
Preface

In this book we consider (connected) smooth real hypersurfaces in the complex
vector space Cn+1 with n ≥ 1. Specifically, we are interested in tube hypersurfaces,
i.e. real hypersurfaces of the form

Γ + iV,

where Γ is a hypersurface in a totally real (n + 1)-dimensional linear subspace
V ⊂ Cn+1. From now on we fix the subspace V and choose coordinates z0, . . . ,zn

in Cn+1 such that V = {Imz j = 0, j = 0, . . . ,n}. Everywhere below V is identified
with Rn+1 by means of the coordinates x j := Re z j, j = 0, . . . ,n.

Tube hypersurfaces arise, for instance, as the boundaries of tube domains, that is,
domains of the form

D+ iRn+1,

where D is a domain in Rn+1. We refer to the hypersurface Γ and domain D as the
bases of the above tubes. The study of tube domains is a classical subject in several
complex variables and complex geometry, which goes back to the beginning of the
20th century. Indeed, already Siegel found it convenient to realize certain symmetric
domains as tubes. For example (see Section 5.3 for details), the familiar unit ball in
C

n+1 is biholomorphically equivalent to the tube domain with the base given by the
inequality

x0 >
n

∑
α=1

x2
α . (0.1)

Note that the boundary of the tube domain with base (0.1) is the tube hypersurface
whose base is defined by the equation

x0 =
n

∑
α=1

x2
α . (0.2)

This tube hypersurface is equivalent to the (2n + 1)-dimensional sphere in Cn+1

with one point removed.

v
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Although the definition of tube depends on the choice of the totally real sub-
space V , the structure of the direct product of a portion of V with all of iV is ex-
tremely useful. Indeed, the property that makes tube domains and hypersurfaces
interesting from the complex-geometric point of view, is that they all possess an
(n + 1)-dimensional commutative group of holomorphic symmetries, namely the
group of translations {Z �→ Z + ib} with b ∈ V , Z ∈ Cn+1. Furthermore, any affine
automorphism of the base of a tube can be extended to a holomorphic affine auto-
morphism of the whole tube (note, however, that in general – for example, for the
tube domain with base (0.1) – there may be many more holomorphic automorphisms
than affine ones). In the same way, any affine transformation between the bases of
two tubes can be lifted to a holomorphic affine transformation between the tubes.
This last observation, however simple, indicates an important link between complex
and affine geometries. In this book we look at tube hypersurfaces from both the
complex-geometric and affine-geometric points of view.

One can endow a tube hypersurface (in fact any real hypersurface in complex
space) with a so-called CR-structure, which is the remnant of the complex structure
on the ambient space Cn+1 (see Section 1.1). We impose on the CR-structure the
condition of sphericity (see Section 1.2). This is the condition for the hypersurface
to be locally CR-equivalent (for example, locally biholomorphically equivalent –
see Section 1.1) to the tube hypersurface with the base given by the equation

x0 =
k

∑
α=1

x2
α −

n

∑
α=k+1

x2
α

for some 1 ≤ k ≤ n with n ≤ 2k (cf. equation (0.2)). For a given k the sec-
ond fundamental form of the base of a locally closed spherical tube hypersur-
face is everywhere non-degenerate and has signature (k,n− k) up to sign. Interest-
ingly, the sphericity condition coincides with the condition of the vanishing of the
CR-curvature form (see Section 1.1), thus spherical hypersurfaces are exactly those
that are flat in the CR-geometric context (the reader should not be alarmed by the
apparent linguistic inconsistency between “sphericity” and “flatness”). In this book
we offer a comprehensive exposition of the theory of spherical tube hypersurfaces
starting with the idea proposed in the pioneering work by Yang (1982) and ending
with a new approach due to Fels and Kaup (2009).

Spherical tube hypersurfaces possess remarkable properties. For example, every
such hypersurface is real-analytic (see Section 3.2) and extends to a real-analytic
spherical (hence non-singular) tube hypersurface which is closed as a submanifold
of C

n+1 (see Section 4.5). Thus, it suffices to consider only closed spherical tube
hypersurfaces, and the main goal of this book is to explicitly classify such hyper-
surfaces whenever possible. Note that while for a fixed k all spherical tube hyper-
surfaces are CR-equivalent locally, they may not be CR-equivalent globally. We,
however, aim at obtaining not just a classification up to CR-equivalence but a much
finer classification up to affine equivalence (that is, a classification up to the affine
equivalence of their bases). In 1982 Yang [108] proposed to approach this problem
for k = n by means of utilizing the zero CR-curvature equations arising from the
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Cartan-Tanaka-Chern-Moser invariant theory, and we follow this approach through-
out most of the book.

We will now describe the book’s structure. In Chapter 1 we give a detailed expo-
sition of Chern’s construction of a Cartan connection for a hypersurface satisfying a
certain non-degeneracy condition (Levi non-degeneracy). For a locally closed tube
hypersurface this condition is equivalent to the non-degeneracy of the second fun-
damental form of the base at every point. The curvature of the Cartan connection
gives rise to the zero CR-curvature equations, which can be written in terms of any
local defining function of the hypersurface (see Sections 1.3, 1.4). These equations
involve partial derivatives of the defining function up to order 4 for n > 1 and up to
order 6 for n = 1. In Chapter 3 we generalize the result of [108] from k = n to any
value of k by showing that the zero CR-curvature equations significantly simplify
for tube hypersurfaces and lead to systems of partial differential equations of order
2 of a very special form (we call them defining systems). As an application of this
result, we show in Section 3.2 that every spherical tube hypersurface is real-analytic.
Our exposition in Chapter 3 is based on results of [52], [56], [58], [64].

Further, in Chapter 4 we reduce every defining system to a system of one of three
types by applying suitable linear transformations and give a certain representation of
the solution for a system of each type. These representations imply the result already
mentioned above: every spherical tube hypersurface extends to a real-analytic closed
spherical tube hypersurface in C

n+1 (see Section 4.5). Our exposition in Chapter 4
is a refinement of that given in [56]. From Chapter 4 to the end of Chapter 8 we
study only closed spherical tube hypersurfaces and concentrate on classifying such
hypersurfaces up to affine equivalence. In Chapters 5–7 we consider the cases k = n,
k = n−1, k = n−2. In each of these cases we use the representations of the solutions
of defining systems found in Chapter 4. In Chapter 5 a complete classification for
the case k = n is obtained. This classification is due to Dadok and Yang (see [27]),
but our arguments are simpler than the original proof. In Chapter 6 we derive a
complete classification for k = n− 1. This classification appeared in [64], but the
present exposition is shorter and much more elegant. Finally, in Chapter 7 we give
a complete classification for the case k = n− 2. This classification was found by
the author in 1989 and announced in article [53], where a proof was also briefly
sketched. Full details were given in a very long preprint (see [54]). Because of the
prohibitive length of the preprint the complete proof was never published in a journal
article. In this book it appears in print for the first time.

One consequence of the results of Chapters 5–7 is the finiteness of the num-
ber of affine equivalence classes for every fixed n in each of the following cases:
(a) k = n, (b) k = n− 1, and (c) k = n− 2 with n ≤ 6. In Chapter 8 we show that
this number is infinite (in fact uncountable) in the cases: (i) k = n− 2 with n ≥ 7,
(ii) k = n−3 with n ≥ 7, and (iii) k ≤ n−4. This result was announced in [53] but
has only recently appeared with complete proofs (see [59]). Further, the question
about the number of affine equivalence classes in the only remaining case k = 3,
n = 6 had been open since 1989 until Fels and Kaup resolved it in 2009 by con-
structing an example of a family of spherical tube hypersurfaces in C7 for k = 3 that
contains uncountably many pairwise affinely non-equivalent elements. In Chapter 8
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we present this family but deal with it by methods different from the original meth-
ods of Fels and Kaup. In particular, we use the j-invariant to show that this family
indeed contains an uncountable subfamily of pairwise affinely non-equivalent hy-
persurfaces.

The example mentioned above naturally arises from the new analytic-algebraic
approach to studying spherical tube hypersurfaces developed by Fels and Kaup in
[42]. It is based on their earlier work [41] concerned with the question of describing
all (local) tube realizations of a real-analytic CR-manifold (cf. [4]). Fels and Kaup
recover the real-analyticity result of Section 3.2 and the globalization results of Sec-
tion 4.5 by their methods. Further, their approach yields the affine classifications of
spherical tube hypersurfaces for k = n and k = n−1 contained in Chapters 5, 6. We
outline the main ideas of [41], [42] in Section 9.2 of Chapter 9.

In Section 9.1 of Chapter 9 we consider tube hypersurfaces locally CR-equivalent
to the tube hypersurface with the base given by the equation

x0 =
k

∑
α=1

x2
α −

m

∑
α=k+1

x2
α , (0.3)

where 0 ≤ k ≤ m, m ≤ 2k, m < n. Such hypersurfaces are no longer Levi non-
degenerate (in the locally closed case the second fundamental forms of their bases
are everywhere degenerate), thus the standard Cartan-Tanaka-Chern-Moser theory
does not apply to them. As we explain in Section 9.1, for m ≥ 1 every tube hy-
persurface of this kind is real-analytic and extends to a closed non-singular real-
analytic tube hypersurface in Cn+1 represented as the direct sum of a complex
(n−m)-dimensional linear subspace of Cn+1 and a closed spherical tube hypersur-
face lying in a complementary complex (m + 1)-dimensional subspace. For m = 0
such a hypersurface is an open subset of a real affine hyperplane in C

n+1. Thus,
the study of tube hypersurfaces locally CR-equivalent to the tube with base (0.3)
reduces to the study of spherical tube hypersurfaces. Our exposition in Section 9.1
is based on results of [56].

In addition, the book includes a short chapter on spherical rigid hypersur-
faces (see Chapter 2). A locally closed real hypersurface M in a complex (n + 1)-
dimensional manifold N is called rigid if near its every point in some local coordi-
nates z0 = x0 + iy0, z = (z1, . . . ,zn) in N it can be given by an equation of the form
x0 = F(z,z). Clearly, rigid hypersurfaces are much more general than tube ones, but
it turns out that the zero CR-curvature equations significantly simplify already in the
rigid case. One motivation for considering rigid hypersurfaces is that they naturally
arise as a result of various scaling procedures (see references in Section 2.2). An
application of the zero CR-curvature equations in the rigid case is given in Section
2.2. These equations serve as an intermediate step for obtaining defining systems in
Chapter 3. Our exposition in Chapter 2 is an improvement of that given in [57].

I would like to thank Wilhelm Kaup for many valuable comments that helped
improve the manuscript and Michael Eastwood for many inspiring conversations
concerning the material included in Chapters 8 and 9. Special thanks go to Nikolay
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