Contents

1	Intro	oduction	1
	1.1	The framework	1
	1.2	The possibilities and challenges	2
	1.3	About the book	3
		1.3.1 Organization of the book	3
	1.4	Some examples	4
		1.4.1 Prediction and biomarker discovery in genomics	5
2	Lass	o for linear models	7
	2.1	Organization of the chapter	7
	2.2	Introduction and preliminaries	8
		2.2.1 The Lasso estimator	9
	2.3	Orthonormal design	10
	2.4	Prediction	11
		2.4.1 Practical aspects about the Lasso for prediction	12
		2.4.2 Some results from asymptotic theory	13
	2.5	Variable screening and $\ \hat{\beta} - \beta^0\ _q$ -norms	14
		2.5.1 Tuning parameter selection for variable screening	17
		2.5.2 Motif regression for DNA binding sites	18
	2.6	Variable selection	19
		2.6.1 Neighborhood stability and irrepresentable condition	22
	2.7	Key properties and corresponding assumptions: a summary	23
	2.8	The adaptive Lasso: a two-stage procedure	25
		2.8.1 An illustration: simulated data and motif regression	25
		2.8.2 Orthonormal design	27
		2.8.3 The adaptive Lasso: variable selection under weak conditions	28
		2.8.4 Computation	29
		2.8.5 Multi-step adaptive Lasso	30
		2.8.6 Non-convex penalty functions	32
	2.9	Thresholding the Lasso	33
	2.10	The relaxed Lasso	34

Contents

	2.11	Degrees of freedom of the Lasso	34			
	2.12	Path-following algorithms	36			
		2.12.1 Coordinatewise optimization and shooting algorithms	38			
	2.13	Elastic net: an extension	41			
	Prob	lems	42			
3	Gen	Generalized linear models and the Lasso				
	3.1	Organization of the chapter	45			
	3.2	Introduction and preliminaries	45			
		3.2.1 The Lasso estimator: penalizing the negative log-likelihood.	46			
	3.3	Important examples of generalized linear models	47			
		3.3.1 Binary response variable and logistic regression	47			
		3.3.2 Poisson regression	49			
		3.3.3 Multi-category response variable and multinomial				
		distribution	50			
	Prob	lems	53			
	a D1	Ŧ	~ ~			
4	The	group Lasso	22			
	4.1	Organization of the chapter	55			
	4.2	Introduction and preliminaries	50			
		4.2.1 The group Lasso penalty	56			
	4.3	Factor variables as covariates	58			
		4.3.1 Prediction of splice sites in DNA sequences	59			
	4.4	Properties of the group Lasso for generalized linear models	61			
	4.5	The generalized group Lasso penalty	64			
		4.5.1 Groupwise prediction penalty and parametrization invariance	65			
	4.6	The adaptive group Lasso	66			
	4.7	Algorithms for the group Lasso	67			
		4.7.1 Block coordinate descent	68			
		4.7.2 Block coordinate gradient descent	72			
	Prob	lems	75			
E	A	itive models and many smooth universists functions	77			
5	Auu 5 1	Organization of the chapter	יי דד			
	5.2	Introduction and preliminaries	78			
	5.2	5.2.1 Penalized maximum likelihood for additive models	78			
	53	The sparsity-smoothness penalty	70			
	5.5	5.3.1 Orthogonal basis and diagonal smoothing matrices	80			
		5.3.2 Natural cubic splings and Sobolay spaces	81			
		5.3.2 Natural cubic spinles and Sobolev spaces	01			
	51	A sparsity smoothness nenalty of group Lasso type	02 85			
	5.4	5.4.1 Computational algorithm	0J 84			
		5.4.2 Alternative approaches	00			
	55	Numerical examples	00			
	5.5	Numerical examples	09			
		5.5.1 Simulated example	<u></u>			

		5.5.2	Motif regression	90
	5.6	Predict	tion and variable selection	91
	5.7	Genera	lized additive models	92
	5.8	Linear	model with varying coefficients	93
		5.8.1	Properties for prediction	95
		5.8.2	Multivariate linear model	95
	5.9	Multita	ask learning	95
	Prob	lems		97
6	Theo	ory for	the Lasso	99
	6.1	Organi	zation of this chapter	99
	6.2	Least s	quares and the Lasso	101
		6.2.1	Introduction	101
		6.2.2	The result assuming the truth is linear	102
		6.2.3	Linear approximation of the truth	108
		6.2.4	A further refinement: handling smallish coefficients	112
	6.3	The se	tup for general convex loss	114
	6.4	The ma	argin condition	119
	6.5	Genera	lized linear model without penalty	122
	6.6	Consis	tency of the Lasso for general loss	126
	6.7	An ora	cle inequality	128
	6.8	The ℓ_q	-error for $1 \le q \le 2$	135
		6.8.1	Application to least squares assuming the truth is linear	136
		6.8.2	Application to general loss and a sparse approximation of	
			the truth	137
	6.9	The we	eighted Lasso	139
	6.10	The ad	aptively weighted Lasso	141
	6.11	Concar	ve penalties	144
		6.11.1	Sparsity oracle inequalities for least squares with ℓ_r -penalty	146
		6.11.2	Proofs for this section (Section 6.11)	147
	6.12	Compa	tibility and (random) matrices	150
	6.13	On the	compatibility condition	156
		6.13.1	Direct bounds for the compatibility constant	158
		6.13.2	Bounds using $\ \boldsymbol{\beta}_{S}\ _{1}^{2} \leq s \ \boldsymbol{\beta}_{S}\ _{2}^{2}$	161
		6.13.3	Sets \mathcal{N} containing S	167
		6.13.4	Restricted isometry	169
		6.13.5	Sparse eigenvalues	170
		6.13.6	Further coherence notions	172
		6.13.7	An overview of the various eigenvalue flavored constants	174
	Prob	lems		178
7	Varia	able sel	ection with the Lasso	183
	7.1	Introdu	action	183
	7.2	Some I	results from literature	184
	7.3	Organi	zation of this chapter	185

7.4	The be	eta-min condition	. 187
7.5	The irr	representable condition in the noiseless case	. 189
	7.5.1	Definition of the irrepresentable condition	. 190
	7.5.2	The KKT conditions	. 190
	7.5.3	Necessity and sufficiency for variable selection	. 191
	7.5.4	The irrepresentable condition implies the compatibility	
		condition	. 195
	7.5.5	The irrepresentable condition and restricted regression	. 197
	7.5.6	Selecting a superset of the true active set	. 199
	7.5.7	The weighted irrepresentable condition	. 200
	7.5.8	The weighted irrepresentable condition and restricted	
		regression	. 201
	7.5.9	The weighted Lasso with "ideal" weights	. 203
7.6	Definit	tion of the adaptive and thresholded Lasso	. 204
	7.6.1	Definition of adaptive Lasso	. 204
	7.6.2	Definition of the thresholded Lasso	. 205
	7.6.3	Order symbols	. 206
7.7	A reco	llection of the results obtained in Chapter 6	. 206
7.8	The ad	laptive Lasso and thresholding: invoking sparse eigenvalues.	. 210
	7.8.1	The conditions on the tuning parameters	. 210
	7.8.2	The results	. 211
	7.8.3	Comparison with the Lasso	. 213
	7.8.4	Comparison between adaptive and thresholded Lasso	. 214
	7.8.5	Bounds for the number of false negatives	. 215
	7.8.6	Imposing beta-min conditions	. 216
7.9	The ad	laptive Lasso without invoking sparse eigenvalues	. 218
	7.9.1	The condition on the tuning parameter	. 219
	7.9.2	The results	. 219
7.10	Some	concluding remarks	. 221
7.11	Techni	cal complements for the noiseless case without sparse	
	eigenv	alues	. 222
	7.11.1	Prediction error for the noiseless (weighted) Lasso	. 222
	7.11.2	The number of false positives of the noiseless (weighted)	
		Lasso	. 224
	7.11.3	Thresholding the noiseless initial estimator	. 225
	7.11.4	The noiseless adaptive Lasso	. 227
7.12	Techni	cal complements for the noisy case without	
	sparse	eigenvalues	. 232
7.13	Selecti	on with concave penalties	. 237
Prob	lems		. 241
The		e /e popular procedures	240
	Introdu	el/e2-penalty procedures	. 249 210
0.1 Q 7	Organi	ization and notation of this chapter	. 249 250
0.2 9 2	Decrea	ization and notation of this chapter	. 200 252
0.3	Regies	The loss function and penalty	. 252 252
	0.3.1	The loss function and penalty	. 433

8

		8.3.2	The empirical process	. 254
		8.3.3	The group Lasso compatibility condition	. 255
		8.3.4	A group Lasso sparsity oracle inequality	. 256
		8.3.5	Extensions	. 258
	8.4	High-d	limensional additive model	. 258
		8.4.1	The loss function and penalty	. 258
		8.4.2	The empirical process	. 260
		8.4.3	The smoothed Lasso compatibility condition	. 264
		8.4.4	A smoothed group Lasso sparsity oracle inequality	. 265
		8.4.5	On the choice of the penalty	. 270
	8.5	Linear	model with time-varying coefficients	. 275
		8.5.1	The loss function and penalty	. 275
		8.5.2	The empirical process	. 277
		8.5.3	The compatibility condition for the time-varying	
			coefficients model	. 278
		8.5.4	A sparsity oracle inequality for the time-varying	
			coefficients model	. 279
	8.6	Multiv	ariate linear model and multitask learning	. 281
		8.6.1	The loss function and penalty	. 281
		8.6.2	The empirical process	. 282
		8.6.3	The multitask compatibility condition	. 283
		8.6.4	A multitask sparsity oracle inequality	. 284
	8.7	The ap	proximation condition for the smoothed group Lasso	. 286
		8.7.1	Sobolev smoothness	. 286
		8.7.2	Diagonalized smoothness	. 287
	Prob	lems		. 288
9	Non	-convex	loss functions and ℓ_1 -regularization	. 293
-	9.1	Organi	zation of the chapter	. 293
	9.2	Finite	mixture of regressions model	. 294
		9.2.1	Finite mixture of Gaussian regressions model	. 294
		9.2.2	ℓ_1 -penalized maximum likelihood estimator	. 295
		9.2.3	Properties of the ℓ_1 -penalized maximum likelihood	
			estimator	. 299
		9.2.4	Selection of the tuning parameters	. 300
		9.2.5	Adaptive ℓ_1 -penalization	. 301
		9.2.6	Riboflavin production with bacillus subtilis	. 301
		9.2.7	Simulated example	. 303
		9.2.8	Numerical optimization	. 304
		9.2.9	GEM algorithm for optimization	. 304
		9.2.10	Proof of Proposition 9.2	. 308
	9.3	Linear	mixed effects models	. 310
		9.3.1	The model and ℓ_1 -penalized estimation	. 311
		9.3.2	The Lasso in linear mixed effects models	. 312
		9.3.3	Estimation of the random effects coefficients	. 312
		934	Selection of the regularization parameter	. 313

		9.3.5	Properties of the Lasso in linear mixed effects models	313
		9.3.6	Adaptive ℓ_1 -penalized maximum likelihood estimator	314
		9.3.7	Computational algorithm	314
		9.3.8	Numerical results	317
	9.4	Theory	for ℓ_1 -penalization with non-convex negative log-likelihood	320
		9.4.1	The setting and notation	320
		9.4.2	Oracle inequality for the Lasso for non-convex loss	
			functions	323
		9.4.3	Theory for finite mixture of regressions models	326
		9.4.4	Theory for linear mixed effects models	329
	9.5	Proofs	for Section 9.4	332
		9.5.1	Proof of Lemma 9.1	332
		9.5.2	Proof of Lemma 9.2	333
		9.5.3	Proof of Theorem 9.1	335
		9.5.4	Proof of Lemma 9.3	337
	Prob	lems		337
10	Stab	le solut	ions	339
	10.1	Organi	zation of the chapter	339
	10.2	Introdu	ction, stability and subsampling	340
		10.2.1	Stability paths for linear models	341
	10.3	Stabilit	ty selection	346
		10.3.1	Choice of regularization and error control	346
	10.4	Numer	ical results	351
	10.5	Extens	ions	352
		10.5.1	Randomized Lasso	352
	10.6	Improv	rements from a theoretical perspective	354
	10.7	Proofs		355
		10.7.1	Sample splitting	355
		10.7.2	Proof of Theorem 10.1	356
	Prob	lems		358
	n			250
11	P-va	lues for	· linear models and beyond	359
	11.1	Organi	zation of the chapter	359
	11.2	Introdu	action, sample splitting and high-dimensional variable	2.00
		selection	nn	360
	11.3	Multi s	ample splitting and familywise error control	363
		11.3.1	Aggregation over multiple p-values	364
		11.3.2	Control of familywise error	365
	11.4	Multi s	ample splitting and false discovery rate	367
		11.4.1	Control of false discovery rate	368
	11.5	Numer	ical results	369
		11.5.1	Simulations and familywise error control	369
		11.5.2	Familywise error control for motif regression in	0.75
			computational biology	372
		11.5.3	Simulations and false discovery rate control	. 372

	11.6	Consistent variable selection
		11.6.1 Single sample split method
		11.6.2 Multi sample split method
	11.7	Extensions
		11.7.1 Other models
		11.7.2 Control of expected false positive selections
	11.8	Proofs
		11.8.1 Proof of Proposition 11.1
		11.8.2 Proof of Theorem 11.1
		11.8.3 Proof of Theorem 11.2
		11.8.4 Proof of Proposition 11.2
		11.8.5 Proof of Lemma 11.3
	Prob	lems
12	Boos	ting and greedy algorithms
	12.1	Organization of the chapter
	12.2	Introduction and preliminaries
		12.2.1 Ensemble methods: multiple prediction and aggregation 388
		12.2.2 AdaBoost
	12.3	Gradient boosting: a functional gradient descent algorithm
		12.3.1 The generic FGD algorithm
	12.4	Some loss functions and boosting algorithms
		12.4.1 Regression
		12.4.2 Binary classification
		12.4.3 Poisson regression
		12.4.4 Two important boosting algorithms
		12.4.5 Other data structures and models
	12.5	Choosing the base procedure
		12.5.1 Componentwise linear least squares for generalized linear
		models
		12.5.2 Componentwise smoothing spline for additive models 400
		12.5.3 Trees
		12.5.4 The low-variance principle
		12.5.5 Initialization of boosting
	12.6	L_2 Boosting
		12.6.1 Nonparametric curve estimation: some basic insights
		about boosting
		12.6.2 L_2 Boosting for high-dimensional linear models
	12.7	Forward selection and orthogonal matching pursuit
		12.7.1 Linear models and squared error loss
	12.8	Proofs
		12.8.1 Proof of Theorem 12.1
		12.8.2 Proof of Theorem 12.2
		12.8.3 Proof of Theorem 12.3
	Prob	lems

13	Graphical modeling	433
	13.1 Organization of the chapter	433
	13.2 Preliminaries about graphical models	434
	13.3 Undirected graphical models	434
	13.3.1 Markov properties for undirected graphs	434
	13.4 Gaussian graphical models	435
	13.4.1 Penalized estimation for covariance matrix and edge set	436
	13.4.2 Nodewise regression	440
	13.4.3 Covariance estimation based on undirected graph	442
	13.5 Ising model for binary random variables	444
	13.6 Faithfulness assumption	445
	13.6.1 Failure of faithfulness	446
	13.6.2 Faithfulness and Gaussian graphical models	448
	13.7 The PC-algorithm: an iterative estimation method	449
	13.7.1 Population version of the PC-algorithm	449
	13.7.2 Sample version for the PC-algorithm	451
	13.8 Consistency for high-dimensional data	453
	13.8.1 An illustration	455
	13.8.2 Theoretical analysis of the PC-algorithm	456
	13.9 Back to linear models	462
	13.9.1 Partial faithfulness	463
	13.9.2 The PC-simple algorithm	465
	13.9.3 Numerical results	468
	13.9.4 Asymptotic results in high dimensions	471
	13.9.5 Correlation screening (sure independence screening)	474
	13.9.6 Proofs	475
	Problems	480
14	Probability and moment inequalities	481
	14.1 Organization of this chapter	481
	14.2 Some simple results for a single random variable	. 482
	14.2.1 Sub-exponential random variables	482
	14.2.2 Sub-Gaussian random variables	. 483
	14.2.3 Jensen's inequality for partly concave functions	485
	14.3 Bernstein's inequality	486
	14.4 Hoeffding's inequality	487
	14.5 The maximum of <i>p</i> averages	489
	14.5.1 Using Bernstein's inequality	489
	14.5.2 Using Hoeffding's inequality	491
	14.5.3 Having sub-Gaussian random variables	493
	14.6 Concentration inequalities	494
	14.6.1 Bousquet's inequality	494
	14.6.2 Massart's inequality	496
	14.6.3 Sub-Gaussian random variables	496
	14.7 Symmetrization and contraction	497

14.8 Concentration inequalities for Lipschitz loss functions	. 500
14.9 Concentration for squared error loss with random design	. 504
14.9.1 The inner product of noise and linear functions	. 505
14.9.2 Squared linear functions	. 505
14.9.3 Squared error loss	. 508
14.10 Assuming only lower order moments	. 508
14.10.1 Nemirovski moment inequality	. 509
14.10.2 A uniform inequality for quadratic forms	. 510
14.11 Using entropy for concentration in the sub-Gaussian case	. 511
14.12 Some entropy results	. 516
14.12.1 Entropy of finite-dimensional spaces and general convex	
hulls	. 518
14.12.2 Sets with restrictions on the coefficients	. 518
14.12.3 Convex hulls of small sets: entropy with log-term	. 519
14.12.4 Convex hulls of small sets: entropy without log-term	. 520
14.12.5 Further refinements	. 523
14.12.6 An example: functions with $(m-1)$ -th derivative of	
bounded variation	. 523
14.12.7 Proofs for this section (Section 14.12)	. 525
Problems	. 535
Author Index	. 539
Index	. 543
References	. 547