
Chapter 2

A Framework for Function Spaces

In this chapter we study modular spaces and Musielak–Orlicz spaces which
provide the framework for a variety of different function spaces, including clas-
sical (weighted) Lebesgue and Orlicz spaces and variable exponent Lebesgue
spaces. Although our aim mainly is to study the latter, it is important to see
the connections between all of these spaces. Many of the results in this chap-
ter can be found in a similar form in [307], but we include them to make this
exposition self-contained. Research in the field of Musielak–Orlicz functions
is still active and we refer to [69] for newer results and references.

Our first two sections deal with the more general case of semimodu-
lar spaces. Then we move to basic properties of Musielak–Orlicz spaces
in Sect. 2.3. Sections 2.4 and 2.5 deal with the uniform convexity and the
separability of the Musielak–Orlicz spaces. In Sects. 2.6 and 2.7 we study
dual spaces, and a related concept, associate spaces. Finally, we consider
embeddings in Sect. 2.8.

2.1 Basic Properties of Semimodular Spaces

For the investigation of weighted Lebesgue spaces it is enough to stay in
the framework of Banach spaces. In particular, the space and its topology
is described in terms of a norm. However, in the context of Orlicz spaces
this is not the best way. Instead, it is better to start with the so-called
modular which then induces a norm. In the case of classical Lebesgue spaces
the modular is

´ |f(x)|p dx compared to the norm (
´ |f(x)|p dx) 1

p . In some
cases the modular has certain advantages compared to the norm, since it
inherits all the good properties of the integral. The modular spaces defined
below capture this advantage.

We are mainly interested in vector spaces defined over R. However, there is
no big difference in the definition of real valued and complex valued modular
spaces. To avoid a double definition we let K be either R or C.

The function � is said to be left-continuous if the mapping λ �→ �(λx) is
left-continuous on [0,∞) for every x ∈ X , i.e. limλ→1− �(λx) = �(x). Here
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22 2 A Framework for Function Spaces

a→ b− means that a tends to b from below, i.e. a < b and a→ b; a→ b+ is
defined analogously.

Definition 2.1.1. Let X be a K-vector space. A function � : X → [0,∞] is
called a semimodular on X if the following properties hold.

(a) �(0) = 0.
(b) �(λx) = �(x) for all x ∈ X,λ ∈ K with |λ| = 1.
(c) � is convex.
(d) � is left-continuous.
(e) �(λx) = 0 for all λ > 0 implies x = 0.

A semimodular � is called a modular if

(f) �(x) = 0 implies x = 0.

A semimodular � is called continuous if

(g) the mapping λ �→ �(λx) is continuous on [0,∞) for every x ∈ X .

Remark 2.1.2. Note that our semimodulars are always convex, in contrast
to some other sources.

Before we proceed let us provide a few examples.

Definition 2.1.3. Let (A,Σ, μ) be a σ-finite, complete measure space. Then
by L0(A, μ) we denote the space of all K-valued, μ-measurable functions on
A. Two functions are identical, if they agree almost everywhere.

In the special case that μ is the n-dimensional Lebesgue measure, Ω is a
μ-measurable subset of R

n, and Σ is the σ-algebra of μ-measurable subsets
of Ω we abbreviate L0(Ω) := L0(Ω, μ).

Example 2.1.4.

(a) If 1 � p <∞, then

�p(f) :=
ˆ

Ω

|f(x)|p dx

defines a continuous modular on L0(Ω).
(b) Let ϕ∞(t) := ∞ · χ(1,∞)(t) for t � 0, i.e. ϕ∞(t) = 0 for t ∈ [0, 1] and

ϕ∞(t) = ∞ for t ∈ (1,∞). Then

�∞(f) :=
ˆ

Ω

ϕ∞(|f(x)|) dx

defines a semimodular on L0(Ω) which is not continuous.



2.1 Basic Properties of Semimodular Spaces 23

(c) Let ω ∈ L1
loc(Ω) with ω > 0 almost everywhere and 1 � p <∞. Then

�(f) :=
ˆ

Ω

|f(x)|pω(x) dx

defines a continuous modular on L0(Ω).
(d) The integral expression

�(f) :=
ˆ

Ω

exp(|f(x)|) − 1 dx

defines a modular on L0(Ω). It is not continuous: if f ∈ L2(Ω) is such
that |f | > 2 and |f | �∈ Lp(Ω) for any p > 2, then �(λ log |f |) = ∞ for
λ > 2 but �(2 log |f |) <∞.

(e) If 1 � p <∞, then

�p
(
(xj)

)
:=

∞∑

j=0

|xj |p dx

defines a continuous modular on R
N.

(f) For f ∈ L0(Ω) we define the decreasing rearrangement,
f∗ : [0,∞) → [0,∞) by the formula f∗(s) := sup{t : | |f | > t| > s}. For
1 � q � p <∞ the expression

�(f) :=

∞̂

0

|f∗(sp/q)|q ds

defines a continuous modular on L0(Ω).

Let � be a semimodular on X . Then by convexity and non-negative of �
and �(0) = 0 it follows that λ �→ �(λx) is non-decreasing on [0,∞) for every
x ∈ X . Moreover,

�(λx) = �(|λ|x) � |λ| �(x) for all |λ| � 1,
�(λx) = �(|λ|x) � |λ| �(x) for all |λ| � 1.

(2.1.5)

In the definition of a semimodular or modular the set X is usually chosen to
be larger than necessary. The idea behind this is to choose the same large set
X for different modulars like in our Examples 2.1.4(a), (b), (c), (d) and (f).
Then depending on the modular we pick interesting subsets from this set X .

Definition 2.1.6. If � be a semimodular or modular on X , then

X� :=
{
x ∈ X : lim

λ→0
�(λx) = 0

}
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is called a semimodular space or modular space, respectively. The limit λ→ 0
takes place in K.

Since �(λx) = �(|λ| x) it is enough to require limλ→0 �(λx) with λ ∈ (0,∞).
Due to (2.1.5) we can alternatively define X� by

X� :=
{
x ∈ X : �(λx) <∞ for some λ > 0

}
,

since for λ′ < λ we have by (2.1.5) that

�(λ′x) = �
(λ′

λ
λx

)
� λ′

λ
�(λx) → 0

as λ′ → 0.
In the next theorem, like elsewhere, the infimum of the empty set is by

definition infinity.

Theorem 2.1.7. Let � be a semimodular on X. Then X� is a normed
K-vector space. The norm, called the Luxemburg norm, is defined by

‖x‖� := inf
{
λ > 0: �

(1
λ
x
)

� 1
}
.

Proof. We begin with the vector space property of X�. Let x, y ∈ X� and
α ∈ K \ {0}. From the definition of X� and �(αx) = �(|α|x) it is clear that
αx ∈ X�. By the convexity of � we estimate

0 � �
(
λ(x+ y)

)
� 1

2�(2λx) + 1
2�(2λy)

λ→0−−−→ 0.

Hence, x+ y ∈ X�. It is clear that 0 ∈ X�. This proves that X� is a K-vector
space.

It is clear that ‖x‖� <∞ for all x ∈ X� and ‖0‖� = 0. For α ∈ K we have

‖αx‖� = inf
{
λ > 0: �

(αx
λ

)
� 1

}
= |α| inf

{
λ > 0: �

( 1
λ
x
)

� 1
}

= |α| ‖x‖�.

Let x, y ∈ X and u > ‖x‖� and v > ‖y‖�. Then �(x/u) � 1 and �(y/v) � 1,
hence, by the convexity of �,

�
(x+ y

u+ v

)
= �

( u

u+ v

x

u
+

v

u+ v

y

v

)
� u

u+ v
�
(x
u

)
+

v

u+ v
�
(y
v

)
� 1.

Thus ‖x+ y‖� � u+ v, and we obtain ‖x+ y‖� � ‖x‖� + ‖y‖�.
If ‖x‖� = 0, then �(αx) � 1 for all α > 0. Therefore,

�(λx) � β�
(λx
β

)
� β
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for all λ > 0 and β ∈ (0, 1], where we have used (2.1.5). This implies �(λx) = 0
for all λ > 0. Thus x = 0. �	

The norm in the previous theorem is more generally known as the
Minkowski functional of the set {x ∈ X : �(x) � 1}, see Remark 2.1.16. The
Minkowski functional was first introduced by Kolmogorov in [253] long before
the appearance of the Luxemburg norm. Nevertheless, we use the name
“Luxemburg norm” as it is customary in the theory of Orlicz spaces.

In the following example we use the notation of Example 2.1.4.

Example 2.1.8 (Classical Lebesgue spaces). Let 1 � p < ∞. Then the
corresponding modular space (L0(Ω))�p coincides with the classical Lebesgue
space Lp, i.e.

‖f‖p := ‖f‖�p
=

( ˆ

Ω

|f(x)|p dx
) 1

p

.

Similarly, the corresponding semimodular space (L0(Ω))�∞ coincides with the
classical Lebesgue space L∞, i.e.

‖f‖∞ := ‖f‖�∞ = ess sup
x∈Ω

|f(x)|.

The norm ‖·‖� defines our standard topology on X�. So for xk, x ∈ X� we
say that xk converges strongly or in norm to x if ‖xk − x‖� → 0. In this case
we write xk → x. The next lemma characterizes this topology in terms of the
semimodular. Here it suffices to study null-sequences.

Lemma 2.1.9. Let � be a semimodular on X and xk ∈ X�. Then xk → 0
for k → ∞ if and only if limk→∞ �(λxk) = 0 for all λ > 0.

Proof. Assume that ‖xk‖� → 0 and λ > 0. Then ‖K λxk‖� < 1 for all K > 1
and large k. Thus �(K λxk) � 1 for large k, hence

�(λxk) � 1
K
�(K λxk) � 1

K

for large k, by (2.1.5). This implies �(λxk) → 0.
Assume now that �(λxk) → 0 for all λ > 0. Then �(λxk) � 1 for large k.

In particular, ‖xk‖� � 1/λ for large k. Since λ > 0 was arbitrary, we get
‖xk‖� → 0. In other words xk → 0. �	

Apart from our standard topology on X�, which was induced by the
norm, it is possible to define another type of convergence by means of the
semimodular.
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Definition 2.1.10. Let � be a semimodular on X and xk, x ∈ X�. Then we
say that xk is modular convergent (�-convergent) to x if there exists λ > 0
such that �(λ(xk − x)) → 0. We denote this by xk

�→ x.

It is clear from Lemma 2.1.9 that modular convergence is weaker than norm
convergence. Indeed, for norm convergence we have limk→∞ �(λ(xk − y))=0
for all λ > 0, while for modular convergence this only has to hold for some
λ> 0.

For some semimodular spaces modular convergence and norm convergence
coincide and for others they differ:

Lemma 2.1.11. Let X� be a semimodular space. Then modular conver-
gence and norm convergence are equivalent if and only if �(xk) → 0 implies
�(2xk) → 0.

Proof. “⇒”: Let modular convergence and norm convergence be equivalent
and let �(xk) → 0 with xk ∈ X�. Then xk → 0 and by Lemma 2.1.9 it follows
that �(2xk) → 0.

“⇐”: Let xk ∈ X� with �(xk) → 0. We have to show that �(λxk) → 0
for all λ > 0. For fixed λ > 0 choose m ∈ N such that 2m � λ. Then by
repeated application of the assumption we get limk→∞ �(2mxk) = 0. Then
0 � limk→∞ �(λxk) � λ2−m limk→∞ �(2mxk) = 0 by (2.1.5). This proves
that xk → 0. �	

If either of the equivalent conditions in the previous lemma hold, then we
say that the semimodular satisfies the weak Δ2-condition.

If � is a semimodular that satisfies the weak Δ2-condition, then � is already
a modular. Indeed, if �(x) = 0, then the constant sequence x is modular
convergent to 0 and therefore convergent to 0 with respect to the norm, but
this implies x = 0.

Lemma 2.1.12. Let be a semimodular on X that satisfies the weak Δ2-
condition. Then for every ε > 0 there exists δ > 0 such that �(f) � δ implies
‖f‖� � ε.

Proof. This is an immediate consequence of the equivalence of modular and
norm convergence. �	
Example 2.1.13. The weak Δ2-condition of modulars is satisfied in Exam-
ples 2.1.4 (a) and (c). Examples 2.1.4 (b) and (d) do not satisfy this
condition.

Let us study the closed and open unit ball ofX�. The left-continuity of � is
of special significance. The following lemma is of great technical importance.
We will invoke it by mentioning the unit ball property, or, when more clarity
is needed, the norm-modular unit ball property.
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Lemma 2.1.14 (Norm-modular unit ball property). Let � be a semi-
modular on X. Then ‖x‖� � 1 and �(x) � 1 are equivalent. If � is continuous,
then also ‖x‖� < 1 and �(x) < 1 are equivalent, as are ‖x‖� = 1 and �(x) = 1.

Proof. If �(x) � 1, then ‖x‖� � 1 by definition of ‖·‖�. If on the other hand
‖x‖� � 1, then �(x/λ) � 1 for all λ > 1 . Since � is left-continuous it follows
that �(x) � 1.

Let � be continuous. If ‖x‖� < 1, then there exists λ < 1 with �(x/λ) � 1.
Hence by (2.1.5) it follows that �(x) � λ�(x/λ) � λ < 1. If on the other
hand �(x) < 1, then by the continuity of � there exists γ > 1 with �(γx) < 1.
Hence ‖γx‖� � 1 and ‖x‖� � 1/γ < 1. The equivalence of ‖x‖� = 1 and
�(x) = 1 now follows immediately from the cases “� 1” and “< 1”. �	

A simple example of a semimodular which is left-continuous but not con-
tinuous is given by �∞(t) = ∞ · χ(1,∞)(t) on X = R. This is a semimodular
on R and ‖x‖�∞ = |x|.
Corollary 2.1.15. Let � be a semimodular on X and x ∈ X�.

(a) If ‖x‖� � 1, then �(x) � ‖x‖�.
(b) If 1 < ‖x‖�, then ‖x‖� � �(x).
(c) ‖x‖� � �(x) + 1.

Proof. (a) The claim is obvious for x = 0, so let us assume that 0 < ‖x‖� � 1.
By the unit ball property (Lemma 2.1.14) and ‖x/‖x‖�‖� = 1 it fol-
lows that �(x/‖x‖�) � 1. Since ‖x‖� � 1, it follows from (2.1.5) that
�(x)/‖x‖� � 1.

(b) Assume that ‖x‖� > 1. Then �(x/λ) > 1 for 1 < λ < ‖x‖� and by (2.1.5)
it follows that 1 < �(x)/λ. Since λ was arbitrary, �(x) � ‖x‖�.

(c) This follows immediately from (b). �	
Remark 2.1.16. Let K := {x ∈ X� : �(x) � 1}. Then the unit ball property
states that K = B(0, 1), the closed unit ball with respect to the norm. This
provides an alternative proof of the fact that ‖·‖� is a norm. Indeed, K is a
balanced, i.e. λK := {λx : x ∈ K} ⊂ K for all |λ| � 1, convex set. Moreover,
by definition of X� the set K is absorbing for X�, i.e.

⋃
λ>0(λK) = X�.

Therefore, the Minkowski functional of K, namely x �→ inf {λ > 0: 1
λx ∈ K},

defines a norm on X�. But this functional is exactly ‖·‖� which is therefore
a norm on X�.

We have seen in Remark 2.1.16 that {x ∈ X� : �(x) � 1} is closed. This
raises the question whether {x ∈ X : �(x) � α} is closed for every α ∈ [0,∞).
This is equivalent to the lower semicontinuity of � on X�, hence the next
theorem gives a positive answer.
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Theorem 2.1.17. Let � be a semimodular on X. Then � is lower semicon-
tinuous on X�, i.e.

�(x) � lim inf
k→∞

�(xk)

for all xk, x ∈ X� with xk → x (in norm) for k → ∞.

Proof. Let xk, x ∈ X� with xk → x for k → ∞. We begin with the case
�(x) < ∞. By Lemma 2.1.9, limk→∞ �(γ(x − xk)) = 0 for all γ > 0. Let
ε ∈ (0, 1

2 ). Then, by convexity of �,

�
(
(1 − ε)x

)
= �

(
1
2
x+

1 − 2ε
2

(x − xk) +
1 − 2ε

2
xk

)

� 1
2
�(x) +

1
2
�
(
(1 − 2ε)(x− xk) + (1 − 2ε)xk

)

� 1
2
�(x) +

2ε
2
�

(
1 − 2ε

2ε
(x− xk)

)
+

1 − 2ε
2

�(xk).

We pass to the limit k → ∞:

�
(
(1 − ε)x

)
� 1

2
�(x) +

1 − 2ε
2

lim inf
k→∞

�(xk).

Now letting ε→ 0+ and using the left-continuity of �, we get

�
(
x
)

� 1
2
�(x) +

1
2

lim inf
k→∞

�(xk).

Since �(x) < ∞, we get �(x) � lim infk→∞ �(xk). This completes the proof
in the case �(x) <∞.

Assume now that x ∈ X� with �(x) = ∞. If lim infk→∞ �(xk) = ∞,
then there is nothing to show. So we can assume lim infk→∞ �(xk) < ∞.
Let λ0 := sup {λ > 0: �(λx) <∞}. Since x ∈ X�, we have λ0 > 0. Moreover,
�(x)=∞ implies λ0 � 1. For all λ∈ (0, λ0) the inequality �(λx) <∞ holds, so

�(λx) � lim inf
k→∞

�(λxk) � lim inf
k→∞

�(xk)

for all λ ∈ (0, λ0) by the first part of the proof. The left-continuity of � implies
that

�(λ0x) � lim inf
k→∞

�(xk).

If λ0 = 1, then the proof is finished. Finally we show, by contradiction, that
λ0 �∈ (0, 1). So let λ0 ∈ (0, 1). Choose λ1 ∈ (λ0, 1) and α ∈ (0, 1) such that

λ1 − λ0

λ0
+ α+ λ0 = 1.
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The convexity of � implies

�(λ1x) = �

(
(λ1 − λ0)x + λ0(x− xk) + λ0xk

)

� λ1 − λ0

λ0
�(λ0x) + α�

(
λ0

α
(x− xk)

)
+ λ0�(xk).

We pass to the limit k → ∞:

�(λ1x) � λ1 − λ0

λ0
�(λ0x) + λ0 lim inf

k→∞
�(xk) � (1 − α) lim inf

k→∞
�(xk).

Since lim infk �(xk) < ∞, we get �(λ1x) < ∞. But this and λ1 > λ0 contra-
dict the definition of λ0. �	
Remark 2.1.18. It follows from Theorem 2.1.17 that the sets
{x ∈ X : �(x) � α} are closed for every α ∈ [0,∞). Since these sets are con-
vex, it follows that they are also closed with respect to the weak topology
of X� (cf. Sect. 1.4, Functional analysis).

Remark 2.1.19. Let � be a semimodular on X . Then

|||x|||� := inf
λ>0

λ

(
1 + �

( 1
λ
x
))

defines a norm on X� and

‖x‖� � |||x|||� � 2‖x‖�.

This norm is called the Amemiya norm. For a proof see [307].

2.2 Conjugate Modulars and Dual Semimodular
Spaces

The dual space of a normed space X is the set of all linear, bounded func-
tionals from X to K. It is denoted by X∗. It is well known that X∗ equipped
with the norm

‖x∗‖X∗ := sup
‖x‖X�1

|〈x∗, x〉|

is a Banach space. Here we use the notation 〈x∗, x〉 := x∗(x). The study of
the dual of X is a standard tool to get a better understanding of the space X
itself. In this section we examine the dual space of X�.
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Lemma 2.2.1. Let � be a semimodular on X. A linear functional x∗ on X�

is bounded with respect to ‖·‖� if and only if there exists γ > 0 such that for
every x ∈ X�

|〈x∗, x〉| � γ
(
�(x) + 1

)
.

Proof. If x∗ ∈ X∗
� and x ∈ X�, then 〈x∗, x〉 � ‖x∗‖X∗

�
‖x‖X�

�
‖x∗‖X∗

�
(1 + �(x)) by Corollary 2.1.15. Assume conversely that the inequality

holds. Then
∣
∣
∣
〈
x∗,

x

‖x‖� + ε

〉∣
∣
∣ � γ

(
�
( x

‖x‖� + ε

)
+ 1

)
� 2γ

for every ε > 0, hence ‖x∗‖X∗
�

� 2γ. �	

Definition 2.2.2. Let � be a semimodular on X . Then by X∗
� we denote the

dual space of (X�, ‖·‖�). Furthermore, we define �∗ : X∗
� → [0,∞] by

�∗(x∗) := sup
x∈X�

(|〈x∗, x〉| − �(x)
)
.

We call �∗ the conjugate semimodular of �.

Note the difference between the spaces X∗
� and X�∗ : the former is the dual

space of X�, whereas the latter is the semimodular space defined by �∗.
By definition of the functional �∗ we have

|〈x∗, x〉| � �(x) + �∗(x∗) (2.2.3)

for all x ∈ X� and x∗ ∈ X∗
� . This inequality is a generalized version of the

classical Young inequality.

Theorem 2.2.4. Let � be a semimodular on X. Then �∗ is a semimodular
on X∗

� .

Proof. It is easily seen that �∗(0) = 0, �∗(λx∗) = �∗(x∗) for |λ| = 1, and
�∗(x∗) � 0 for every x∗ ∈ X∗

� . Let x∗0, x∗1 ∈ X∗
� and θ ∈ (0, 1). Then

�∗
(
(1 − θ)x∗0 + θx∗1

)
= sup

x∈X

(∣∣〈(1 − θ)x∗0 + θx∗1, x
〉∣∣ − �(x)

)

� (1 − θ) sup
x∈X

(∣∣〈x∗0, x
〉∣∣ − �(x)

)

+ θ sup
x∈X

(∣∣〈x∗1, x
〉∣∣ − �(x)

)

= (1 − θ)�∗(x∗0) + θ�∗(x∗1).

Finally, let �∗(λx∗) = 0 for every λ > 0. For x ∈ X� choose η > 0 such that
�(ηx) <∞. Then by (2.2.3)
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λη |〈x∗, x〉| � �(ηx) + �∗(λx∗) = �(ηx).

Taking λ → ∞ we obtain |〈x∗, x〉| = 0. Hence x∗ = 0. It remains to show
that �∗ is left-continuous. For λ→ 1− and x∗ ∈ X∗

� we have

lim
λ→1−

�∗(λx∗) = lim
λ→1−

sup
x∈X

(|〈λx∗, x〉| − �(x)
)

= sup
0<λ<1

sup
x∈X

(|λ| |〈x∗, x〉| − �(x)
)

= sup
x∈X

(|〈x∗, x〉| − �(x)
)

= �∗(x).

Thus �∗ is left-continuous. �	
For a semimodular � on X we have defined the conjugate semimodular �∗

on X∗
� . By duality we can proceed further and define �∗∗ the conjugate semi-

modular of �∗ on the bidual X∗∗
� := (X∗

� )∗. The functional �∗∗ is called the
biconjugate semimodular of � on X∗∗

� . Using the natural injection ι of X� into
its bidual X∗∗

� , the mapping x �→ �∗∗(ιx) defines a semimodular on X�, which
we call the biconjugate semimodular of � on X�. For simplicity of notation it
is also denoted by �∗∗ neglecting the extra injection ι. In particular, we have

�∗∗(x) = sup
x∗∈X∗

�

(|〈x∗, x〉| − �∗(x∗)
)

(2.2.5)

for all x ∈ X�. Certainly the formula is also valid for all x ∈ X∗∗
� , by the

definition of �∗∗ on X∗∗
� , if we interpret 〈x∗, x〉 as 〈x, x∗〉X∗∗

� ×X∗
�
.

Analogously to the fact that ι : X� → X∗∗
� is an isometry, it turns out

that the biconjugate �∗∗ and � coincide on X�.

Theorem 2.2.6. Let � be a semimodular on X. Then �∗∗ = � on X�.

Proof. Exactly as in the proof of Theorem 2.2.4 we can prove that �∗∗ is a
semimodular on X�. By definition of �∗∗ and (2.2.3) we get for x ∈ X�

�∗∗(x) = sup
x∗∈X∗

�

(|〈x∗, x〉| − �∗(x∗)
)

= sup
x∗∈X∗

� ,�
∗(x∗)<∞

(|〈x∗, x〉| − �∗(x∗)
)

� sup
x∗∈X∗

� ,�
∗(x∗)<∞

(
�(x) + �∗(x∗) − �∗(x∗)

)

= �(x).

It remains to show �∗∗(x) � �(x). We prove this by contradiction. Assume to
the contrary that there exists x0 ∈ X� with �∗∗(x0) < �(x0). In particular,
�∗∗(x0) <∞. We define the epigraph of � by
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epi(�) :=
⋃

λ∈R

{
(x, γ) ∈ X� × R : γ � �(x)

}
.

Since � is convex and lower semicontinuous (Theorem 2.1.17), the set epi(�)
is convex and closed (cf. [58, Sect. I.3]). Moreover, due to �∗∗(x0) < �(x0)
the point (x0, �

∗∗(x0)) is not contained in epi(�). So by the Hahn–Banach
Theorem 1.4.2 there exists a functional on X� × R which strictly separates
epi(�) from (x0, �

∗∗(x0)). So there exist α, β ∈ R and x∗ ∈ X∗
� with

〈x∗, x〉 − β�(x) < α < 〈x∗, x0〉 − β�∗∗(x0)

for all x ∈ X�. The choice x = x0 and the estimate �∗∗(x0) < �(x0) imply
β > 0. We multiply by 1

β and get

〈x∗

β
, x

〉
− �(x) <

α

β
<

〈x∗

β
, x0

〉
− �∗∗(x0)

for all x ∈ X�. Due to (2.2.5) the right-hand side is bounded by �∗(x
∗
β ). Now,

taking the supremum on the left-hand side over x ∈ X� implies

�∗
(
x∗

β

)
� α

β
< �∗

(
x∗

β

)
.

This is the desired contradiction. �	
For two semimodulars �, κ on X we write � � κ if �(f) � κ(f) for every

f ∈ X .

Corollary 2.2.7. Let �, κ be semimodulars on X. Then � � κ if and only if
κ∗ � �∗.

Proof. If � � κ, then by definition of the conjugate semimodular follows
easily κ∗ � �∗. If however κ∗ � �∗, then �∗∗ � κ∗∗ and by Theorem 2.2.6
follows � � κ. �	

From Theorem 2.1.17 we already know that the modular � is lower semi-
continuous on X� with respect to convergence in norm. This raises the
question of whether � is also lower semicontinuous on X� with respect to
weak convergence. Let fk, f ∈ X�. As usual we say that fk converges weakly
to f if 〈g∗, fk〉 → 〈g∗, f〉 for all g∗ ∈ X∗

� . In this case we write fk ⇀ f .

Theorem 2.2.8. Let � be a semimodular on X, then the semimodular � is
weakly (sequentially) lower semicontinuous, i.e. if fk ⇀ f weakly in X�, then
�(f) � lim infk→∞ �(fk).

Proof. Let fk, f ∈ X� with fk ⇀ f . Then, by Theorem 2.2.6, � = �∗∗, which
implies
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�(f) = �∗∗(f) = sup
g∗∈X∗

�

(|〈g∗, f〉| − �∗(g∗)
)

= sup
g∗∈X∗

�

(
lim
k→∞

|〈g∗, fk〉| − �∗(g∗)
)

� lim inf
k→∞

(
sup
g∗∈X∗

�

(|〈g∗, fk〉| − �∗(g∗)
))

= lim inf
k→∞

�∗∗(fk)

= lim inf
k→∞

�(fk). �	

In the definition of �∗ the supremum is taken over all x ∈ X�. However, it
is possible to restrict this to the closed unit ball of X�.

Lemma 2.2.9. If � is a semimodular on X, then

�∗
(
x∗

)
= sup

x∈X�,‖x‖��1

(|〈x∗, x〉| − �(x)
)

= sup
x∈X�,�(x)�1

(|〈x∗, x〉| − �(x)
)

for x∗ ∈ X∗
� with ‖x∗‖X∗

�
� 1.

Proof. The equivalence of the suprema follows from the unit ball property
(Lemma 2.1.14). Let ‖x∗‖X∗

�
� 1. By the definition of the dual norm we have

sup
‖x‖�>1

(|〈x∗, x〉| − �(x)
)

� sup
‖x‖�>1

(‖x∗‖X∗
�
‖x‖� − �(x)

)

� sup
‖x‖�>1

(‖x‖� − �(x)
)
.

If ‖x‖� > 1, then �(x) � ‖x‖� by Corollary 2.1.15, and so the right-hand side
of the previous inequality is non-positive. Since �∗ is defined as a supremum,
and is always non-negative, we see that the points with ‖x‖� > 1 do not
affect the supremum, and so the claim follows. �	

Since �∗ is a semimodular on X∗
� , it defines another norm ‖·‖�∗ on X∗

� .
We next want to compare it with the norm ‖·‖X∗

�
.

Theorem 2.2.10. If � be a semimodular on X, then for every x∗ ∈ X∗
�

‖x∗‖�∗ � ‖x∗‖X∗
�

� 2‖x∗‖�∗ .

Proof. We first prove the second inequality. By the unit ball property
(Lemma 2.1.14) the inequalities ‖x‖� � 1 and �(x) � 1 are equivalent. Hence,

∥∥x∗
∥∥
X∗

�
= sup

‖x‖��1

|〈x∗, x〉| � sup
�(x)�1

(
�∗(x∗) + �(x)

)
� �∗(x∗) + 1.
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If ‖x∗‖�∗ � 1, then �∗(x∗) � 1 by the unit ball property and we conclude
that ‖x∗‖X∗

�
� 2. The conclusion follows from this by a scaling argument : if

‖x∗‖�∗ > 0, then set y∗ := x∗/‖x∗‖�∗ . Since ‖y∗‖�∗ = 1, we conclude that
‖y∗‖X∗

�
� 2‖y∗‖�∗ . Multiplying by ‖x∗‖�∗ gives the result.

Assume now that ‖x∗‖X∗
�
�1. Then byLemma 2.2.9 and Corollary 2.1.15 (c)

�∗
(
x∗

)
= sup

x∈X�,�(x)�1

(|〈x∗, x〉| − �(x)
)

� sup
x∈X�,�(x)�1

(‖x‖� − �(x)
)

� 1.

Hence, ‖x∗‖�∗ � 1. The scaling argument gives ‖x∗‖�∗ � ‖x∗‖X∗
�

�	
Note the scaling argument technique used in the previous proof. It is one

of the central methods for dealing with these kind of spaces, and it will be
used often in what follows.

With the help of the conjugate semimodular �∗ it is also possible to define
yet another norm on X� by means of duality. Luckily this norm is equivalent
to the norm ‖·‖�.
Theorem 2.2.11. Let � be a semimodular on X. Then

‖x‖′� := sup
{|〈x∗, x〉| : x∗ ∈ X∗

� , ‖x∗‖�∗ � 1
}

= sup
{|〈x∗, x〉| : x∗ ∈ X∗

� , �
∗(x∗) � 1

}

defines a norm on X�. This norm is called the Orlicz norm. For all x ∈ X�

we have ‖x‖� � ‖x‖′� � 2‖x‖�.
Proof. By the unit ball property (Lemma 2.1.14) the two suprema are equal.
If ‖x‖� � 1 and ‖x∗‖�∗ � 1, then �(x) � 1 and �∗(x∗) � 1. Hence, |〈x, x∗〉| �
�(x) + �∗(x∗) � 2. Therefore ‖x‖′� � 2. A scaling argument proves ‖x‖′� �
2‖x‖�.

If ‖x‖′� � 1, then |〈x∗, x〉| � 1 for all x∗ ∈ X∗
� with ‖x∗‖�∗ � 1. In

particular, by Theorem 2.2.10 we have |〈x∗, x〉| � 1 for all x∗ ∈ X∗
� with

‖x∗‖X∗
�

� 1. Hence, Corollary 1.4.3 implies ‖x‖� � 1. We have thus shown

that ‖x‖� � ‖x‖′�. �	

2.3 Musielak–Orlicz Spaces: Basic Properties

In this section we start our journey towards more concrete spaces. Instead
of general semimodular spaces, we will consider spaces where the modular is
given by the integral of a real-valued function.

Definition 2.3.1. A convex, left-continuous function ϕ : [0,∞) → [0,∞]
with ϕ(0) = 0, limt→0+ ϕ(t) = 0, and limt→∞ ϕ(t) = ∞ is called a Φ-function.
It is called positive if ϕ(t) > 0 for all t > 0.
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In fact, there is a very close relationship between Φ-functions and semi-
modulars on R.

Lemma 2.3.2. Let ϕ : [0,∞) → [0,∞] and let � denote its even extension
to R, i.e. �(t) := ϕ(|t|) for all t ∈ R. Then ϕ is a Φ-function if and only if �
is a semimodular on R with X� = R. Moreover, ϕ is a positive Φ-function if
and only if � is a modular on R with X� = R.

Proof. “⇒”: Let ϕ be a Φ-function. Since limt→0+ ϕ(t) = 0, we have X� = R.
To prove that � is a semimodular on R it remains to prove that �(λt0) = 0
for all λ > 0 implies t0 = 0. So assume that �(λt0) = 0 for all λ > 0.
Since limt→∞ ϕ(t) = ∞, there exists t1 > 0 with ϕ(t1) > 0. Thus there
exists no λ > 0 such that t1 = λt0, which implies that t0 = 0. Hence �
is a semimodular. Assume that ϕ is additionally positive. If �(s) = 0, then
ϕ(|s|) = 0 and therefore s = 0. This proves that � is a modular.

“⇐”: Let � be a semimodular on R with X� = R. Since X� = R, there
exists t2 > 0 such that �(t2) < ∞. From (2.1.5) follows that
0 � ϕ(t) � t/t2ϕ(t2) for all t ∈ [0, t2], which implies that limt→0+ ϕ(t) = 0.
Since 1 �= 0, there exists λ > 0 such that �(λ · 1) �= 0. In particular there
exists t3 > 0 with ϕ(t3) > 0 and ϕ(kt3) � kϕ(t3) > 0 by (2.1.5) for all
k ∈ N. Since k is arbitrary, we get limt→∞ ϕ(t) = ∞. We have proved that
ϕ is a Φ-function. Assume additionally that � is a modular. In particular
�(t) = ϕ(|t|) = 0 implies t = 0. Hence by negation we get that t > 0 implies
ϕ(t) > 0, so ϕ is positive. �	

Let us remark that if ϕ is a Φ-function then on the set {t � 0: ϕ(t) <∞}
it has the form

ϕ(t) =

tˆ

0

a(τ) dτ, (2.3.3)

where a(t) is the right-derivative of ϕ(t) (see [330], Theorem 1.3.1). Moreover,
the function a(t) is non-increasing and right-continuous.

The following lemma is an easy consequence of the left-continuity, convex-
ity, and monotonicity of ϕ. However, it is also possible to use Lemma 2.3.2
and Theorem 2.1.17 to prove this.

Lemma 2.3.4. Every Φ-function is lower semicontinuous.

Example 2.3.5. Let 1 � p <∞. Define

ϕp(t) :=
1
p
tp,

ϕ∞(t) := ∞ · χ(1,∞)(t)
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for all t � 0. Then ϕp and ϕ∞ are Φ-functions. Moreover, ϕp is continuous
and positive, while ϕ∞ is only left-continuous and lower semicontinuous but
not positive.

Remark 2.3.6. Let ϕ be a Φ-function. As a lower semicontinuous function
ϕ satisfies

ϕ
(
inf A) � inf ϕ(A)

for every non-empty set A ⊂ [0,∞). The reverse estimate might fail as the
example ϕ∞ with A := (1,∞) shows. However, for every λ > 1 we have

inf ϕ(A) � ϕ
(
λ inf A).

Indeed, if inf A = 0, then the claim follows by limt→0+ ϕ(t) = 0. If inf A > 0,
then we can find t ∈ A such that inf A � t � λ inf A. Now, the monotonicity
of ϕ implies inf ϕ(A) � ϕ(t) � ϕ

(
λ inf A).

Remark 2.3.7. Let ϕ be a Φ-function. Then, as a convex function, ϕ is
continuous if and only if ϕ is finite on [0,∞).

The following properties of Φ-functions are very useful:

ϕ(rt) � rϕ(t),
ϕ(st) � sϕ(t),

(2.3.8)

for any r ∈ [0, 1], s ∈ [1,∞) and t � 0 (compare with (2.1.5)). This is a
simple consequence of the convexity of ϕ and ϕ(0) = 0. Inequality (2.3.8)
further implies that ϕ(a) + ϕ(b) � a

a+bϕ(a+ b) + b
a+bϕ(a+ b) = ϕ(a+ b) for

a+ b > 0 for all a, b � 0 which combined with convexity yields

ϕ(a) + ϕ(b) � ϕ(a+ b) � 1
2 (ϕ(2a) + ϕ(2b)).

Although it is possible to define function spaces using Φ-functions, these
are not sufficiently general for our needs. In the case of variable exponent
Lebesgue spaces (see Chap. 3) we need our function ϕ to depend also on the
location in the space. So we need to generalize Φ-functions in such a way that
they may depend on the space variable.

Definition 2.3.9. Let (A,Σ, μ) be a σ-finite, complete measure space. A
real function ϕ : A× [0,∞) → [0,∞] is said to be a generalized Φ-function on
(A,Σ, μ) if:

(a) ϕ(y, ·) is a Φ-function for every y ∈ A.
(b) y �→ ϕ(y, t) is measurable for every t � 0.

If ϕ is a generalized Φ-function on (A,Σ, μ), we write ϕ ∈ Φ(A, μ). If Ω
is an open subset of R

n and μ is the n-dimensional Lebesgue measure we
abbreviate this as ϕ ∈ Φ(Ω) or say that ϕ is a generalized Φ-function on Ω.
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In what follows we always make the natural assumption that our measure
μ is not identically zero.

Certainly every Φ-function is a generalized Φ-function if we set ϕ(y, t) :=
ϕ(t) for y ∈ A and t ∈ [0,∞). Also, from (2.3.8) and Lemma 2.3.4 we see
that ϕ(y, ·) is non-decreasing and lower semicontinuous on [0,∞) for every
y ∈ A.

We say that a function is simple if it is the linear combination of charac-
teristic functions of measurable sets with finite measure,

∑k
i=1 siχAi(x) with

μ(A1), . . . , μ(Ak) <∞, s1, . . . , sk ∈ K. We denote the set of simple functions
by S(A, μ). If Ω is an open subset of R

n and μ is the n-dimensional Lebesgue
measure we abbreviate this by S(Ω).

We next show that every generalized Φ-function generates a semimodular
on L0(A, μ).

Lemma 2.3.10. If ϕ ∈ Φ(A, μ) and f ∈ L0(A, μ), then y �→ ϕ(y, |f(y)|) is
μ-measurable and

�ϕ(f) :=
ˆ

A

ϕ(y, |f(y)|) dμ(y)

is a semimodular on L0(A, μ). If ϕ is positive, then �ϕ is a modular. We call
�ϕ the semimodular induced by ϕ.

Proof. By splitting the function into its positive and negative (real and imag-
inary) part it suffices to consider the case f � 0. Let fk ↗ f point-wise where
fk are non-negative simple functions. Then

ϕ(y, |fk(y)|) =
∑

j

ϕ(y, αkj ) · χAk
j
(y),

which is measurable and ϕ(y, fk(y)) ↗ ϕ(y, f(y)). Thus ϕ(·, f(·)) is measur-
able.

Obviously, �ϕ(0) = 0 and �ϕ(λx) = �ϕ(x) for |λ| = 1. The convexity
of �ϕ is a direct consequence of the convexity of ϕ. Let us show the left-
continuity of �ϕ: if λk → 1− and y ∈ A, then 0 � ϕ(y, λkf(y)) → ϕ(y, f(y))
by the left-continuity and monotonicity of ϕ(y, ·). Hence �ϕ(λkf) → �ϕ(f), by
the theorem of monotone convergence. So �ϕ is left-continuous in the sense
of Definition 2.1.1 (d).

Assume now that f ∈ L0(A, μ) is such that �ϕ(λf) = 0 for all λ > 0.
So for any k ∈ N we have ϕ(y, kf(y)) = 0 for almost all y ∈ A. Since N is
countable we deduce that ϕ(y, kf(y)) = 0 for almost all y ∈ A and all k ∈ N.
The convexity of ϕ and ϕ(y, 0) = 0 imply that ϕ(y, λf(y)) = 0 for almost all
y ∈ A and all λ > 0. Since limt→∞ ϕ(y, t) = ∞ for all y ∈ A, this implies
that |f(y)| = 0 for almost all y ∈ A, hence f = 0. So �ϕ is a semimodular
on L0(A, μ).



38 2 A Framework for Function Spaces

Assume now that ϕ is positive and that �ϕ(f) = 0. Then ϕ(y, f(y)) = 0
for almost all y ∈ A. Since ϕ is positive, f(y) = 0 for almost all y ∈ A, thus
f = 0. This proves that �ϕ is a modular on L0(A, μ). �	

Since every ϕ ∈ Φ(A, μ) generates a semimodular it is natural to study
the corresponding semimodular space.

Definition 2.3.11. Let ϕ ∈ Φ(A, μ) and let �ϕ be given by

�ϕ(f) :=
ˆ

A

ϕ(y, |f(y)|) dμ(y)

for all f ∈ L0(A, μ). Then the semimodular space

(L0(A, μ))�ϕ = {f ∈ L0(A, μ) : lim
λ→0

�ϕ(λf) = 0}
=

{
f ∈ L0(A, μ) : �ϕ(λf) <∞ for some λ > 0

}

will be called Musielak–Orlicz space and denoted by Lϕ(A, μ) or Lϕ, for short.
The norm ‖·‖�ϕ

is denoted by ‖·‖ϕ, thus

‖f‖ϕ = inf
{
λ > 0: �ϕ

(x
λ

)
� 1

}
.

The Musielak–Orlicz spaces are also called generalized Orlicz spaces. They
provide a good framework for many function spaces. Here are some examples.

Example 2.3.12. Let (A,Σ, μ) be a σ-finite, complete measure space.

(a) The (semi)modulars given in Example 2.1.4 (a)–(c) give rise to (weighted)
Lebesgue spaces.

(b) Let ϕ be a Φ-function. Then

�ϕ(f) =
ˆ

A

ϕ(|f(y)|) dμ(y)

is a semimodular on L0(A, μ). If ϕ is positive, then � is a modular on
L0(A, μ) and the space Lϕ(A, μ) is called an Orlicz space.
With suitable choices of ϕ, A and μ, this includes all modulars in
Example 2.1.4 except (f).

(c) Example 2.1.4 (f) is not a Musielak–Orlicz space.

As a semimodular space, Lϕ = (Lϕ, ‖·‖ϕ) is a normed space, which, in
fact, is complete.

Theorem 2.3.13. Let ϕ ∈ Φ(A, μ). Then Lϕ(A, μ) is a Banach space.
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Before we get to the proof of Theorem 2.3.13 we need to prove two useful
lemmas.

Lemma 2.3.14. Let ϕ ∈ Φ(A, μ) and μ(A) < ∞. Then every ‖·‖ϕ-Cauchy
sequence is also a Cauchy sequence with respect to convergence in measure.

Proof. Fix ε > 0 and let Vt := {y ∈ A : ϕ(y, t) = 0} for t > 0. Then Vt is
measurable. For all y ∈ A the function t �→ ϕ(y, t) is non-decreasing and
limt→∞ ϕ(y, t) = ∞, so Vt ↘ ∅ as t → ∞. Therefore, limk→∞ μ(Vk) =
μ(∅)=0, where we have used that μ(A) <∞. Thus, there exists K ∈ N such
that μ(VK) < ε. Note that if ϕ is positive then Vt = ∅ for all t > 0 and we
do not need this step in the proof.

For a μ-measurable set E ⊂ A define

νK(E) := �ϕ(K χE) =
ˆ

E

ϕ(y,K) dμ(y).

If E is μ-measurable with νK(E) = 0, then ϕ(y,K) = 0 for μ-almost every
y ∈ E. Thus μ(E \ VK) = 0 by the definition of VK . Hence, E is a μ|A\VK

-
null set, which means that the measure μ|A\VK

is absolutely continuous with
respect to νK .

Since μ(A \VK) � μ(A) <∞ and μ|A\VK
is absolutely continuous with res-

pect to νK , there exists δ ∈ (0, 1) such that νK(E) � δ implies μ(E \VK)� ε
(cf. [184, Theorem 30.B]). Since fk is a ‖·‖ϕ-Cauchy sequence, there exists
k0 ∈ N such that ‖K ε−1δ−1(fm − fk)‖ϕ � 1 for all m, k � k0. Assume in the
following m, k � k0, then by (2.1.5) and the norm-modular unit ball property
(Lemma 2.1.14)

�ϕ
(
K ε−1(fm − fk)

)
� δ�ϕ

(
K ε−1δ−1(fm − fk)

)
� δ.

Let us write Em,k,ε := {y ∈ A : |fm(y) − fk(y)| � ε}. Then

νK(Em,k,ε) =
ˆ

Em,k,ε

ϕ(y,K) dμ(y) � �ϕ
(
K ε−1(fm − fk)

)
� δ.

By the choice of δ, this implies that μ(Em,k,ε \ VK) � ε. With μ(VK) < ε
we have μ(Em,k,ε) � 2ε. Since ε > 0 was arbitrary, this proves that fk is a
Cauchy sequence with respect to convergence in measure.

If ‖fk‖ϕ→ 0, then as above there exists K ∈N such that μ({|fk|� ε})� 2ε
for all k � K. This proves fk → 0 in measure. �	
Lemma 2.3.15. Let ϕ ∈ Φ(A, μ). Then every ‖·‖ϕ-Cauchy sequence (fk) ⊂
Lϕ has a subsequence which converges μ-almost everywhere to a measurable
function f .
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Proof. Recall that μ is σ-finite. Let A =
⋃∞
i=1Ai with Ai pairwise disjoint

and μ(Ai) < ∞ for all i ∈ N. Then, by Lemma 2.3.14, (fk) is a Cauchy
sequence with respect to convergence in measure on A1. Therefore there
exists a measurable function f : A1 → K and a subsequence of fk which
converges to f μ-almost everywhere. Repeating this argument for every Ai
and passing to the diagonal sequence we get a subsequence (fkj ) and a
μ-measurable function f : A→K such that fkj → f μ-almost everywhere. �	

Let us now get to the proof of the completeness of Lϕ.

Proof of Theorem 2.3.13. Let (fk) be a Cauchy sequence. By Lemma 2.3.15
there exists a subsequence fkj and a μ-measurable function f : A → K such
that fkj → f for μ-almost every y ∈ A. This implies ϕ(y, |fkj (y) − f(y)|) → 0
μ-almost everywhere. Let λ > 0 and 0 < ε < 1. Since (fk) is a Cauchy
sequence, there exists K = K(λ, ε) ∈ N such that ‖λ(fm − fk)‖ϕ < ε for all
m, k � N , which implies �ϕ(λ(fm − fk)) � ε by Corollary 2.1.15. Therefore
by Fatou’s lemma

�ϕ
(
λ(fm − f)

)
=
ˆ

A

lim
j→∞

ϕ
(
y, λ|fm(y) − fkj (y)|

)
dμ(y)

� lim inf
j→∞

ˆ

A

ϕ
(
y, λ|fm(y) − fkj (y)|

)
dμ(y)

= lim inf
j→∞

�ϕ
(
λ(fm − fkj )

)

� ε.

So �ϕ(λ(fm − f)) → 0 for m → ∞ and all λ > 0 and ‖fk − f‖ϕ → 0 by
Lemma 2.1.9. Thus every Cauchy sequence converges in Lϕ, as was to be
shown. �	

The next lemma collects analogues of the classical Lebesgue integral
convergence results.

Lemma 2.3.16. Let ϕ ∈ Φ(A, μ) and fk, f, g ∈ L0(A, μ).

(a) If fk → f μ-almost everywhere, then �ϕ(f) � lim infk→∞ �ϕ(fk).
(b) If |fk| ↗ |f | μ-almost everywhere, then �ϕ(f) = limk→∞ �ϕ(fk).
(c) If fk → f μ-almost everywhere and |fk| � |g| μ-almost everywhere, and

�ϕ(λg) <∞ for every λ > 0, then fk → f in Lϕ.

These properties are called Fatou’s lemma (for the modular), monotone
convergence and dominated convergence, respectively.

Proof. By Lemma 2.3.4 the mappings ϕ(y, ·) are lower semicontinuous. Thus
Fatou’s lemma implies
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�ϕ(f) =
ˆ

A

ϕ(y, lim
k→∞

|fk(y)|) dμ(y)

�
ˆ

A

lim inf
k→∞

ϕ(y, |fk(y)|) dμ(y)

� lim inf
k→∞

ˆ

A

ϕ(y, |fk(y)|) dμ(y)

= lim inf
k→∞

�ϕ(fk).

This proves (a).
To prove (b) let |fk| ↗ |f |. Then by the left-continuity and monotonicity

of ϕ(y, ·), we have 0 � ϕ(·, |fk(·)|) ↗ ϕ(·, |f(·)|) almost everywhere. So, the
theorem of monotone convergence gives

�ϕ(f) =
ˆ

A

ϕ(y, lim
k→∞

|fk(y)|) dμ(y)

=
ˆ

A

lim
k→∞

ϕ(y, |fk(y)|) dμ(y)

= lim
k→∞

ˆ

A

ϕ(y, |fk(y)|) dμ(y)

= lim
k→∞

�ϕ(fk).

To prove (c) assume that fk → f almost everywhere, |fk| � |g|, and
�(λg) < ∞ for every λ > 0. Then |fk − f | → 0 almost everywhere, |f | � |g|
and |fk − f | � 2|g|. Since �ϕ(2λg) <∞, we can use the theorem of dominated
convergence to conclude that

lim
k→∞

�ϕ(λ|f − fk|) =
ˆ

A

ϕ
(
y, lim
k→∞

λ|f(y) − fk(y)|
)
dμ(y) = 0.

Since λ > 0 was arbitrary, Lemma 2.1.9 implies that fk → f in Lϕ. �	
Let us summarize a few additional properties of Lϕ. Properties (a), (b),

(c) and (d) of the next theorem are known as circularity, solidity, Fatou’s
lemma (for the norm), and the Fatou property, respectively.

Theorem 2.3.17. Let ϕ ∈ Φ(A, μ). Then the following hold.

(a) ‖f‖ϕ =
∥∥ |f | ∥∥

ϕ
for all f ∈ Lϕ.

(b) If f ∈ Lϕ, g ∈ L0(A, μ), and 0 � |g| � |f | μ-almost everywhere, then
g ∈ Lϕ and ‖g‖ϕ � ‖f‖ϕ.
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(c) If fk → f almost everywhere, then ‖f‖ϕ � lim infk→∞ ‖fk‖ϕ.
(d) If |fk| ↗ |f | μ-almost everywhere with fk ∈ Lϕ(A, μ) and supk ‖fk‖ϕ<∞,

then f ∈ Lϕ(A, μ) and ‖fk‖ϕ ↗ ‖f‖ϕ.

Proof. The properties (a) and (b) are obvious. Let us now prove (c).
So let fk → f μ-almost everywhere. There is nothing to prove for
lim infk→∞ ‖fk‖ϕ = ∞. Let λ > lim infk→∞ ‖fk‖ϕ. Then ‖fk‖ϕ < λ for large
k. Thus by the unit ball property �ϕ(fk/λ) � 1 for large k. Now Fatou’s
lemma for the modular (Lemma 2.3.16) implies �ϕ(f/λ) � 1. So ‖f‖ϕ � λ
again by the unit ball property, which implies ‖f‖ϕ � lim infk→∞ ‖fk‖ϕ.

It remains to prove (d). So let |fk| ↗ |f | μ-almost everywhere with
supk ‖fk‖ϕ < ∞. From (a) and (c) follows ‖f‖ϕ � lim infk→∞ ‖fk‖ϕ �
supk ‖fk‖ϕ <∞, which proves f ∈ Lϕ. On the other hand |fk| ↗ |f | and (b)
implies that ‖fk‖ϕ ↗ lim supk→∞ ‖fk‖ϕ � ‖f‖ϕ. Thus limk→∞ ‖fk‖ϕ =
‖f‖ϕ and ‖fk‖ϕ ↗ ‖f‖ϕ. �	

2.4 Uniform Convexity

In this section we study sufficient conditions for the uniform convexity of a
modular space X� and the Musielak–Orlicz space Lϕ. We first show that the
uniform convexity of the Φ-function implies that of the modular; and that
the uniform convexity of the semimodular combined with the Δ2-condition
implies the uniform convexity of the norm. The section is concluded by
some further properties of uniformly convex modulars. Let us start with the
Δ2-condition of the Φ-function and some implications.

Definition 2.4.1. We say that ϕ ∈ Φ(A, μ) satisfies the Δ2-condition if
there exists K � 2 such that

ϕ(y, 2t) � Kϕ(y, t)

for all y ∈ A and all t � 0. The smallest such K is called the Δ2-constant
of ϕ.

Analogously, we say that a semimodular � on X satisfies the Δ2-condition
if there exists K � 2 such that �(2f) � K �(f) for all f ∈ X�. Again, the
smallest such K is called the Δ2-constant of �.

If ϕ ∈ Φ(A, μ) satisfy the Δ2-condition, then �ϕ satisfies the Δ2-condition
with the same constant. Moreover, �ϕ satisfies the weak Δ2-condition for
modulars, so by Lemma 2.1.11 modular convergence and norm convergence
are equivalent; and E ⊂ Lϕ(Ω, μ) is bounded with respect to the norm if and
only if it is bounded with respect to the modular, i.e. supf∈E ‖f‖ <∞ if and
only if supf∈E �ϕ(f) <∞.

Corollary 2.1.15 shows that a small norm implies a small modular. The
following result shows the reverse implication.
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Lemma 2.4.2. Let � be a semimodular on X that satisfies the Δ2-condition.
Let K be the Δ2-constant of �. Then for every ε> 0 there exists δ= δ(ε,K)> 0
such that �(f) � δ implies ‖f‖� � ε.

Proof. For ε > 0 choose j ∈ N with 2−j � ε. Let δ := Kj and �(f) � δ. Then
�(2jf) � Kj�(f) � 1 and the unit ball property yields ‖f‖� � 2−j � ε. �	
Lemma 2.4.3. Let � be a semimodular on X that satisfies the Δ2-condition
with constant K. Then � is a continuous modular and for every ε > 0 there
exists δ = δ(ε,K) > 0 such that �(f) � 1−ε implies ‖f‖� � 1−δ for f ∈ X�.

Proof. If �(f) = 0, then �(2mf) � Km�(f) = 0, where K is the Δ2-constant
of ϕ. This proves f = 0, so � is a modular. We already know that � is left-
continuous, so it suffices to show �(x) = limλ→1+ �(λx). By monotonicity we
have �(x) � lim infλ→1+ �(λx). It follows by convexity of � that

�(af) � (2 − a)�(f) + (a− 1)�(2f) �
(
(2 − a) +K(a− 1)

)
�(f)

�
(
1 + (K − 1)(a− 1)

)
�(f)

for every a ∈ [1, 2]. Hence �(x) � lim infλ→1+ �(λx), which completes the
proof of continuity.

Let ε > 0 and f ∈ X� with �(f) � 1 − ε. Fix a = a(K, ε) ∈ (1, 2) such
that the right-hand side of the previous inequality is bounded by one. Then
�(af) � 1 and the unit ball property implies ‖af‖� � 1. The claim follows
with 1 − δ := 1

a . �	
In the previous sections we worked with general ϕ ∈ Φ(A, μ). The

corresponding Musielak–Orlicz spaces include the classical spaces Lp with
1 � p � ∞, see Example 2.1.8. Sometimes, however, it is better to work with
a subclass of Φ(A, μ), called N-functions. These functions will have better
properties (N stands for nice) but the special cases p = 1 and p = ∞ are
excluded. This corresponds to the experience that also in the classical case
the “borderline” cases p = 1 and p = ∞ are often treated differently.

Definition 2.4.4. A Φ-function ϕ is said to be an N-function if it is
continuous and positive and satisfies limt→0

ϕ(t)
t = 0 and limt→∞

ϕ(t)
t = ∞.

A function ϕ ∈ Φ(A, μ) is said to be a generalized N-function if ϕ(y, ·) is
for every y ∈ Ω an N-function.

If ϕ is a generalized N-function on (A, μ), we write ϕ ∈ N(A, μ) for short.
If Ω is an open subset of R

n and μ is the n-dimensional Lebesgue measure
we abbreviate ϕ ∈ N(Ω).

Definition 2.4.5. A function ϕ ∈ N(A, μ) is called uniformly convex if for
every ε > 0 there exists δ > 0 such that

|u− v| � εmax {u, v} or ϕ
(
y,
u+ v

2

)
�

(
1 − δ

)ϕ(y, u) + ϕ(y, v)
2

for all u, v � 0 and every y ∈ A.
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Remark 2.4.6. If ϕ(x, t) = tq with q ∈ (1,∞), then ϕ is uniformly convex.
To prove this, we have to show that for u, v � 0 the estimate |u− v| >
εmax {v, u} implies (u+v

2 )q � (1 − δ(ε))1
2 (uq + vq) with δ(ε) > 0 for every

ε > 0. Without loss of generality we can assume ε ∈ (0, 1
2 ). By homogeneity

it suffices to consider the case v = 1 and 0 � u � 1. So we have to show that
u ∈ [0, 1−ε) implies (1+u

2 )q � (1−δ(ε))1
2 (1+uq). Define f(τ) := 21−q (1+u)q

(1+uq) .
Then f is continuous on [0, 1] and has its maximum at 1. This proves as
desired f(u) � δ(ε) for all u ∈ [0, 1 − ε).

It follows by division with q that ϕ(x, t) = 1
q t
q with 1 < q < ∞ is also

uniformly convex.

Definition 2.4.5 is formulated for u, v � 0. However, the following lemma
shows that this can be relaxed to values in K.

Lemma 2.4.7. Let ϕ ∈ N(A, μ) be uniformly convex. Then for every ε2 > 0
there exists δ2 > 0 such that

|a− b| � ε2 max {|a|, |b|} or ϕ
(
y,

∣
∣∣
a+ b

2

∣
∣∣
)

�
(
1 − δ2

)ϕ(y, |a|) + ϕ(y, |b|)
2

.

for all a, b ∈ K and every y ∈ A.

Proof. Fix ε2 > 0. For ε := ε2/2 let δ > 0 be as in Definition 2.4.5. Let
|a− b| > ε2 max {|a|, |b|}. If

∣
∣|a| − |b|∣∣ > εmax {|a|, |b|}, then the claim fol-

lows by |a+ b| � |a| + |b| and choice of δ with δ2 = δ. So assume in the
following ||a| − |b|| � εmax {|a|, |b|}. Then

|a− b| > ε2 max {|a|, |b|} = 2εmax{|a|, |b|} � 2||a| − |b||.

Therefore,

∣
∣
∣
a+ b

2

∣
∣
∣
2

=
|a|2
2

+
|b|2
2

−
∣
∣
∣
a− b

2

∣
∣
∣
2

� |a|2
2

+
|b|2
2

− 3
4

∣∣
∣
a− b

2

∣∣
∣
2

−
( |a| − |b|

2

)2

=
( |a| + |b|

2

)2

− 3
4

∣∣
∣
a− b

2

∣∣
∣
2

.

Since |a− b| > ε2 max {|a|, |b|} � ε2(|a| + |b|)/2, it follows that

∣
∣
∣
a+ b

2

∣
∣
∣
2

�
(
1 − 3ε22

16

)( |a| + |b|
2

)2

.

Let δ2 := 1 −
√

1 − 3ε22
16 > 0, then |a+b2 | � (1 − δ2)

|a|+|b|
2 . This, (2.1.5) and

the convexity of ϕ imply
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ϕ
(
y,

∣
∣
∣
a+ b

2

∣
∣
∣
)

� (1 − δ2)ϕ
(
y,

|a| + |b|
2

)
� (1 − δ2)

ϕ(y, |a|) + ϕ(y, |b|)
2

. �	

Remark 2.4.8. If u, v∈K satisfies |a− b|� ε2 max {|a|, |b|} with ε2 ∈ (0, 1),
then |a−b|

2 � ε2
|a|+|b|

2 and by the convexity of ϕ follows

ϕ
(
y,

|a− b|
2

)
� ε2

ϕ(y, |a|) + ϕ(y, |b|)
2

. (2.4.9)

Therefore, we can replace the first alternative in Lemma 2.4.7 by the weaker
version (2.4.9).

We need the following concept of uniform convexity for the semimodular.

Definition 2.4.10. A semimodular � on X is called uniformly convex if for
every ε > 0 there exists δ > 0 such that

�

(
f − g

2

)
� ε

�(f) + �(g)
2

or �

(
f + g

2

)
� (1 − δ)

�(f) + �(g)
2

for all f, g ∈ X�.

Theorem 2.4.11. Let ϕ ∈ N(A, μ) be uniformly convex. Then �ϕ is uni-
formly convex.

Proof. Let ε2, δ2 > 0 be as in Lemma 2.4.7 and let ε := 2 ε2. There is nothing
to show if �ϕ(f) = ∞ or �ϕ(g) = ∞. So in the following let �ϕ(f), �ϕ(g) <∞,
which implies by convexity �(f+g

2 ), �(f−g2 ) <∞.
Assume that �ϕ(f−g2 ) > ε

�ϕ(f)+�ϕ(g)
2 . We show that

�ϕ

(f + g

2

)
�

(
1 − δ2ε

2

)�ϕ(f) + �ϕ(g)
2

,

which proves that �ϕ is uniformly convex. Define

E :=
{
y ∈ A : |f(y) − g(y)| > ε

2
max

{|f(y)|, |g(y)|}
}
.

It follows from Remark 2.4.8 that (2.4.9) holds for almost all y ∈ A \ E. In
particular,

�ϕ

(
χA\E

f − g

2

)
� ε

2
�ϕ(χA\Ef) + �ϕ(χA\Eg)

2
� ε

2
�ϕ(f) + �ϕ(g)

2
.
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This and �ϕ(f−g2 ) > ε
�ϕ(f)+�ϕ(g)

2 imply

�ϕ

(
χE

f − g

2

)
= �ϕ

(f − g

2

)
− �ϕ

(
χA\E

f − g

2

)
>
ε

2
�ϕ(f) + �ϕ(g)

2
.

(2.4.12)

On the other hand it follows by the definition of E and the choice of δ2 in
Lemma 2.4.7 that

�ϕ

(
χE

f + g

2

)
� (1 − δ2)

�ϕ(χEf) + �ϕ(χEg)
2

. (2.4.13)

We estimate

�ϕ(f) + �ϕ(g)
2

− �ϕ

(f + g

2

)
� �ϕ(χEf) + �ϕ(χEg)

2
− �ϕ

(
χE

f + g

2

)
,

where we have split the domain of the involved integrals into the sets E and
A \ E and have used 1

2 (ϕ(f) + ϕ(g)) − ϕ( f+g
2 ) � 0 on A \ E. This, (2.4.13),

the convexity and (2.4.12) imply

�ϕ(f) + �ϕ(g)
2

− �ϕ

(f + g

2

)
� δ2

�ϕ(χEf) + �ϕ(χEg)
2

� δ2�ϕ

(
χE

f − g

2

)

� δ2ε

2
�ϕ(f) + �ϕ(g)

2
. �	

The question arises if uniform convexity of the semimodular � implies the
uniform convexity of X�. This turns out to be true under the Δ2-condition.

Theorem 2.4.14. Let � be a uniformly convex semimodular on X that satis-
fies the Δ2-condition. Then the norm ‖·‖� on X� is uniformly convex. Hence,
X� is uniformly convex.

Proof. Fix ε > 0. Let x, y ∈ X with ‖x‖�, ‖y‖� � 1 and ‖x− y‖� > ε.
Then ‖x−y2 ‖ > ε

2 and by Lemma 2.4.2 there exists α = α(ε) > 0 such that
�(x−y2 ) > α. By the unit ball property we have �(x), �(y) � 1, so �(x−y2 ) >
α�(x)+�(y)2 . Since � is uniformly convex, there exists β = β(α) > 0 such that
�(x+y2 ) � (1 − β)�(x)+�(y)2 � 1 − β. Now Lemma 2.4.3 implies the existence
of δ = δ(K,β) > 0 with ‖x+y2 ‖

�
� 1 − δ. This proves the uniform convexity

of ‖·‖�. �	
Remark 2.4.15. If ϕ ∈ N(A, μ) is uniformly convex and satisfies the
Δ2-condition, then it follows by the combination of Theorems 2.4.11 and
2.4.14 that the norm ‖·‖ϕ of Lϕ(A, μ) is uniformly convex. Hence, Lϕ(A, μ)
is also uniformly convex.
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We will later need that the sum of uniformly convex semimodulars is again
uniformly convex.

Lemma 2.4.16. If �1, �2 are uniformly convex semimodulars on X, then
� := �1 + �2 is uniformly convex.

Proof. If ε > 0, then there exists δ > 0 such that

�j

(
f − g

2

)
� ε

�j(f) + �j(g)
2

or �j

(
f + g

2

)
� (1 − δ)

�j(f) + �j(g)
2

for j = 1, 2. We show that

�

(
f − g

2

)
� 2 ε

�(f) + �(g)
2

or �

(
f + g

2

)
� (1 − δε)

�(f) + �(g)
2

,

since this proves the uniform convexity of �. Fix f and g and assume that
�(f−g2 )> 2 ε�(f)+�(g)

2 . Without loss of generality, we can assume that �1(f−g2 )
� �2(f−g2 ) for this specific choice of f and g. Therefore, �1(f−g2 )>ε�(f)+�(g)

2 �
ε�1(f)+�1(g)

2 . So the choice of δ implies

�1

(
f + g

2

)
� (1 − δ)

�1(f) + �1(g)
2

.

Taking into account the convexity of �2, we obtain

�

(
f + g

2

)
� �(f) + �(g)

2
− δ

�1(f) + �1(g)
2

.

Since �1(f)+�1(g)
2 � �1(f−g2 ) > ε�(f)+�(g)

2 , this implies

�

(
f + g

2

)
� (1 − δε)

�(f) + �(g)
2

. �	

It is well known that on uniformly convex spaces weak convergence
xk ⇀ x combined with convergence of the norms ‖xk‖ → ‖x‖ implies strong
convergence xk → x. The following lemma is in this spirit.

Lemma 2.4.17. Let � be a uniformly convex semimodular on X. Let xk, x ∈
X� such that xk ⇀ x, �(xk) → �(x) and �(x) <∞. Then

�
(xk − x

2

)
→ 0.
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Proof. We proceed by contradiction. Assume that the claim is wrong and
there exists ε > 0 and a subsequence xkj such that

�
(xkj − x

2

)
> ε (2.4.18)

for all j ∈ N. Since � is uniformly continuous, there exists δ > 0 such that

�
(xk − x

2

)
� ε or �

(xk + x

2

)
� (1 − δ)

�(xk) + �(x)
2

.

In particular, our subsequence always satisfies the second alternative. Together
with 1

2 (xk +x) ⇀ x, the weak lower semicontinuity of � (Theorem 2.2.8) and
�(xk) → �(x) implies that

�(x) � lim inf
j→∞

�
(xkj + x

2

)
� (1 − δ) lim inf

j→∞
�(xkj ) + �(x)

2
= (1 − δ)�(x).

Using �(x) < ∞ we get �(x) = 0. It follows by convexity and �(xk) → �(x)
that

�
(xk − x

2

)
� �(xk) + �(x)

2
→ �(x) = 0

for n→ ∞. This contradicts (2.4.18). �	
Remark 2.4.19. If � satisfies the (weak) Δ2-condition, then under the con-
ditions of the previous lemma, �(λ(xk − x)) → 0 for all λ > 0 and xk → x in
X� by Lemma 2.1.11.

2.5 Separability

We next prove basic properties of Musielak–Orlicz spaces that require some
additional structure. Since these properties do not even hold for the full range
p ∈ [1,∞] of classical Lebesgue spaces, it is clear that some restrictions are
necessary. In this section we consider separability.

We first define some function classes related to Lϕ. The set Eϕ of finite
elements will be later important in the approximability by simple functions,
see Theorem 2.5.9.

Definition 2.5.1. Let ϕ ∈ Φ(A, μ). The set

LϕOC := LϕOC(A, μ) := {f ∈ Lϕ : �ϕ(f) <∞} (2.5.2)
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is called the Musielak–Orlicz class. Let

Eϕ := Eϕ(A, μ) := {f ∈ Lϕ : �ϕ(λf) <∞ for all λ > 0}. (2.5.3)

The elements of Eϕ(A, μ) are called finite.

Let us start with a few examples:
(a) Let ϕ(y, t) = tp with 1 � p <∞. Then Eϕ = LϕOC = Lϕ = Lp.
(b) Let ϕ(y, t) = ∞ · χ(1,∞)(t). Then

Eϕ = {0},
LϕOC = {f : |f | � 1 almost everywhere},
Lϕ = L∞.

(c) Let ϕ(y, t) = exp(t) − 1 and Ω = (0, 1). Then ϕ ∈ Φ(Ω) is positive and
continuous but Eϕ �= LϕOC �= Lϕ. Indeed, if f :=

∑∞
k=1

k
2χ(2−k,2−k+1),

then f ∈ LϕOC \ Eϕ and 2f ∈ Lϕ \ LϕOC .

By definition of Eϕ, LϕOC , and Lϕ it is clear that Eϕ ⊂ LϕOC ⊂ Lϕ.
Moreover, by convexity of ϕ the set LϕOC is convex and the sets Eϕ and Lϕ

are linear subspaces of L0. There is a special relation of Eϕ and Lϕ to LϕOC :
Eϕ is the biggest vector space in LϕOC and Lϕ is the smallest vector space
in L0 containing LϕOC .

In some cases the inclusions Eϕ ⊂ LϕOC ⊂ Lϕ are strict and in other cases
equality holds. In fact, it is easily seen that Eϕ = LϕOC = Lϕ is equivalent
to the implication f ∈ LϕOC ⇒ 2f ∈ LϕOC . The Δ2-condition (see Defini-
tion 2.4.1) implies that �ϕ(2mf) � Km�ϕ(f), where K is the Δ2-constant,
from which we conclude that

Eϕ(A, μ) = LϕOC(A, μ) = Lϕ(A, μ).

Remark 2.5.4. The set Eϕ is a closed subset of Lϕ. Indeed, let fk → f
in Lϕ with fk ∈ Eϕ. For λ > 0 we have �ϕ(2λ(fk − f)) → 0 as k → ∞.
In particular, �ϕ(2λ(fkλ

− f)) � 1 for some kλ. By convexity �ϕ(λf) �
1
2�ϕ

(
2λ(fkλ

− f)
)

+ 1
2�ϕ(2λfkλ

) � 1
2 + 1

2�ϕ(2λfkλ
) < ∞, which shows that

f ∈ Eϕ.

In the approximation of measurable functions it is very useful to work with
simple functions. To be able to approximate a function f by simple functions
we have to assume an additional property of ϕ:

Definition 2.5.5. A function ϕ ∈ Φ(A, μ) is called locally integrable on A if
�ϕ(tχE) <∞ for all t � 0 and all μ-measurable E ⊂ A with μ(E) <∞.

Note that local integrability in the previous definition differs from the one
used in L1

loc, where we assume integrability over compact subsets.
If ϕ ∈ Φ(A, μ) is locally integrable, then the set of simple functions S(A, μ)

is contained in Eϕ. Actually, the property S(A, μ) ⊂ Eϕ is equivalent to the
local integrability of ϕ.
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Example 2.5.6. Let ϕ ∈ Φ(A, μ) with ϕ(y, t) = ψ(t) where ψ is a contin-
uous Φ-function. Then ϕ is locally integrable. Indeed, due to the continuity
we know that t �→ ψ(t) is everywhere finite on [0,∞). Therefore, �ϕ(tχE) =
μ(E)ψ(t) <∞ for all t � 0 and μ(E) <∞.

Proposition 2.5.7. Let ϕ ∈ Φ(A, μ) be locally integrable. Then for every
λ > 0 and ε > 0 there exists δ > 0 such that μ(E) � δ implies �ϕ(λχE) � ε
and ‖χE‖ϕ � 1

λ .

Proof. We begin with the proof of �ϕ(λχE) � ε by contradiction. Assume
to the contrary that there exist λ > 0 and ε > 0 and a sequence (Ek)
such that μ(Ek) � 2−k and �ϕ(λχEk

) > ε. Let Gk :=
⋃∞
m=k Em, and note

that μ(Gk) �
∑∞

m=k 2−m = 21−k → 0 as k → ∞. Since ϕ is locally inte-
grable and μ(G1)� 1, we have �ϕ(λχG1) <∞. Moreover, λχGk

� λχG1 and
λχGk

→ 0 almost everywhere. Thus, we conclude by dominated convergence
that �ϕ(λχGk

) → 0. This contradicts �ϕ(λχGk
) � �ϕ(λχEk

) > ε for every k.
The claim ‖χE‖ϕ � 1

λ follows from �ϕ(λχE) � ε by the choice ε = 1 and
the unit ball property. �	
Remark 2.5.8. If f ∈ Lϕ has the property that ‖χEk

f‖ϕ → 0 if Ek↘∅,
then we say that f has absolutely continuous norm. If follows easily by
dominated convergence (Lemma 2.3.16) that every f ∈ Eϕ has absolutely
continuous norm.

Theorem 2.5.9. Let ϕ ∈ Φ(A, μ) be locally integrable and let S := S(A, μ)
be the set of simple functions. Then S

‖·‖ϕ = Eϕ(A, μ).

Proof. The local integrability implies that S ⊂ Eϕ. Since Eϕ is closed by
Remark 2.5.4, it suffices to show that every f ∈ Eϕ is in the closure of S.
Let f ∈ Eϕ with f � 0. Since f ∈ L0(A), there exist fk ∈ S with 0 � fk ↗ f
almost everywhere. So fk → f in Lϕ by the theorem of dominated con-
vergence (Lemma 2.3.16). Thus, f is in the closure of S. If we drop the
assumption f � 0, then we split x into positive and negative parts (real and
imaginary parts) which belong again to Eϕ. �	

We now investigate the problem of separability of Eϕ. Let (A,Σ, μ) be
a σ-finite, complete measure space. Here, we need the notion of separable
measures: recall that a measure μ is called separable if there exists a sequence
(Ek) ⊂ Σ with the following properties:

(a) μ(Ek) <∞ for all k ∈ N.
(b) For every E ∈ Σ with μ(E) < ∞ and every ε > 0 there exists an index

k such that μ(E�Ek) < ε, where � denotes the symmetric difference
defined through E�Ek := (E \ Ek) ∪ (Ek \ E).

For instance the Lebesgue measure on R
n and the counting measure on Z

n

are separable. Recall that a Banach space is separable if it contains a dense,
countable subset.
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Theorem 2.5.10. Let ϕ ∈ Φ(A, μ) be locally integrable and let μ be separa-
ble. Then Eϕ(A, μ) is separable.

Proof. Let S0 be the set of all simple functions g of the form g =
∑k

i=1 aiχEi

with ai ∈ Q and Ei is as in the definition of a separable measure. By Theorem
2.5.9 it suffices to prove that S0 is dense in S. Let f ∈ S. Then we can write
f in the form f =

∑k
i=1 biχBi with bi ∈ R, Bi ∈ Σ pairwise disjoint and

μ(Bi) < ∞. Let λ > 0 be arbitrary and define b := max1�i�k |bi|. Since
ϕ is locally integrable, we know by Proposition 2.5.7 that the integral of
y �→ ϕ(y, 4kλb) is small over small sets. Hence, by the separability of μ we
find measurable sets Ej1 , . . . , Ejk of finite measure such that

ˆ

Eji
�Bi

ϕ(y, 4kλb) dμ(y) � 1.

Let B :=
⋃k
i=1Bi. Then

´
B ϕ(y, 2λη) dμ(y) → 0 for η → 0, since μ(B) < ∞

and ϕ is locally integrable. Let δ > 0 be such that
´
B
ϕ(y, 2λδ) dμ(y) � 1.

Choose rational numbers a1, . . . , ak such that |bi − ai| < δ and |ai| � 2b for
i = 1, . . . , k. Let g :=

∑k
i=1 ai χEji

. Then

|f − g| =
∣
∣
∣∣

k∑

i=1

(bi − ai)χBi

∣
∣
∣∣ +

∣
∣
∣∣

k∑

i=1

ai
(
χBi − χEji

)
∣
∣
∣∣

�
k∑

i=1

|bi − ai|χBi +
k∑

i=1

|ai|χEji
�Bi

� δ χB +
k∑

i=1

2b χEi�Bi .

Hence, by the previous estimate and convexity,

�ϕ
(
λ(f − g)

)
� 1

2
�ϕ

(
2λδ χB

)
+

1
2k

k∑

i=1

�ϕ

(
4kλb χEi�Bi

)

=
1
2

ˆ

B

ϕ(y, 2λδ) dμ(y) +
1
2k

k∑

i=1

ˆ

Ei�Bi

ϕ(y, 4kλb) dμ(y).

The right-hand side of the previous estimate is at most 1 and so ‖f − g‖ϕ � 1
λ

by the unit ball property. Since λ > 0 was arbitrary, this completes the proof.
�	
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2.6 Conjugate Φ-Functions

In this section we specialize the results from Sect. 2.2 Conjugate modulars
and dual semimodular spaces to Φ-functions and generalized Φ-functions.
Apart from the general results, we are also able to prove stronger results in
this special case.

By Lemma 2.3.2 we know that every Φ-function defines (by even extension)
a semimodular on R. This motivates to transfer the definition of a conjugate
semimodular in a point-wise sense to generalized Φ-functions:

Definition 2.6.1. Let ϕ ∈ Φ(A, μ). Then for any y ∈ A we denote by ϕ∗(y, ·)
the conjugate function of ϕ(y, ·) which is defined by

ϕ∗(y, u) = sup
t�0

(
tu− ϕ(y, t)

)

for all u � 0 and y ∈ Ω.

This definition applies in particular in the case when ϕ is a (non-generalized)
Φ-function, in which case

ϕ∗(u) = sup
t�0

(
tu− ϕ(t)

)

concurs with the Legendre transformation of ϕ. By definition of ϕ∗,

tu � ϕ(t) + ϕ∗(u) (2.6.2)

for every t, u � 0. This inequality is called Young’s inequality. If ϕ is a
Φ-function and �(t) := ϕ(|t|) is its even extension to R, then �∗(t) = ϕ∗(|t|)
for all t ∈ R.

As a special case of Theorem 2.2.6 we have

Corollary 2.6.3. Let ϕ ∈ Φ(A, μ). Then (ϕ∗)∗ = ϕ. In particular,

ϕ(y, t) = sup
u�0

(
tu− ϕ∗(y, u)

)

for all y ∈ Ω and all t � 0.

Lemma 2.6.4. Let ϕ, ψ be Φ-functions.

(a) The estimate ϕ(t) � ψ(t) holds for all t � 0 if and only if ψ∗(u) � ϕ∗(u)
for all u � 0.

(b) Let a, b > 0. If ψ(t) = aϕ(bt) for all t � 0, then ψ∗(u) = aϕ∗( uab ) for all
u � 0.
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Proof. We begin with the proof of (a). Let ϕ(t) � ψ(t) for all t � 0. Then

ψ∗(u) = sup
t�0

(
tu− ψ(t)

)
� sup

t�0

(
tu− ϕ(t)

)
= ϕ∗(u)

for all u � 0. The reverse claim follows using ϕ∗∗ = ϕ and ψ∗∗ = ψ by
Corollary 2.6.3. Let us now prove (b). Let a, b > 0 and ψ(t) = aϕ(bt) for all
t � 0. Then

ψ∗(u) = sup
t�0

(
tu− ψ(t)

)
= sup

t�0

(
tu− aϕ(bt)

)
= sup

t�0
a
(
t
u

ab
− ϕ(t)

)

= aψ∗
( u

ab

)

for all u � 0. �	
The following result is the generalization of the classical Hölder inequality´ |f ||g| dμ � ‖f‖q‖g‖q′ to the Musielak–Orlicz spaces. The extra constant 2

cannot be omitted.

Lemma 2.6.5 (Hölder’s inequality). Let ϕ ∈ Φ(A, μ). Then

ˆ

A

|f | |g|dμ(y) � 2‖f‖ϕ ‖g‖ϕ∗

for all f ∈ Lϕ(A, μ) and g ∈ Lϕ
∗
(A, μ).

Proof. Let f ∈ Lϕ and g ∈ Lϕ
∗
. The claim is obvious for f = 0 or g = 0, so we

can assume f �= 0 and g �= 0. Due to the unit ball property, �ϕ(f/‖f‖ϕ) � 1
and �ϕ∗(g/‖g‖ϕ∗) � 1. Thus, using Young’s inequality (2.6.2), we obtain

ˆ

A

|f(y)|
‖f‖ϕ

|g(y)|
‖g‖ϕ∗

dμ(y) �
ˆ

A

ϕ
(
y,

|f(y)|
‖f‖ϕ

)
+ ϕ∗

(
y,

|g(y)|
‖g‖ϕ∗

)
dμ(y)

= �ϕ(f/‖f‖ϕ) + �ϕ∗(g/‖g‖ϕ∗)

� 2.

Multiplying through by ‖f‖ϕ‖g‖ϕ∗ yields the claim. �	
Let us recall the definitions of N-function and generalized N-function from

Definition 2.4.4. A Φ-function ϕ is said to be an N-function if it is continuous
and positive and satisfies limt→0

ϕ(t)
t = 0 and limt→∞

ϕ(t)
t = ∞. A function

ϕ ∈ Φ(A, μ) is said to be a generalized N-function if ϕ(y, ·) is for every y ∈ Ω
an N-function.

Note that by continuity N-functions only take values in [0,∞). Let
ϕ ∈ N(A, μ) be an N-function. As was noted in (2.3.3), the function has
a right-derivative, denoted by ϕ′(y, ·), and
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ϕ(y, t) =

tˆ

0

ϕ′(y, τ) dτ

for all y ∈ A and all t � 0. The right-derivative ϕ′(y, ·) is non-decreasing and
right-continuous.

Lemma 2.6.6. Let ϕ be an N-function. Then

t

2
ϕ′

( t
2

)
� ϕ(t) � tϕ′(t)

for all t � 0

Proof. Using the monotonicity of ϕ′ we get

ϕ(t) =

tˆ

0

ϕ′(τ) dτ �
tˆ

0

ϕ′(t) dτ = tϕ′(t),

ϕ(t) =

tˆ

0

ϕ′(τ) dτ �
tˆ

t/2

ϕ′(t/2) dτ =
t

2
ϕ′

( t
2

)

for all t � 0. �	
Remark 2.6.7. If ϕ is a generalized N-function, which satisfies the Δ2-
condition (Definition 2.4.1), then Lemma 2.6.6 implies ϕ(y, t) ≈ ϕ′(y, t)t
uniformly in y ∈ A and t � 0.

Let ϕ ∈ N(A, μ). Then we already know that ϕ′(y, ·) is for any y ∈ A non-
decreasing right-continuous, ϕ′(y, 0) = 0, and limt→∞ ϕ′(y, t) = ∞. Define

b(y, u) := inf {t � 0: ϕ′(y, t) > u}.

Then b(y, ·) has the same properties, i.e. b(y, ·) is for any y ∈ A non-
decreasing, right-continuous, b(y, 0) = 0, and limt→∞ b(y, t) = ∞. The
function b(y, ·) is the right-continuous inverse of ϕ′(y, ·) and we therefore
denote it by (ϕ′)−1(y, u). It is easy to see that the right-continuous inverse
of (ϕ′)−1 is again ϕ′, i.e. ((ϕ′)−1)−1 = ϕ′. The function (ϕ′)−1 is important,
since we can use it to represent the conjugate function ϕ∗.

Theorem 2.6.8. If ϕ ∈ N(A, μ), then ϕ∗ ∈ N(A, μ) and (ϕ∗)′ = (ϕ′)−1. In
particular,

ϕ∗(y, t) =

tˆ

0

(ϕ′)−1(y, τ) dτ

for all y ∈ A and t � 0.
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Proof. It suffices to prove the claim point-wise, and thus we may assume
without loss of generality that ϕ(y, t) is independent of y, i.e. an N-function.

It is easy to see that ϕ′ is non-decreasing, right-continuous and satisfies
(ϕ′)−1(0) = 0, (ϕ′)−1(t) > 0 for t > 0, and limt→∞(ϕ′)−1(t) = ∞. Thus,

ψ(t) :=

tˆ

0

(ϕ′)−1(τ) dτ

for t � 0 defines an N-function. In particular, ϕ and ψ are finite.
Note that σ < ϕ′(τ) is equivalent to (ϕ′)−1(σ) < τ . Hence, the sets

{
(τ, σ) ∈ [0,∞) × [0,∞) : σ < ϕ′(τ)

}

{
(τ, σ) ∈ [0,∞) × [0,∞) : (ϕ′)−1(σ) � τ

}

are complementary with respect to [0,∞)×[0,∞). Therefore, we can estimate
with the help of the theorem of Fubini

0 � tu =

tˆ

0

û

0

dσ dτ

=
¨

{0�τ�t,σ�u : 0�σ<ϕ′(τ)}

dσ dτ +
¨

{0�τ�t,0�σ�u : (ϕ′)−1(σ)�τ}

dσ dτ

=

tˆ

0

min {u,ϕ′(τ)}ˆ

0

dσ dτ +

uˆ

0

min {t,(ϕ′)−1(σ)}ˆ

0

dτ dσ

�
tˆ

0

ϕ′(τ) dτ +

uˆ

0

(ϕ′)−1(σ) dσ

= ϕ(t) + ψ(u).

If u = ϕ′(t) or t = (ϕ′)−1(u), then min {u, ϕ′(τ)} = ϕ′(τ) and
min{t, (ϕ′)−1(σ)} = (ϕ′)−1(σ) in the integrals of the third line. So in this
case we have equality in the penultimate step. Since ϕ∗(u) = supt(ut−ϕ(t))
it follows that ϕ∗ = ψ. �	

Remark 2.6.9. Let ϕ be an N-function. Then it follows from the previous
proof that the right-derivative (ϕ∗)′ of ϕ∗ satisfies (ϕ∗)′ = (ϕ′)−1 for all
t � 0. Young’s inequality tu � ϕ(t) + ϕ∗(u) holds with equality if u = ϕ′(t)
or t = (ϕ′)−1(u).
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Theorem 2.6.8 enables us to calculate the conjugate function of N-functions.
Let us present three examples:

(a) Let ϕ(t) = et − t − 1. Then ϕ′(t) = et − 1 and (ϕ∗)′(u) = (ϕ′)−1(u) =
log(1 + u). Integration over u implies ϕ∗(u) = (1 + t) log(1 + t) − t.

(b) Let ϕ(t) = 1
p t
p for 1 < p < ∞. Then ϕ′(t) = tp−1 and (ϕ∗)′(u) =

(ϕ′)−1(u) = u
1

p−1 = up
′−1 with 1

p + 1
p′ = 1. Integration over u implies

ϕ∗(u) = 1
p′ u

p′ .
(c) Let ϕ(t) = tp for 1 < p < ∞. Then ϕ′(t) = ptp−1 and (ϕ∗)′(u) =

(ϕ′)−1(u) = (u/p)
1

p−1 = p
1

1−p up
′−1 with 1

p + 1
p′ = 1. Integration over u

implies ϕ∗(u) = p
1

1−p 1
p′ u

p′ = p−p
′
(p− 1)up

′
.

Remark 2.6.10. We have seen that the supremum in Remark 2.6.9 is
attained for any N-function ϕ. However, this is not the case if ϕ is only
a Φ-function. Indeed, if ϕ(t) = t, then ϕ∗(u) = ∞ · χ{u>1}(u). However,
tu = ϕ1(t) + (ϕ1)∗(u) only holds if u = 1 and t � 0 or if u ∈ [0, 1] and t = 0.

There are a lot of nice estimates for N-functions. Let us collect a few.

Lemma 2.6.11. Let ϕ be an N-function. Then for all t � 0 and all ε > 0

t � ϕ−1(t)(ϕ∗)−1(t) � 2t, (2.6.12)

(ϕ∗)′
(
ϕ′(t) − ε

)
� t � (ϕ∗)′

(
ϕ′(t)

)
, (2.6.13)

ϕ′((ϕ∗)′(t) − ε
)

� t � ϕ′((ϕ∗)′(t)
)
, (2.6.14)

ϕ∗(ϕ′(t)
)

� tϕ′(t), (2.6.15)

ϕ∗
(ϕ(t)

t

)
� ϕ(t), (2.6.16)

where we assumed t > 0 in (2.6.16).

Proof. We first note that (ϕ∗)′ = (ϕ′)−1 by Remark 2.6.9. Let t � 0 and
ε > 0. The first part of (2.6.13) follows from

(ϕ∗)′
(
ϕ′(t) − ε

)
= inf {a � 0: ϕ′(a) > ϕ′(t) − ε} � t.

The second part of (2.6.13) follows from

ϕ′((ϕ∗)′(t)
)

= ϕ′( inf {a � 0: ϕ′(a) > t})

= inf {ϕ′(a) � 0: ϕ′(a) > t} � t,

where we have used that ϕ′ is right-continuous and non-decreasing.
Now, (2.6.14) is a consequence of (2.6.13) using (ϕ∗)∗ = ϕ. By Young’s

inequality (2.6.2) we estimate

ϕ−1(t)(ϕ∗)−1(t) � t+ t = 2t.
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With Lemma 2.6.6 for ϕ and ϕ∗ and (2.6.13) we deduce

ϕ∗(ϕ′(t)
)

� (ϕ∗)′(ϕ′(t))ϕ′(t) � tϕ′(t),

ϕ∗
(ϕ(t)

t
− ε

)
�

(ϕ(t)
t

− ε
)
(ϕ∗)′

(ϕ(t)
t

− ε
)

� ϕ(t)
t

(ϕ∗)′
(
ϕ′(t) − ε

)
� ϕ(t).

Letting ε → 0 in the latter inequality yields (2.6.16). Setting t = ϕ−1(u)
in (2.6.16) gives

ϕ∗
( u

ϕ−1(u)

)
� u.

From this it follows that u � ϕ−1(u)(ϕ∗)−1(u). �	
Note that if ϕ and ϕ∗ satisfy the Δ2-condition (Definition 2.4.1), than all

the “�”-signs in Lemma 2.6.11 can be replaced by “≈”-signs.

2.7 Associate Spaces and Dual Spaces

In the case of classical Lebesgue spaces it is well known that there is a natural
embedding of Lq

′
into (Lq)∗ for 1 � q � ∞ and 1

q + 1
q′ = 1. In particular,

for every g ∈ Lq
′
the mapping Jg : f �→ ´ fg dμ is an element of (Lq)∗. Even

more, if 1 � q < ∞, then the mapping g �→ Jg is an isometry from Lq
′

to (Lq)∗. Besides the nice characterization of the dual space, this has the
consequence that

‖f‖q = sup
‖g‖q′�1

ˆ
f g dμ

for every 1 � q � ∞. This formula is often called the norm conjugate formula.
The cases q = 1 and q = ∞ need special attention, since (L1)∗ = L∞ but
(L∞)∗ �= L1. However, the isometry (L1)∗ = L∞ suffices for the proof of the
formula when q = 1 and q = ∞.

In the case of Musielak–Orlicz spaces we have a similar situation. We will
see that Lϕ

∗
can be naturally embedded into (Lϕ)∗. Moreover, the mapping

g �→ Jg is an isomorphism under certain assumptions on ϕ, which exclude for
example the case Lϕ = L∞. The mapping is not an isometry but its operator
norm lies in the interval [1, 2].

The norm conjugate formula above requires more attention in the case of
Musielak–Orlicz spaces. Certainly, we cannot expect equality but only equiv-
alence up to a factor of 2. Since the space Lϕ can partly behave like L1 and
partly like L∞, there are cases, where (Lϕ)∗ �= Lϕ

∗
and Lϕ �= (Lϕ

∗
)∗. This is

in particular the case for our generalized Lebesgue spaces Lp(·) (see Chap. 3)
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when p take the values 1 and ∞ on some subsets. To derive an equivalent
of the norm conjugate formula for Lϕ, we need to study the associate space,
which is a closed subspaces of (Lϕ)∗ generated by measurable functions.

Definition 2.7.1. Let ϕ ∈ Φ(A, μ). Then

(
Lϕ(A, μ)

)′ := {g ∈ L0(A, μ) : ‖g‖(Lϕ(A,μ))′ <∞}

with norm

‖g‖(Lϕ(A,μ))′ := sup
f∈Lϕ : ‖f‖ϕ�1

ˆ

A

|f | |g| dμ,

will be called the associate space of Lϕ(A, μ) or (Lϕ)′ for short.

In the definition of the norm of the associate space (Lϕ)′ it suffices to take
the supremum over simple function from Lϕ:

Lemma 2.7.2. Let ϕ ∈ Φ(A, μ). Then

‖g‖(Lϕ)′ = sup
f∈S∩Lϕ : ‖f‖ϕ�1

ˆ

A

|f | |g| dμ

for all g ∈ (Lϕ(A, μ))′.

Proof. For g ∈ (Lϕ)′ let |||g||| in this proof denote the right-hand side of the
expression in the lemma. It is obvious that |||g|||ϕ � ‖g‖(Lϕ)′ . To prove the
reverse let f ∈ Lϕ with ‖f‖ϕ � 1. We have to prove that

´ |f | |g|dμ � |||g|||.
Let (fk) be a sequence of simple functions such that 0 � fk ↗ |f | almost
everywhere. In particular, fk ∈ S(A, μ) ∩ Lϕ and ‖fk‖ϕ � ‖f‖ϕ � 1, since
Lϕ is solid (Theorem 2.3.17 (b)). Since 0 � fk|g| ↗ |f ||g|, we can conclude
by the theorem of monotone convergence and the definition of |||g||| that

ˆ
|f ||g|dμ = lim

k→∞

ˆ
fk|g|dμ � |||g|||.

The claim follows by taking the supremum over all possible f . �	
As an immediate consequence of Hölder’s inequality (Lemma 2.6.5) we

have
Lϕ

∗
(A, μ) ↪→ (Lϕ(A, μ))′ and

‖g‖(Lϕ)′ � 2 ‖g‖ϕ∗

for every g ∈ Lϕ
∗
(A, μ).
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If g ∈ (Lϕ)′ and f ∈ Lϕ, then fg ∈ L1 by definition of the associate space.
In particular, the integral

´
fg dμ is well defined and

∣
∣
∣
∣

ˆ
fg dμ

∣
∣
∣
∣ � ‖g‖(Lϕ)′‖f‖ϕ.

Thus f �→ ´ fg dμ defines an element of the dual space (Lϕ)∗ with ‖g‖(Lϕ)∗ �
‖g‖(Lϕ)′ . Therefore, for every g ∈ (Lϕ)′ we can define an element Jg ∈ (Lϕ)∗

by

Jg : f �→
ˆ
fg dμ (2.7.3)

and we have ‖Jg‖(Lϕ)∗ � ‖g‖(Lϕ)′ . Since Lϕ is circular (Theorem 2.3.17 (a)),
we even have

‖Jg‖(Lϕ)∗ = sup
f∈Lϕ : ‖f‖ϕ�1

∣
∣
∣
∣

ˆ
fg dμ

∣
∣
∣
∣

= sup
f∈Lϕ : ‖f‖ϕ�1

ˆ
|f | |g|dμ = ‖g‖(Lϕ)′

for every g ∈ (Lϕ)′. Obviously, g �→ Jg is linear. Hence, g �→ Jg defines an
isometric, natural embedding of (Lϕ)′ ↪→ (Lϕ)∗. So the associate space (Lϕ)′

is isometrically isomorphic to a closed subset of the dual space (Lϕ)∗ and
therefore itself a Banach space. It is easy to see that (Lϕ)′ is circular and
solid. We have the following inclusions of Banach spaces

Lϕ
∗
↪→ (Lϕ)′ ↪→ (Lϕ)∗.

Under rather few assumptions on ϕ, we will see that the first inclusion is
surjective and therefore an isomorphism even if Lϕ

∗
is not isomorphic to the

dual space (Lϕ)∗. Therefore, the notion of the associate space is more flexible
than that of the dual space.

The mapping g �→ Jg can also be used to define natural embeddings

Lϕ = Lϕ
∗∗
↪→ (Lϕ

∗
)′ ↪→ (Lϕ

∗
)∗.

if we replace above ϕ by ϕ∗ and use ϕ = ϕ∗∗ (Corollary 2.6.3).
Since Lϕ

∗
↪→ (Lϕ)′ ↪→ (Lϕ)∗ via the embedding g �→ Jg, we can evalu-

ate the conjugate semimodular (�ϕ)∗ at Jg for every g ∈ Lϕ
∗
. As a direct

consequence of Young’s inequality (2.6.2) we have

(�ϕ)∗(Jg) = sup
f∈Lϕ

(
Jg(f) − �ϕ(f)

)
� �ϕ∗(g).
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Theorem 2.7.4. Let ϕ ∈ Φ(A, μ) be such that S(A, μ) ⊂ Lϕ(A, μ). Then
Lϕ

∗
(A, μ) = (Lϕ(A, μ))′, �ϕ∗(g) = (�ϕ)∗(Jg) and

‖g‖ϕ∗ � ‖g‖(Lϕ)′ = ‖Jg‖(Lϕ)∗ � 2 ‖g‖ϕ∗

for every g ∈ Lϕ
∗
(A, μ), where Jg : f �→ ´

A
fg dμ. (or complex-valued

functions, the constant 2 should be replaced by 4.)

Proof. For the sake of simplicity we assume K = R. In the case K = C we
can proceed analogously by splitting g into its real and imaginary part.

We already know that Lϕ
∗ ⊂ (Lϕ)′, ‖g‖(Lϕ)′ = ‖Jg‖(Lϕ)∗ � 2 ‖g‖ϕ∗ , and

(�ϕ)∗(Jg) � �ϕ∗(g) for every g ∈ Lϕ
∗
. Fix g ∈ (Lϕ)′. We claim that g ∈ Lϕ

∗

and �ϕ∗(g) � (�ϕ)∗(Jg).
Since μ is σ-finite, we find measurable sets Ak ⊂ A with μ(Ak) < ∞ and

A1 ⊂ A2 ⊂ . . . such that A =
⋃∞
k=1Ak. Let {q1, q2, . . .} be a countable, dense

subset of [0,∞) with qj �= qk for j �= k and q1 = 0. For k ∈ N and y ∈ A
define

rk(y) := χAk
(y) max

j=1,...,k

(
qj |g(y)| − ϕ(y, qj)

)
.

The special choice q1 = 0 implies rk(y) � 0 for all y � 0. Since {q1, q2, . . .}
is dense in [0,∞) and ϕ(y, ·) is left-continuous, rk(y) ↗ ϕ∗(y, |g(y)|) for any
y ∈ A as k → ∞. For every k ∈ N there exists a simple function fk with
fk(A) ⊂ {q1, . . . , qk} and fk(y) = 0 for all y ∈ A \Ak such that

rk(y) = fk(y) |g(y)| − ϕ(y, fk(y))

for all y ∈ A. As a simple function, fk belongs by assumption to Lϕ(A, μ).
Define hk(y) := fk(y) sgn(g(y)) for y ∈ A, where sgn(a) denotes the sign of a.
Then also hk is a simple function (here we use K = R) and therefore

(�ϕ)∗(Jg) � Jg(hk) − �ϕ(hk) =
ˆ

A

g(y)hk(y) − ϕ(y, |hk(y)|) dμ(y).

By the definition of hk it follows that

(�ϕ)∗(Jg) �
ˆ

A

|g(y)| fk(y) − ϕ(y, |fk(y)|) dμ(y) =
ˆ

A

rk(y) dμ(y).

Since rk � 0 and rk(y) ↗ ϕ∗(y, |g(y)|), we get by the theorem of monotone
convergence that

(�ϕ)∗(Jg) � lim sup
k→∞

ˆ

A

rk(y) dμ(y) =
ˆ

A

ϕ∗(y, |g(y)|) dμ(y) = �ϕ∗(g).
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Together with (�ϕ)∗(Jg) � �ϕ∗(g) we get (�ϕ)∗(Jg) = �ϕ∗(g).
Since g �→ Jg is linear, it follows that (�ϕ)∗(λJg) = �ϕ∗(λg) for every λ > 0

and therefore ‖g‖ϕ∗ = ‖Jg‖(�ϕ)∗ � ‖Jg‖(Lϕ)∗ = ‖g‖(Lϕ)′ using in the second
step Theorem 2.2.10. �	

Theorem 2.7.4 allows us to generalize the norm conjugate formula to Lϕ.

Corollary 2.7.5 (Norm conjugate formula). Let ϕ ∈ Φ(A, μ). If S(A, μ)
⊂ Lϕ

∗
(A, μ), then

‖f‖ϕ � sup
g∈Lϕ∗ : ‖g‖ϕ∗�1

ˆ
|f | |g| dμ � 2 ‖f‖ϕ

for every f ∈ L0(A, μ). The supremum is unchanged if we replace the
condition g ∈ Lϕ

∗
by g ∈ S(A, μ).

Proof. Applying Theorem 2.7.4 to ϕ∗ and taking into account that ϕ∗∗ = ϕ,
we have

‖f‖ϕ � ‖f‖(Lϕ∗ )′ � 2 ‖f‖ϕ

for f ∈ Lϕ. That the supremum does not change for g ∈ S(A, μ) follows by
Lemma 2.7.2. The claim also follows in the case f ∈ L0 \ Lϕ∗

= L0 \ (Lϕ)′,
since both sides of the formula are infinite. �	
Remark 2.7.6. Since μ is σ-finite it suffices in Theorem 2.7.4 and Corol-
lary 2.7.5 to assume S(Ak, μ) ⊂ Lϕ(A, μ), where (Ak) is a sequence with
Ak ↗ A and μ(Ak) <∞ for all k. This is important for example in weighted
Lebesgue spaces Lqω(Rn) with Muckenhoupt weights.

Definition 2.7.7. A normed space (Y, ‖·‖Y ) with Y ⊂ L0(A, μ) is called a
Banach function space, if

(a) (Y, ‖·‖Y ) is circular, solid and satisfies the Fatou property.
(b) If μ(E) <∞, then χE ∈ Y .
(c) If μ(E) <∞, then χE ∈ Y ′, i.e.

´
E
|f |dμ � c(E)‖f‖Y for all f ∈ Y .

From Theorem 2.3.17 we know that Lϕ satisfies (a) for every ϕ ∈ Φ(A, μ)
so one need only check (b) and (c). These properties are equivalent to S ⊂ Lϕ

and S ⊂ (Lϕ)′, where S is the set of simple functions. These inclusions may
or may not hold, depending on the function ϕ.

Definition 2.7.8. A generalized Φ-function ϕ ∈ Φ(A, μ) is called proper if
the set of simple functions S(A, μ) satisfies S(A, μ) ⊂ Lϕ(A, μ)∩ (Lϕ(A, μ))′.

So ϕ is proper if and only if Lϕ is a Banach function space. More-
over, if ϕ is proper then the norm conjugate formula for Lϕ and Lϕ

∗
holds

(Corollary 2.7.5) and Lϕ
∗

= (Lϕ)′.
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Corollary 2.7.9. Let ϕ ∈ Φ(A, μ). Then the following are equivalent:

(a) ϕ is proper.
(b) ϕ∗ is proper.
(c) S(A, μ) ⊂ Lϕ(A, μ) ∩ Lϕ∗

(A, μ).

Proof. If (a) or (c) holds, then S ⊂ Lϕ. Hence (Lϕ)′ = Lϕ
∗

by Theorem 2.7.4,
which obviously implies the equivalence of (a) and (c).

Applying this equivalence for the function ϕ∗, and taking into account
that ϕ∗∗ = ϕ, yields the equivalence of (b) and (c). �	
Remark 2.7.10. The conditions χE ∈ Lϕ and χE ∈ (Lϕ)′ for μ(E)<∞ in
Definition 2.7.7 can be interpreted in terms of embeddings. Indeed, χE ∈ Lϕ

implies Lϕ
∗
↪→ L1(E). The condition χE ∈ (Lϕ)′ is equivalent to Lϕ(E) ↪→

L1(E). In particular, if ϕ is proper, then Lϕ(Ω) ↪→ L1
loc(Ω) and Lϕ

∗
(Ω) ↪→

L1
loc(Ω).

Remark 2.7.11. Let ϕ ∈ Φ be proper; so Lϕ is a Banach function space. It
has been shown in [43, Proposition 3.6] that f ∈ Lϕ has absolutely continuous
norm (see Remark 2.5.8) if and only if f has the following property: If gk,
g ∈ L0 with |gk| � |f | and gk → g almost everywhere, then gk → g in Lϕ.
Thus, f acts as a majorant in the theorem of dominated convergence.

It has been shown by Lorentz and Luxemburg that the second associate
spaceX ′′ of a Banach function space coincides withX with equality of norms,
see [43, Theorem 2.7]. In particular, (Lϕ)′′ = Lϕ with equality of norms if ϕ
is proper. For the sake of completeness we include a proof of this result in
our setting.

Theorem 2.7.12. Let ϕ ∈ Φ(A, μ) be proper. Then Lϕ
∗
(A, μ) = (Lϕ(A, μ))′

and (Lϕ
∗
(A, μ))′ = Lϕ(A, μ). Moreover, (Lϕ(A, μ))′′ = Lϕ(A, μ) with equal-

ity of norms, i.e. ‖f‖ϕ = ‖f‖(Lϕ)′′ for all f ∈ Lϕ(A, μ).

Proof. The equalities Lϕ
∗

= (Lϕ)′ and (Lϕ
∗
)′ = Lϕ follow by Theorem 2.7.4

and as a consequence (Lϕ)′′ = (Lϕ
∗
)′ = Lϕ

∗∗
= Lϕ using ϕ∗∗ = ϕ. It only

remains to prove the equality of norms. Let f ∈ Lϕ, then

‖f‖(Lϕ)′′ = sup
g∈(Lϕ)′ : ‖g‖(Lϕ)′�1

ˆ
|f | |g| dμ � ‖f‖ϕ.

We now prove ‖f‖ϕ � ‖f‖(Lϕ)′′ . We begin with the case μ(A) < ∞. If
f = 0, there is nothing to show, so assume f �= 0. Let B denote the unit
ball of Lϕ. Due to Remark 2.7.10 and μ(A) < ∞, we have Lϕ(A) ↪→ L1(A),
so B ⊂ L1(A). Moreover, B is a closed, convex subset of L1(A). Indeed, if
uk ∈ B with uk → u in L1(A), then uk → u μ-almost everywhere for a sub-
sequence, so Fatou’s lemma for the norm (Theorem 2.3.17) implies u ∈ B.
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Let h := λf/‖f‖ϕ with λ > 1, then h �∈ B, so by the Hahn–Banach Theo-
rem 1.4.2 there exists a functional on (L1(A))∗ separating B and f . In other
words, there exists a function g ∈ L∞(A) and γ ∈ R such that

Re
( ˆ

vg dμ

)
� γ < Re

( ˆ
hg dμ

)

for all v ∈ B, where we have used the representation of (L1(A))∗ by L∞(A).
From g ∈ L∞(A) and χA ∈ (Lϕ)′ it follows by solidity of (Lϕ)′ that g ∈ (Lϕ)′.
Moreover, the circularity of Lϕ implies that

ˆ
|v||g|dμ � γ <

ˆ
|h||g| dμ =

λ

‖f‖ϕ

ˆ
|f ||g|dμ �

λ‖f‖(Lϕ)′′‖g‖(Lϕ)′

‖f‖ϕ
for all v ∈ B. In other words,

‖g‖(Lϕ)′ �
λ‖f‖(Lϕ)′′‖g‖(Lϕ)′

‖f‖ϕ
.

Using ‖g‖(Lϕ)′ <∞ we get ‖f‖ϕ � λ‖f‖(Lϕ)′′ . This proves ‖f‖ϕ � ‖f‖(Lϕ)′′

and therefore ‖f‖ϕ = ‖f‖(Lϕ)′′ .
It remains to consider the case μ(A)=∞. Choose Ak ⊂A with μ(Ak)<∞,

A1 ⊂A2 ⊂ . . . , andA =
⋃∞
k=1 Ak. Then ‖fχAk

‖ϕ = ‖f‖Lϕ(Ak) = ‖f‖(Lϕ(Ak))′′

= ‖fχAk
‖(Lϕ(A))′′ by the first part. Now, with the Fatou property of Lϕ and

(Lϕ)′′ we conclude ‖f‖ϕ = ‖f‖(Lϕ)′′ . �	
Remark 2.7.13. Let ϕ ∈ Φ(A, μ) be proper. Then we can use Theo-
rem 2.7.12 Hölder’s inequality to derive the formula

1
2
‖f‖ϕ � sup

h∈Lϕ∗ : ‖h‖ϕ∗�1

ˆ
|f | |h| dμ � 2 ‖f‖ϕ.

for all f ∈ L0(A, μ). This is a weaker version of the norm conjugate formula
in Corollary 2.7.5, with an extra factor 1

2 on the left-hand side.

We are now able to characterize the dual space of Lϕ.

Theorem 2.7.14. Let ϕ ∈ Φ(A, μ) be proper and locally integrable, and sup-
pose that Eϕ = Lϕ. Then V : g �→ Jg is an isomorphism from Lϕ

∗
(A, μ) to

(Lϕ(A, μ))∗.

Proof. By Theorem 2.7.4 V is an isomorphism from Lϕ
∗

onto its image
Im(V ) ⊂ (Lϕ)∗. In particular, Im(V ) is a closed subspace of (Lϕ)∗. Since
ϕ is locally integrable S = Eϕ by Theorem 2.5.9, so that S = Eϕ = Lϕ.

We have to show that V is surjective. We begin with the case μ(A) <∞.
Let J ∈ (Lϕ)∗. For any measurable set E ⊂ A we define τ(E) := J(χE),
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which is well defined since S ⊂ Lϕ. We claim that τ is a signed, finite measure
on A. Obviously, τ is a set function with τ(E1∪E2) = τ(E1)+τ(E2) for E1, E2

disjoint measurable sets. Let (Ej) be sequence of pairwise disjoint, measurable
sets. Let E :=

⋃∞
j=1 Ej . Then

∑k
j=1 χEj → χE almost everywhere and by

dominated convergence (Lemma 2.3.16) using χE ∈ Lϕ = Eϕ we find that∑k
j=1 χEj → χE in Lϕ. This and the continuity of J imply

∞∑

j=1

τ(Ej) =
∞∑

j=1

J(χEj ) = J(χE) = τ(E),

which proves that τ is σ-additive. The estimate

|τ(E)| = |J(χE)| � ‖J‖(Lϕ)∗‖χE‖ϕ � ‖J‖(Lϕ)∗‖χA‖ϕ

for all measurable E, proves that τ is a signed, finite measure. If μ(E) = 0,
then τ(E) = J(χE) = 0, so τ is absolutely continuous with respect to μ. Thus
by the Radon–Nikodym Theorem 1.4.13 there exists a function g ∈ L1(A)
such that

J(f) =
ˆ

A

fg dμ (2.7.15)

for all f = χE with E measurable and therefore by linearity for all f ∈ S. We
claim that ‖g‖(Lϕ)′ � ‖J‖(Lϕ)∗ . Due to Lemma 2.7.2 it suffices to show that
´ |f | |g|dμ � ‖J‖(Lϕ)∗ for every f ∈ S = S ∩ Lϕ with ‖f‖ϕ � 1. Fix such
an f . If K = R, then sgn g is a simple function. However, to include the case
K = C, we need to approximate sgn g by simple function as follows. Since
sgn g ∈ L∞, we find a sequence (hk) of simple functions with hk → sgn g
almost everywhere and |hk| � 1. Since |f |hk ∈ S and ‖ |f |hk‖ϕ � ‖f‖ϕ � 1,
we estimate

´ |f |hkg dx = J(|f |hk) � ‖J‖(Lϕ)∗ using (2.7.15). We have
|f |hkg → |f | |g| almost everywhere and |fhkg| � |f ||g| ∈ L1, since g ∈ L1

and f ∈ L∞ as a simple function. Therefore, by the theorem of dominated
convergence we conclude

´ |f ||g| dx = limk→∞
´ |f |hkg dx � ‖J‖(Lϕ)∗ . This

yields ‖g‖(Lϕ)′ � ‖J‖(Lϕ)∗ . Then g ∈ Lϕ
∗

follows from (Lϕ)′ = Lϕ
∗

by The-
orem 2.7.4. By (2.7.3) and (2.7.15) the functionals Jg and J agree on the
set S. So the continuity of J and Jg and S = Lϕ imply J = Jg proving the
surjectivity of g �→ Jg in the case μ(A) <∞.

It remains to prove the surjectivity for μ σ-finite. Choose Ak ⊂ A with
μ(Ak) < ∞, A1 ⊂ A2 ⊂ . . . , and A =

⋃∞
k=1 Ak. By restriction we see

that J ∈ (Lϕ(Ak))∗ for each J ∈ (Lϕ(A))∗. Since μ(Ak) < ∞, there exists
gk ∈ Lϕ

∗
(Ak) such that J(f) = Jgk

(f) for any f ∈ Lϕ(Ak) and ‖gk‖ϕ∗ �
‖J‖(Lϕ)∗ . The injectivity of g �→ Jg implies gj = gk on Aj for all k � j. So
g := gk on Ak is well defined and J(f) = Jg(f) for all f ∈ Lϕ(Ak) and every
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k. Since |gk| ↗ |g| almost everywhere and supk ‖gk‖ϕ∗ � ‖J‖(Lϕ)∗ , it follows
by the Fatou property of Lϕ

∗
that ‖g‖ϕ∗ � ‖J‖(Lϕ)∗ .

It remains to prove J = Jg. Let f ∈ Lϕ. Then by Fatou’s lemma
(Lemma 2.3.16), f χAk

→ f in Lϕ. Hence, the continuity of J and Jg and
J(f χAk

) = Jg(f χAk
) yields J(f) = Jg(f) as desired. �	

Remark 2.7.16. (a) If ϕ is proper and locally integrable, then the condition
Lϕ = Eϕ is equivalent to the density of the set S of simple functions in
Lϕ, see Theorem 2.5.9.

(b) If μ is atom-free, then the assumptions “locally integrable” and “Eϕ =
Lϕ” are also necessary for V : g �→ Jg from Lϕ

∗
= (Lϕ)′ to (Lϕ)∗ to be

an isomorphism. Indeed, if V is an isomorphism, then it has been shown
in [43, Theorem 4.1] that every function f ∈ Lϕ has absolutely contin-
uous norm (see Remark 2.5.8). In particular, every χE with μ(E) < ∞
has absolutely continuous norm. We prove that ϕ is locally integrable by
contradiction, so assume that there exists a measurable set E and λ > 0
such that μ(E) <∞ and �ϕ(λχE) = ∞. Since μ is atom-free there exists
a sequence (Ek) of pairwise disjoint, measurable sets such that Ek ↘ ∅
and �ϕ(λχEk

) = ∞. In particular, ‖χEk
‖ϕ � 1

λ . However, since χE has
absolutely continuous norm, we should have ‖χEk

‖ϕ = ‖χEχEk
‖ϕ → 0,

which gives the desired contradiction. Thus, ϕ is locally integrable. If fol-
lows from Theorem 2.5.9 that Eϕ = S, where S are the simple functions.
Moreover, since V is an isomorphism, by the norm conjugate formula in
Lemma 2.7.2 it follows that S◦ = {0}, where S◦ is the annihilator of S.
This implies Eϕ = S = S◦◦ = Lϕ

∗
.

The reflexivity of Lϕ can be reduced to the characterization of (Lϕ)∗ and
(Lϕ

∗
)∗.

Lemma 2.7.17. Let ϕ ∈ Φ(A, μ) be proper. Then Lϕ is reflexive, if and
only if the natural embeddings V : Lϕ

∗ → (Lϕ)∗ and U : Lϕ → (Lϕ
∗
)∗ are

isomorphisms.

Proof. Let ι denote the natural injection of Lϕ into its bidual (Lϕ)∗∗. It is
easy to see that V ∗ ◦ ι = U . Indeed,

〈V ∗ιf , g〉 = 〈ιf , V g〉 = 〈V g, f〉 =
ˆ
f(x)g(x) dμ = 〈Uf, g〉

for f ∈ Lϕ and g ∈ Lϕ
∗
. If V and U are isomorphisms, then ι = (V ∗)−1 ◦ U

must be an isomorphism and Lϕ is reflexive.
Assume now that Lϕ is reflexive. We have to show that U and V are

isomorphisms. We already know from Theorem 2.7.4 (since ϕ is proper) that
U and V are isomorphisms from Lϕ and Lϕ

∗
to their images Im(U) and

Im(V ), respectively. In particular, V is a closed operator and as a consequence
Im(V ∗) = (ker(V ))◦. The injectivity of V implies that V ∗ is surjective. So
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U = V ∗ ◦ ι is surjective as well. This proves that U is an isomorphism. The
formula U = V ∗ ◦ ι implies that V ∗ is also an isomorphism. Since V is a
closed operator, we have Im(V ) = (ker(V ∗))◦. The injectivity of V ∗ proves
that V is surjective and therefore an isomorphism. �	

By Theorem 2.7.14 and Lemma 2.7.17 we immediately get the reflexivity
of Lϕ.

Corollary 2.7.18. Let ϕ ∈ Φ(A, μ) be proper. If ϕ and ϕ∗ are locally
integrable, Eϕ = Lϕ and Eϕ

∗
= Lϕ

∗
, then Lϕ is reflexive.

2.8 Embeddings and Operators

In this section we characterize bounded, linear operators from one Musielak–
Orlicz space to another. Recall that the operator S is said to be bounded from
Lϕ to Lψ if ‖Sf‖ϕ � C ‖f‖ψ. We want to characterize this in terms of the
modular. The study of embeddings is especially important to us, i.e. we want
to know when the identity is a bounded operator. Such embeddings, which
are denoted by Lϕ ↪→ Lψ, can be characterized by comparing ϕ pointwise
with ψ.

Let us begin with a characterization of bounded, sub-linear operators. Let
ϕ, ψ ∈ Φ(A, μ) and let S : Lϕ(A, μ) → Lψ(A, μ) be sub-linear. By the norm-
modular unit ball property, S is bounded if and only if there exist c > 0 such
that

�ϕ(f) � 1 =⇒ �ψ(Sf/c) � 1.

If ϕ and ψ satisfy the Δ2-condition, then this is equivalent to the existence
of c1, c2 > 0 such that

�ϕ(f) � c1 =⇒ �ψ(Sf) � c2

(since the Δ2-condition allows us to move constants out of the modular).

Theorem 2.8.1. Let ϕ, ψ ∈ Φ(A, μ) and let the measure μ be atom-less.
Then Lϕ(A, μ) ↪→ Lψ(A, μ) if and only if there exists c′ > 0 and h ∈ L1(A, μ)
with ‖h‖1 � 1 such that

ψ
(
y,
t

c′
)

� ϕ(y, t) + h(y)

for almost all y ∈ A and all t � 0.
Moreover, c′ is bounded by the embedding constant, whereas the embedding

constant is bounded by 2c′.

Proof. Let us start by showing that the inequality implies the embedding.
Let ‖f‖ϕ � 1, which yields by the unit ball property that �ϕ(f) � 1. Then
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�ψ

( f

2c′
)

� 1
2
�ψ

( f
c′

)
� 1

2
�ϕ(f) +

1
2

ˆ

A

h(y) dy � 1.

This and the unit ball property yield ‖f/(2c′)‖ψ � 1. Then the embedding
follows by the scaling argument.

Assume next that the embedding holds with embedding constant c1. For
y ∈ A and t � 0 define

α(y, t) :=

{
ψ(y, tc1 ) − ϕ(y, t) if ϕ(y, t) <∞,

0 if ϕ(y, t) = ∞.

Since ϕ(y, ·) and ψ(y, ·) are left-continuous for all y ∈ A, also α(y, ·) is left-
continuous for all y ∈ A. Let (rk) be a sequence of distinct numbers with
{rk : k ∈ N} = Q ∩ [0,∞) and r1 = 0. Then

ψ(y, rk

c1
) � ϕ(y, rk) + α(y, rk)

for all k ∈ N and y ∈ A. Define

bk(y) := max
1�j�k

α(y, rj).

Since r1 = 0 and α(y, 0) = 0, we have bk � 0. Moreover, the functions bk are
measurable and nondecreasing in k. The function b := supk bk is measurable,
non-negative, and satisfies

b(y) = sup
t�0

α(y, t),

ψ(y, tc1 ) � ϕ(y, t) + b(y)

for all y ∈ A and all t � 0, where we have used that α(y, ·) is left-continuous
and the density of {rk : k ∈ N} in [0,∞).

We now show that b ∈ L1(A, μ) with ‖b‖1 � 1. We consider first the case
|b| <∞ a.e., and assume to the contrary that there exists ε > 0 such that

ˆ

A

b(y) dμ(y) � 1 + 2ε.

Define

Vk :=
{
y ∈ A : α(y, rk) > 1

1+εb(y)
}
,

Wk+1 := Vk+1 \
(
V1 ∪ · · · ∪ Vk)
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for all k ∈ N. Note that V1 = ∅ due to the special choice r1 = 0. Since
{rk : k ∈ N} is dense in [0,∞) and α(y, ·) is left-continuous for every y ∈ A,
we have

⋃∞
k=1 Vk =

⋃∞
k=2Wk = {y ∈ A : b(y) > 0}.

Let f :=
∑∞

k=2 rk χWk
. For every y ∈ Wk we have α(y, rk) > 0 and

therefore ϕ(y, rk) <∞. If y is outside of
⋃∞
k=2Wk, then ϕ(y, |f(y)|) = 0. This

implies that ϕ(y, |f(y)|) is everywhere finite. Moreover, by the definition of
Wk and α we get

ψ
(
y,

|f(y)|
c1

)
� ϕ

(
y, |f(y)|) +

1
1 + ε

b(y) (2.8.2)

for all y ∈ A.
If �ϕ(f) � 1, then �ψ( fc1 ) � 1 by the unit ball property since c1 is the

embedding constant. However, this contradicts

�ψ( fc1 ) � �ϕ(f) +
1

1 + ε

ˆ

A

b(y) dμ(y) � 1 + 2ε
1 + ε

> 1,

where we have used (2.8.2) and
⋃∞
k=2Wk = {y ∈ A : b(y) > 0}. So we can

assume that �ϕ(f) > 1. Since μ is atom-less and ϕ(y, |f(y)|) is almost
everywhere finite, there exists U ⊂ A with �ϕ(fχU ) = 1. Thus

�ψ( fc1 χU ) � �ϕ(f χU ) + 1
1+ε

ˆ

U

b(y) dμ(y)

= 1 + 1
1+ε

ˆ

U

b(y) dμ(y).
(2.8.3)

Now, �ϕ(fχU ) = 1 implies that μ(U ∩ {f �= 0}) > 0. Since {f �= 0} =⋃∞
k=2Wk = {y ∈ A : b(y) > 0} we get μ(U ∩ {y ∈ A : b(y) > 0}) > 0 and

ˆ

U

b(y) dμ(y) > 0.

This and (2.8.3) imply that

�ψ(f/c1 χU ) > 1.

which contradicts �ψ(f/c1) � 1. Thus the case where |b| <∞ a.e. is complete.
If we assume that there exists E ⊂ A with b|E = ∞ and μ(E) > 0,

then a similar argument with Vk := {y ∈ E : α(y, rk) � 2
μ(E)} yields a

contradiction. Hence this case cannot occur, and the proof is complete by
what was shown previously. �	


