward invariant fam-
ily of sets Y(n) implies local asymptotic stability if each Y(n) contains a ball
Bη(x

ref(n)). Again, we do not necessarily require this property.
The time varying counterpart of P -practical asymptotic stability is defined as

follows.

Definition 2.17 Let Y(n) be a forward invariant family of sets and let P(n) ⊂ Y(n)

be subsets of Y(n). Then we say that a reference trajectory xref with xref(n) ∈ P(n)

is P -practically uniformly asymptotically stable on Y(n) if there exists β ∈ K L such



32 2 Discrete Time and Sampled Data Systems

that (2.35) holds for all x0 ∈ Y(n0) and all n0, n ∈ N0 with n ≥ n0 and x(n,n0, x0) /∈
P(n).

Analogous to the time-invariant case, this definition is typically used with
P(n) ⊆ Bδ(x

ref(n)) for some small value δ > 0, which then yields
∣∣x(n,n0, x0)

∣∣
xref(n)

≤ max
{
β
(|x0|xref(n0)

, n − n0
)
, δ

}
. (2.36)

In order to verify that our NMPC controller achieves asymptotic stability we
will utilize the concept of Lyapunov functions. For constant reference xref ≡ x∗ ∈ X

these functions are defined as follows.

Definition 2.18 Consider a system (2.31), a point x∗ ∈ X and let S ⊆ X be a subset
of the state space. A function V : S → R

+
0 is called a Lyapunov function on S if the

following conditions are satisfied:

(i) There exist functions α1, α2 ∈ K∞ such that

α1
(|x|x∗

) ≤ V (x) ≤ α2
(|x|x∗

)
(2.37)

holds for all x ∈ S.
(ii) There exists a function αV ∈ K such that

V
(
g(x)

) ≤ V (x) − αV

(|x|x∗
)

(2.38)

holds for all x ∈ S with g(x) ∈ S.

The following theorem shows that the existence of a Lyapunov function ensures
asymptotic stability.

Theorem 2.19 Let x∗ be an equilibrium of (2.31) and assume there exists a Lya-
punov function V on S. If S contains a ball Bν(x∗) with g(x) ∈ S for all x ∈ Bν(x∗)
then x∗ is locally asymptotically stable with η = α−1

2 ◦ α1(ν). If S = Y holds for
some forward invariant set Y ⊆ X containing x∗ then x∗ is asymptotically stable on
Y . If S = X holds then x∗ is globally asymptotically stable.

Proof The idea of the proof lies in showing that by (2.38) the function V (x(n, x0))

is strictly decreasing in n and converges to 0. Then by (2.37) we can conclude that
x(n, x0) converges to x∗. The function β from Definition 2.14 will be constructed
from α1, α2 and αV . In order to simplify the notation, throughout the proof we write
|x| instead of |x|x∗ .

First, if S is not forward invariant, define the value γ := α1(ν) and the set S̃ :=
{x ∈ X |V (x) < γ }. Then from (2.37) we get

x ∈ S̃ ⇒ α1
(|x|) ≤ V (x) < γ ⇒ |x| < α−1

1 (γ ) = ν ⇒ x ∈ Bν(x∗),

observing that each α ∈ K∞ is invertible with α−1 ∈ K∞.
Hence, for each x ∈ S̃ Inequality (2.38) applies and consequently V (g(x)) ≤

V (x) < γ implying g(x) ∈ S̃. If S = Y for some forward invariant set Y ⊆ X we
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define S̃ := S. With these definitions, in both cases the set S̃ becomes forward in-
variant.

Now we define α′
V := αV ◦ α−1

2 . Note that concatenations of K-functions are
again in K, hence α′

V ∈ K. Since |x| ≥ α−1
2 (V (x)), using monotonicity of αV this

definition implies

αV

(|x|) ≥ αV ◦ α−1
2

(
V (x)

) = α′
V

(
V (x)

)
.

Hence, along a trajectory x(n, x0) with x0 ∈ S̃, from (2.38) we get the inequality

V
(
x(n + 1, x0)

) ≤ V
(
x(n, x0)

) − αV

(∣∣x(n, x0)
∣∣)

≤ V
(
x(n, x0)

) − α′
V

(
V

(
x(n, x0)

))
. (2.39)

For the construction of β we need the last expression in (2.39) to be strictly
increasing in V (x(n, x0)). To this end we define

α̃V (r) := min
s∈[0,r]

{
α′

V (s) + (r − s)/2
}
.

Straightforward computations show that this function satisfies r2 − α̃V (r2) > r1 −
α̃V (r1) ≥ 0 for all r2 > r1 ≥ 0 and min{α′

V (r/2), r/4} ≤ α̃V (r) ≤ α′
V (r) for all

r ≥ 0. In particular, (2.39) remains valid and we get the desired monotonicity when
α′

V is replaced by α̃V .
We inductively define a function β1 : R

+
0 × N0 → R

+
0 via

β1(r,0) := r, β1(r, n + 1) = β1(r, n) − α̃V

(
β1(r, n)

)
. (2.40)

By induction over n using the properties of α̃V (r) and Inequality (2.39) one easily
verifies the following inequalities:

β1(r2, n) > β1(r1, n) ≥ 0 for all r2 > r1 ≥ 0 and all n ∈ N0, (2.41)

β1(r, n1) > β1(r, n2) > 0 for all n2 > n1 ≥ 0 and all r > 0, (2.42)

V
(
x(n, x0)

) ≤ β1
(
V (x0), n

)
for all n ∈ N0 and all x0 ∈ S̃. (2.43)

From (2.42) it follows that β1(r, n) is monotone decreasing in n and by (2.41)
it is bounded from below by 0. Hence, for each r ≥ 0 the limit β∞

1 (r) =
limn→∞ β1(r, n) exists. We claim that β∞

1 (r) = 0 holds for all r . Indeed, con-
vergence implies β1(r, n) − β1(r, n + 1) → 0 as n → ∞, which together with
(2.40) yields α̃V (β1(r, n)) → 0. On the other hand, since α̃V is continuous, we
get α̃V (β1(r, n)) → α̃V (β∞

1 (r)). This implies

α̃V

(
β∞

1 (r)
) = 0,

which, because of α̃V (r) ≥ min{α′
V (r/2), r/4} and α′

V ∈ K, is only possible if
β∞

1 (r) = 0.
Consequently, β1(r, n) has all properties of a K L function except that it is only

defined for n ∈ N0. Defining the linear interpolation

β2(r, t) := (n + 1 − t)β1(r, n) + (t − n)β1(r, n + 1)
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for t ∈ [n,n + 1) and n ∈ N0, we obtain a function β2 ∈ K L which coincides with
β1 for t = n ∈ N0. Finally, setting

β(r, t) := α−1
1 ◦ β2

(
α2(r), t

)

we can use (2.43) in order to obtain
∣∣x(n, x0)

∣∣ ≤ α−1
1

(
V

(
x(n, x0)

)) ≤ α−1
1 ◦ β1

(
V (x0), n

)

= α−1
1 ◦ β2

(
V (x0), n

) ≤ α−1
1 ◦ β2

(
α2

(|x0|
)
, n

) = β
(|x0|, n

)
,

for all x0 ∈ S̃ and all n ∈ N0. This is the desired Inequality (2.32). If S̃ = S = Y

this shows the claimed asymptotic stability on Y and global asymptotic stability
if Y = X. If S̃ 
= S, then in order to satisfy the local version of Definition 2.14 it
remains to show that x ∈ Bη(x∗) implies x ∈ S̃. Since by definition of η and γ we
have η = α−1

2 (γ ), we get

x ∈ Bη(x∗) ⇒ |x| < η = α−1
2 (γ ) ⇒ V (x) ≤ α2

(|x|) < γ ⇒ x ∈ S̃.

This finishes the proof. �

Likewise, P -practical asymptotic stability can be ensured by a suitable Lyapunov
function condition provided the set P is forward invariant.

Theorem 2.20 Consider forward invariant sets Y and P ⊂ Y and a point x∗ ∈ P .
If there exists a Lyapunov function V on S = Y \ P then x∗ is P -practically asymp-
totically stable on Y .

Proof The same construction of β as in the proof of Theorem 2.19 yields
∣∣x(n, x0)

∣∣
x∗ ≤ β

(|x|x∗ , n
)

(2.32)

for all n = 0, . . . , n∗ − 1, where n∗ ∈ N0 is minimal with x(n∗, x0) ∈ P . This fol-
lows with the same arguments as in the proof of Theorem 2.19 by restricting the
times considered in (2.39) and (2.43) to n = 0, . . . , n∗ − 2 and n = 0, . . . , n∗ − 1,
respectively.

Since forward invariance of P ensures x(n, x0) ∈ P for all n ≥ n∗, the times n

for which x(n, x0) /∈ P holds are exactly n = 0, . . . , n∗ − 1. Since these are exactly
the times at which (2.32) is required, this yields the desired P -practical asymptotic
stability. �

In case of a time varying reference xref we need to use the time varying asymp-
totic stability from Definition 2.16. The corresponding Lyapunov function concept
is as follows.

Definition 2.21 Consider a system (2.34), reference points xref(n), subsets of the
state space S(n) ⊆ X and define S := {(n, x) |n ∈ N0, x ∈ S(n)}. A function V :
S → R

+
0 is called a uniform time varying Lyapunov function on S(n) if the following

conditions are satisfied:
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(i) There exist functions α1, α2 ∈ K∞ such that

α1
(|x|xref(n)

) ≤ V (n, x) ≤ α2
(|x|xref(n)

)
(2.44)

holds for all n ∈ N0 and all x ∈ S(n).
(ii) There exists a function αV ∈ K such that

V
(
n + 1, g(n, x)

) ≤ V (n, x) − αV

(|x|xref(n)

)
(2.45)

holds for all n ∈ N0 and all x ∈ S(n) with g(n, x) ∈ S(n + 1).

Theorem 2.22 Let xref be a trajectory of (2.34) and assume there exists a uniform
time varying Lyapunov function V on S(n). If each S(n) contains a ball Bν(x

ref(n))

with g(n, x) ∈ S(n + 1) for all x ∈ Bν(x
ref(n)) then xref is locally asymptotically

stable with η = α−1
2 ◦ α1(ν). If the family of sets S(n) is forward invariant in the

sense stated before Definition 2.16, then xref is asymptotically stable on S(n). If
S(n) = X holds for all n ∈ N0 then xref is globally asymptotically stable.

Proof The proof is analogous to the proof of Theorem 2.19 with the obvious modi-
fications to take n ∈ N0 into account. �

Indeed, the necessary modification in the proof are straightforward because the
time varying Lyapunov function is uniform, i.e., α1, α2 and αV do not depend on n.
For the more involved nonuniform case we again refer to [3].

The P -practical version of this statement is provided by the following theorem in
which we assume forward invariance of the sets P(n). Observe that here xref does
not need to be a trajectory of the system (2.34).

Theorem 2.23 Consider forward invariant families of sets Y(n) and P(n) ⊂ Y(n),
n ∈ N0, and reference points xref(n) ∈ P(n). If there exists a uniform time varying
Lyapunov function V on S(n) = Y(n) \ P(n) then xref is P -practically asymptoti-
cally stable on Y(n).

Proof The proof is analogous to the proof of Theorem 2.20 with the obvious modi-
fications. �

2.4 Stability of Sampled Data Systems

We now investigate the special case in which (2.31) represents the nominal closed-
loop system (2.5) with f obtained from a sampled data system via (2.8). In this case,
the solutions x(n, x0) of (2.31) and the solutions ϕ(tn, t0, x0,μ) of the sampled data
closed-loop system (2.30) satisfy the identity

x(n, x0) = ϕ(tn, t0, x0,μ) (2.46)



36 2 Discrete Time and Sampled Data Systems

for all n ∈ N0. This implies that the stability criterion from Definition 2.14 (and anal-
ogous for the other stability definitions) only yields inequalities for the continuous
state of the system at the sampling times tn, i.e.,

∣∣ϕ(tn, t0, x0,μ)
∣∣
x∗ ≤ β

(|x0|x∗ , n
)

for all n = 0,1,2, . . . (2.47)

for a suitable β ∈ K L. However, for a continuous time system it is in general de-
sirable to ensure the existence of β ∈ K L such that the continuous time asymptotic
stability property

∣
∣ϕ(t, t0, x0,μ)

∣
∣
x∗ ≤ β

(|x0|x∗ , t
)

for all t ≥ 0 (2.48)

holds.
In the remainder of this chapter we will show that under a reasonable additional

assumption (2.47) implies the existence of β ∈ K L such that (2.48) holds. For sim-
plicity, we restrict ourselves to local asymptotic stability and to the case of time-
invariant reference xref ≡ x∗. The arguments can be modified to cover the other
cases, as well.

The necessary additional condition is the following boundedness assumption on
the solutions in between two sampling instants.

Definition 2.24 Consider a sampled data closed-loop system (2.30) with sampling
period T > 0. If there exists a function γ ∈ K and a constant η > 0 such that for all
x ∈ X with |x|x∗ ≤ η, the solutions of (2.30) exist on [0, T ] and satisfy

∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ γ

(|x|x∗
)

for all t ∈ [0, T ] then the solutions of (2.30) are called uniformly bounded over T .

Effectively, this condition demands that in between two sampling times tn and
tn+1 the continuous time solution does not deviate too much from the solution at
the sampling time tn. Sufficient conditions for this property formulated directly in
terms of the vector field fc in (2.30) can be found in [11, Lemma 3]. A sufficient
condition in our NMPC setting is discussed in Remark 4.13.

For the subsequent analysis we introduce the following class of K L functions,
which will allow us to deal with the inter sampling behavior of the continuous time
solution.

Definition 2.25 A function β ∈ K L is called uniformly incrementally bounded if
there exists P > 0 such that β(r, k) ≤ Pβ(r, k + 1) holds for all r ≥ 0 and all k ∈ N.

Uniformly incrementally bounded K L functions exhibit a nice bounding prop-
erty compared to standard K L functions which we will use the proof of Theo-
rem 2.27. Before, we show that any K L function β—like the one in (2.47)—can
be bounded from above by a uniformly incrementally bounded K L function.
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Lemma 2.26 For any β ∈ K L the function

β̃(r, t) := max
τ∈[0,t]

2−τ β(r, t − τ)

is a uniformly incrementally bounded K L function with β(r, t) ≤ β̃(r, t) for all r ≥ 0
and all t ≥ 0 and P = 2.

Proof The inequality β ≤ β̃ follows immediately from the definition. Uniform in-
cremental boundedness with P = 2 follows from the inequality

β̃(r, t) = max
τ∈[0,t]

2−τ β(r, t − τ) = max
τ∈[1,t+1]

21−τ β(r, t − τ + 1)

= 2 max
τ∈[1,t+1]

2−τ β(r, t − τ + 1) ≤ 2 max
τ∈[0,t+1]

2−τ β(r, t − τ + 1)

= 2β̃(r, t + 1).

It remains to show that β̃ ∈ K L.
Since β ∈ K L it follows that β̃ is continuous and β̃(0, t) = 0 for any t ≥ 0. For

any r2 > r1 ≥ 0, β ∈ K L implies 2−τ β(r2, t − τ) > 2−τ β(r1, t − τ). This shows
that β̃(r2, t) > β̃(r1, t) and hence β̃(·, t) ∈ K.

Next we show that for any fixed r > 0 the function t �→ β̃(r, t) is strictly decreas-
ing to 0. To this end, in the following we use that for all t ≥ s ≥ q ≥ 0 and all r ≥ 0
the inequality

max
τ∈[q,s] 2−τ β(r, t − τ) ≤ 2−qβ(r, t − s)

holds. In order to show the strict decrease property for r > 0, let t2 > t1 ≥ 0. Defin-
ing d := t2 − t1 we obtain

β̃(r, t2) = max
τ∈[0,t2]

2−τ β(r, t2 − τ)

= max
{

max
τ∈[0,d/2]

2−τ β(r, t2 − τ), max
τ∈[d/2,d]

2−τ β(r, t2 − τ),

max
τ∈[d,t2]

2−τ β(r, t2 − τ)
}

≤ max
{
β(r, t2 − d/2),2−d/2β(r, t2 − d), max

τ∈[0,t1]
2−τ−dβ(r, t1 − τ)

}

= max
{
β(r, t1 + d/2),2−d/2β(r, t1),2−d β̃(r, t1)

}
.

Now the strict monotonicity β̃(r, t2) < β̃(r, t1) follows since β(r, t1 + d/2) <

β(r, t1) ≤ β̃(r, t1), 2−d/2β(r, t1) < β(r, t1) ≤ β̃(r, t1) and 2−d β̃(r, t1) < β̃(r, t1).
Finally, we prove limt→∞ β̃(r, t) = 0 for any r > 0. Since

β̃(r, t) ≤ max
{

max
τ∈[0,t/2]

2−τ β(r, t − τ), max
τ∈[t/2,t]

2−τ β(r, t − τ)
}

≤ max
{
β(r, t/2),2−t/2β(r,0)

} → 0 as t → ∞
the assertion follows. �

Now, we are ready to prove the final stability result.
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Theorem 2.27 Consider the sampled data closed-loop system (2.30) with sampling
period T > 0 and the corresponding discrete time closed-loop system (2.5) with f

from (2.8). Then (2.30) is locally asymptotically stable, i.e., there exists η > 0 and
β ∈ K L such that (2.48) holds for all x ∈ Bη(x∗), if and only if (2.5) is locally
asymptotically stable and the solutions of (2.30) are uniformly bounded over T .

Proof If (2.30) is locally asymptotically stable with some β ∈ K L, then by (2.46)
it immediately follows that the discrete time system (2.5) is asymptotically stable
with β(r, k) = β(r, kT ) and that the solutions of (2.30) are uniformly bounded with
γ (r) = β(r,0).

Conversely, assume that (2.5) is locally asymptotically stable and that the solu-
tions of (2.30) are uniformly bounded over T . Denote the values η > 0 from Defini-
tion 2.14 and Definition 2.24 by ηs and ηb , respectively. These two properties imply
that there exist β ∈ K L and γ ∈ K∞ such that

|x|x∗ ≤ ηs �⇒ ∣∣ϕ(kT ,0, x,μ)
∣∣
x∗ ≤ β

(|x|x∗ , k
)

for all k ≥ 0, (2.49)

|x|x∗ ≤ ηb �⇒ ∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ γ

(|x|x∗
)

for all t ∈ [0, T ]. (2.50)

In order to show the assertion we have to construct η > 0 and β ∈ K L with

|x|x∗ ≤ η �⇒ ∣
∣ϕ(t,0, x,μ)

∣
∣
x∗ ≤ β

(|x|x∗ , t
)

for all t ≥ 0. (2.51)

Define γ0(r) := β(r,0) and let η = min{ηs, γ −1
0 (ηb)}. This definition implies

β(η,0) ≤ ηb and η ≤ ηs . In what follows we consider arbitrary x ∈ X with |x|x∗ ≤
η. For these x, (2.49) and η ≤ ηs yield

∣∣ϕ(kT ,0, x,μ)
∣∣
x∗ ≤ β

(‖x‖x∗ , k
) ≤ β(η,0) ≤ ηb for all k ≥ 0. (2.52)

For any k ≥ 0 and t ∈ [kT , (k + 1)T ] the definition of (2.30) implies

ϕ(t,0, x,μ) = ϕ
(
t − kT ,0, ϕ(kT ,0, x,μ),μ

)
.

Since (2.52) implies |ϕ(kT ,0, x,μ)|x∗ ≤ ηb for all k ≥ 0, (2.50) holds for x =
ϕ(kT ,0, x,μ) and from (2.50) and (2.52) we obtain

∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ γ

(∥∥ϕ(kT ,0, x,μ)
∥∥) ≤ γ

(
β
(‖x‖x∗, k

))
(2.53)

for all t ∈ [kT , (k + 1)T ] and all k ≥ 0.
Now we define β̂(r, t) := γ (β(r, t)). Clearly, β̂ ∈ K L and by Lemma 2.26 we

can assume without loss of generality that β̂ is uniformly incrementally bounded;
otherwise we replace it by β̃ from this lemma.

Hence, for k ∈ N0 and s ∈ [0,1] we obtain

β̂(r, k) ≤ P β̂(r, k + 1) ≤ P β̂(r, k + s). (2.54)

Now pick an arbitrary t ≥ 0 and let k ∈ N0 be maximal with k ≤ t/T . Then (2.53)
and (2.54) with s = t/T − k ∈ [0,1] imply

∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ β̂

(‖x‖x∗ , k
) ≤ P β̂

(|x|x∗ , k + (t/T − k)
) = P β̂

(|x|x∗ , t/T
)
.

This shows the assertion with β(r, t) = P β̂(r, t/T ). �
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Concluding, if we can compute an asymptotically stabilizing feedback law for
the discrete time system induced by the sampled data system, then the resulting
continuous time sampled data closed loop is also asymptotically stable provided its
solutions are uniformly bounded over T .

2.5 Notes and Extensions

The general setting presented in Sect. 2.1 is more or less standard in discrete time
control theory, except maybe for the rather general choice of the state space X and
the control value space U which allows us to cover infinite-dimensional systems as
illustrated in Example 2.12 and sampled data systems without the zero order hold
assumption as discussed after Theorem 2.7.

This definition of sampled data systems is not so frequently found in the litera-
ture, where often only the special case of zero order hold is discussed. While zero
order hold is usually the method of choice in practical applications and is also used
in the numerical examples later in this book, for theoretical investigations the more
general approach given in Sect. 2.2 is appealing, too.

The discrete time stability theory presented in Sect. 2.3 has a continuous time
counterpart, which is actually more frequently found in the literature. Introductory
textbooks on this subject in a control theoretic setting are, e.g., the books by Khalil
[7] and Sontag [15]. The proofs in this section are not directly taken from the liter-
ature, but they are based on standard arguments, which appear in many books and
papers on the subject. Formulating asymptotic stability via K L-function goes back
to Hahn [5] and became popular in nonlinear control theory during the 1990s via the
input-to-state stability (ISS) property introduced by Sontag in [14]. A good survey
on this theory can be found in Sontag [16].

While here we only stated direct Lyapunov function theorems which state that the
existence of a Lyapunov function ensures asymptotic stability, there is a rather com-
plete converse theory, which shows that asymptotic stability implies the existence
of Lyapunov functions. A collection of such results—again in a control theoretic
setting—can be found in the PhD thesis of Kellett [6].

The final Sect. 2.4 on asymptotic stability of sampled data systems is based on the
Paper [11] by Nešić, Teel and Sontag, in which this topic is treated in a more general
setting. In particular, this paper also covers ISS results for perturbed systems.

2.6 Problems

1. Show that there exists no differential equation ẋ(t) = fc(x(t)) (i.e., without con-
trol input) satisfying Assumption 2.4 and fc(0) = 0 such that the difference equa-
tion x+ = f (x) with

f (x) =
{

x
2 , x ≥ 0,

−x, x < 0

is the corresponding sampled data system.
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2. (a) Show that xref(n) = ∑n
k=0

1
2n−k sin(k) is a solution of the difference equation

x(n + 1) = 1

2
x(n) + sin(n).

(b) Prove that xref from (a) is uniformly asymptotically stable and derive a com-
parison function β ∈ K L such that (2.35) holds. Here it is sufficient to derive
a formula for β(r, n) for n ∈ N0.

(c) Show that xref(n) = ∑n
k=0

k+1
n+1 sin(k) is a solution of the difference equation

x(n + 1) = n + 1

n + 2
x(n) + sin(n).

(d) Can you also prove uniform asymptotic stability for xref from (c)?
Hint for (b) and (d): One way to proceed is to derive a difference equation

for z(n) = x(n,n0, x0) − xref(n) and look at the equilibrium x∗ = 0 for this new
equation.

3. Consider the two-dimensional difference equation

x+ = (
1 − ‖x‖)

(
0 1

−1 0

)
x

with x = (x1, x2)
� ∈ R

2.
(a) Prove that V (x) = x2

1 +x2
2 is a Lyapunov function for the equilibrium x∗ = 0

on S = {x ∈ R
2 | ‖x‖ ≤ 1}.

(b) Is V also a Lyapunov function on S = R
2?

(c) Solve (a) and (b) for the difference equation

x+ = 1

1 + ‖x‖
(

0 1
−1 0

)
x.

4. Consider a globally asymptotically stable difference equation (2.31) with equi-
librium x∗ ∈ X and a Lyapunov function V on S = X with α1(r) = 2r2,
α2(r) = 3r2 and αV (r) = r2.

Compute the rate of attraction β ∈ K L such that (2.32) holds. Here it is suffi-
cient to derive a formula for β(r, n) for n ∈ N0.

Hint: Follow the construction of β from the proof of Theorem 2.19. Why can
you use α̃V = α′

V for this problem?
5. Consider a difference equation (2.31) with equilibrium x∗ ∈ X and a function

V : X → R
+
0 which satisfies (2.37) but only

V
(
g(x)

) ≤ V (x)

instead of (2.38).
(a) Prove that there exists αL ∈ K∞ such that the solutions of (2.1) satisfy the

inequality
∣∣x(n, x0)

∣∣
x∗ ≤ αL

(|x0|
)
.

(b) Conclude from (a) that the system is stable in the sense of Lyapunov, cf. the
discussion after Definition 2.14.
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