Inhaltsverzeichnis

Vorw	ort		V
Auto	renverze	ichnis	XXX
To:1	I Dwo	duktantatahungannagaga fün Laighthaukampanantan und gygtama	4
1611	1 - FIG	oduktentstehungsprozess für Leichtbaukomponenten und -systeme	1
1		ozess der Produktentstehung	_
	Albert 2	Albers, Andreas Braun	5
1.1	Grundl	agen	7
	1.1.1	Modellierung von Produktentstehungsprozessen	
	1.1.2	Grundlagen der Systemtechnik	
	1.1.3	Bekannte Prozessmodelle	
	1.1.4	Grenzen herkömmlicher Prozessmodelle	12
	1.1.5	Neues Modell für einen Produktentstehungsprozess –	
		Controlling vs. Entwicklerunterstützung	14
	1.1.5.1	Controlling im Mittelpunkt	14
	1.1.5.2	Unterstützung von Entwicklern	15
1.2	Das int	egrierte Produktentstehungs-Modell (iPeM)	16
	1.2.1	Hypothesen der Produktentstehung	16
	1.2.2	Begriffe und Elemente des iPeM	18
	1.2.2.1	Aktivitätenmatrix	18
	1.2.2.2	Aktivitäten der Produktentstehung	19
	1.2.2.3	Problemlösungsprozess SPALTEN	21
	1.2.2.4	Das Systemtriple aus Ziel-, Objekt- und Handlungssystem	22
	1.2.2.5	Ressourcen	22
	1.2.2.6	Phasenmodell	23
	1.2.2.7	Erfahrung und Wissen im Produktentstehungsprozess	23
	1.2.3	Modellebenen	
1.3		dung des iPeM bei der Entwicklung einer Felge aus kohlenstofffaserverstärkem Kunststoff	
1.4		menfassung	
1.5	Weiter	führende Informationen	30
2	Techno	ologiemanagement für den Leichtbau	
	Joachin	n Warschat, Stefanie Bunzel	31
2.1	Dimen	sionen des Technologiemanagements im Umfeld Leichtbau	33
	2.1.1	Grundlagen des strategischen Technologiemanagements	
	2.1.2	Auslöser von Innovationen	
	2.1.3	Technologieadaption - Chance für die Produktentwicklung	
2.2		lische Unterstützung bei der Identifikation von Technologiepotenzialen	
	2.2.1	Identifikation von Leichtbaupotenzialen	
	2.2.2	Bewertung von Technologiealternativen für verschiedene Märkte	42

2.3		ıng und Abstimmung von Technologiestrategien	
2.4		Führende Informationen	
2.5	weiteri	tunrende informationen	
3	Leichtl	baustrategien und Bauweisen	
	Gundol	lf Kopp, Norbert Burkardt, Neven Majić	57
3.1	Einloit	ung	50
3.2		erungen an Leichtbaukonstruktionen	
3.3		oaustrategien	
3.5	3.3.1	Bedingungsleichtbau	
	3.3.2	Konzeptleichtbau	
	3.3.3	Stoffleichtbau	
	3.3.4	Formleichtbau	
	3.3.5	Fertigungsleichtbau	
	3.3.6	Leichtbau versus Kosten	
3.4		isen	
	3.4.1	Differentialbauweise	
	3.4.2	Integralbauweise	
	3.4.3	Modulbauweise	
	3.4.4	Verbundbauweise	72
	3.4.4.1	Hybridbauweise	73
	3.4.4.2	Multi-Material-Design	73
3.5	Fazit		75
3.6	Weiter	führende Informationen	75
4	Virtue	elle Produktentwicklung	
		Albers, Neven Majić, Andreas Schmid	77
	0		
4.1		utergestützte Konstruktion – Computer Aided Design (CAD)	
4.2	_	utergestützte Entwicklung (CAE)	
	4.2.1	Produktsimulation mit der Finite-Elemente-Methode (FEM)	
	4.2.2 4.2.3	Kurzer Rückblick auf die Entwicklung der FEM	
	4.2.3	Anwendungsbereiche der FEM	
	4.2.4	FEM-Programme	
	4.2.6	Ablauf einer FEM-Analyse	
4.3		Literatur zu Berechnungsprogrammen und zu FEM	
4.3	4.3.1	uroptimierung	
	4.3.1.1	Topologicoptimicrung cines Februardhametraeftranstärlens	
	4.3.1.2	I O F O	
	4.3.1.2	Formoptimierung emes reigensterns	
	4.3.2.1		
		2 FE-Netz-basierte Formoptimierung	
	4.3.2.3	Beispiel zur Netz-basierten Formoptimierung	98
			········ 98

	4.3.3	Formoptimierung mit Sicken	104
	4.3.3.1	Beispiel zur Versickung einer Ölwanne	
	4.3.4	Parameteroptimierung	
4.4	Fazit		
4.5		ührende Informationen	
5	System	leichtbau – ganzheitliche Gewichtsreduzierung	
	Albert A	Albers, Norbert Burkardt	115
5.1	Definit	onen der Begriffe	117
5.2	Rahme	nbedingungen für den Systemleichtbau	120
5.3	Analys	e und Synthese des technischen Systems	122
	5.3.1	Funktionsintegration in einem Bauteil	123
	5.3.2	Trennung der Funktionen	123
5.4	Rechne	rgestützte Methoden im Systemleichtbau	124
	5.4.1	Topologieoptimierung von Elementen in einem technischen System	125
	5.4.2	Optimierung von mechatronischen Systemen	125
	5.4.3	Automatische Lastenermittlung	127
5.5	Konstru	ıktion eines Roboterarms	127
5.6	Fazit		131
5.7	Weiterf	ührende Informationen	132
6		rung im Produktentstehungsprozess	
	Albert A	Albers, Tobias Düser	133
6.1		erung und Validierung von Produkteigenschaften	
6.2		le und experimentelle Validierungsumgebung	
6.3		flikte bei der Validierung von Produkteigenschaften im Leichtbau	
6.4		rungsprozess	
6.5	System	leichtbau durch keramische Werkstoffe als Beispiel	139
6.6			
6.7	Weiterf	ührende Informationen	141
7		peispiel aus dem Rennsport	
	Christic	ın Wendland	143
7.1	Bedeut	ung des Leichtbaus im automobilen Rennsport	145
7.2		ung eines Leichtbauteils für einen Rennwagen	
7.3	Ausleg	ung einer Crashstruktur aus CFK unter Berücksichtigung der Sicherheitsanforderungen…	146
7.4	Leichtb	aukonzept eines Heckflügels	
	7.4.1	Heckflügel mit Stützstruktur	
	7.4.2	Heckflügel ohne Stützstruktur	
7.5	Stofflic	her Leichtbau im Rennsport	152
	7.5.1	Bremsscheibe aus CFK	153
	7.5.2	Pedalerie	153

	7.5.3	Getriebegehäuse aus CFK	153
	7.5.4	Stützstrebe aus CFK	
7.6	Zusamr	nenfassung	154
7.7		ührende Informationen	
æ •1	TT TA7.	and the Circulary Labelthan Assessable and Figure abofton	157
Teil	11 - W6	erkstoffe für den Leichtbau – Auswahl und Eigenschaften	15/
1		offauswahl für den Leichtbau	
	Kay We	idenmann, Alexander Wanner	161
1.1	Werkst	offe und ihre Eigenschaften	163
1.2	Allgem	eine Aspekte der Werkstoffauswahl	166
	1.2.1	Informationsquellen	166
	1.2.2	Darstellen und Vergleichen von Werkstoffeigenschaften	166
	1.2.3	Werkstoffauswahl im Produktentstehungsprozess	167
1.3	Auswal	hlstrategien	168
	1.3.1	Anforderungsprofil und Werkstoffbewertung	168
	1.3.2	Werkstoffindices zur Bewertung von Werkstoffen	170
1.4	Werkst	offauswahl mit Werkstoffindices	171
	1.4.1	Leichtbaurelevante Werkstoffindices	174
	1.4.2	Werkstoffauswahldiagramme	
1.5	Mehrfa	che Randbedingungen und konkurrierende Ziele	177
	1.5.1	Mehrfache Randbedingungen	
	1.5.2	Konkurrierende Ziele	178
1.6	Einflus	s der Bauteilform	181
	1.6.1	Grundsätzliches	181
	1.6.2	Form und Effizienz	181
	1.6.3	Der Formfaktor	182
	1.6.4	Rolle des Formfaktors bei der Werkstoffauswahl	183
1.7	Beschr	änkungen durch den Bauraum	184
	1.7.1	Grundsätzliches	184
	1.7.2	Auswahlstrategie bei beschränktem Bauraum	184
	1.7.3	Weitere Bauteile und Lastfälle	186
1.8		menfassung	
1.9	Weiter	führende Informationen	188
2	Stähle		
	Wolfga	ng Bleck	191
2.1	Stähle	sind vielseitige Werkstoffe	193
2.2	Hochfe	ste Flachprodukte	193
	2.2.1	Stähle für Feinstblech (< 0,5 mm)	193
	2.2.2	Stähle für Feinblech (0,5-3 mm)	196
	2.2.2.1	Bake Hardening-Stähle	199

	2.2.2.2 Phosphorlegierte Stähle und hochfeste IF-Stähle	200
	2.2.2.3 Mikrolegierte Stähle (HSLA-Stähle)	201
	2.2.2.4 DP-Stähle (Dualphasen-Stähle)	201
	2.2.2.5 TRIP-Stähle oder RA-Stähle (Restaustenit-Stähle)	202
	2.2.2.6 CP-Stähle (Complexphasen-Stähle)	202
	2.2.2.7 PM-Stähle (teilmartensitische Stähle)	203
	2.2.3 Stähle für Bleche in größeren Dicken	205
	2.2.4 Stähle für das Pressformen	211
2.3	Stähle für Schmiedestücke	214
2.4	Stähle für hochfeste Drähte	217
2.5	Höchstfeste Stähle	
	2.5.1 Höchstfeste Vergütungsstähle	
	2.5.2 Höchstfeste martensitaushärtende Stähle (Maraging-Stähle)	219
2.6	Recyclierverhalten von Stahl	
2.7	Weitere Informationen	220
3	Aluminiumwerkstoffe	
	Jürgen Hirsch, Friedrich Ostermann	221
3.1	Aluminium als reiner Stoff	225
3.2	Aluminiumlegierungen	226
	3.2.1 Einteilung und Nomenklatur	
	3.2.2 Knetlegierungen für Strukturbauteile	
	3.2.2.1 Mittelfeste Strukturwerkstoffe der Legierungsgruppe Al-Mg (EN AW-5xxx)	229
	3.2.2.2 Mittelfeste Strukturwerkstoffe der Legierungsgruppe Al-MgSi (EN AW-6xxx)	233
	3.2.2.3 Mittelfeste Strukturwerkstoffe der Legierungsgruppe Al-ZnMg (EN AW-7xxx)	235
	3.2.2.4 Hochfeste Al-Cu- und Al-ZnMgCu-Legierungen der Serien AW-2xxx und AW-7xxx	236
	3.2.3 Gusslegierungen für Strukturbauteile	236
3.3	Be- und Verarbeitung von Aluminiumwerkstoffen	238
	3.3.1 Formgießen – Urformen	238
	3.3.2 Halbzeuge aus Aluminiumknetlegierungen – Umformen	239
	3.3.2.1 Aluminium-Strangpressprofile	239
	3.3.2.2 Bänder, Bleche und Platten	240
	3.3.2.3 Werkstoffverbunde mit Aluminium	241
	3.3.3 Verarbeitung von Aluminiumhalbzeugen	242
	3.3.3.1 Bearbeitung von Profilen	242
	3.3.3.2 Blechumformung	242
	3.3.4 Trennen von Aluminiumlegierungen	244
	3.3.5 Oberflächenbehandlungen	244
	3.3.6 Fügen	
	3.3.7. Reparaturmöglichkeiten	246
3.4	Konstruktive Gesichtspunkte	246
	3.4.1 Gewichtseinsparungsgrundsätze	
	3.4.2. Elastische Werkstoffeigenschaften und Leichtbaugrad	
	3.4.3 Verhalten unter schlagartiger Beanspruchung	249

	3.4.4 Schwingfestigkeitsgrundsätze	249
3.5	Recycling	
3.6	Anwendung von Aluminiumwerkstoffen	
3.7	Zusammenfassung	252
3.8	Weiterführende Informationen	
4	Magnesiumwerkstoffe	
	Peter Kurze	255
4.1	Magnesium als reines Metall	
4.2	Magnesiumlegierungen	
	4.2.1 Einteilung und Nomenklatur von Magnesiumlegierungen	
	4.2.2 Einfluss der Legierungselemente	
4.3	Eigenschaften von Magnesiumlegierungen	
	4.3.1 Mechanische Eigenschaften	
	4.3.2 Physikalische Eigenschaften	
	4.3.3 Chemische Eigenschaften	
4.4	Korrosion und Korrosionsschutz	
	4.4.1 Korrosion	
	4.4.2 Korrosionsschutz	
	4.4.2.1 Zusatz von ausgewählten Legierungselementen	
	4.4.2.2 Oberflächenbehandlung von Magnesiumwerkstoffen	
4.5	Verarbeitung und Bearbeitung von Magnesiumlegierungen	
	4.5.1 Urformen	
	4.5.2 Umformen	
	4.5.3 Fügen von Magnesiumlegierungen	
4.6	Anwendung von Magnesiumlegierungen	
	4.6.1 Automobilbau	
	4.6.2 Elektronik	
	4.6.3 Maschinenbau	
4.7	4.6.4 Raumfahrt	
4.7	Fazit	
5	Titanwerkstoffe	
•	Heinz Sibum und Jürgen Kiese	281
		201
5.1	Titan als Metall	
5.2	Einteilung der Titanwerkstoffe	
	5.2.1 Reintitan	
	5.2.2 Titanlegierungen	
5.3	Eigenschaften von Titanlegierungen	
	5.3.1 Physikalische und technologische Eigenschaften	
	5.3.2 Konsequenzen für eine werkstoffgerechte und kosteneffektive Konstruktion	on
	im Leichtbau	202

5.4	Be- und	ł Verarbeitung von Titanwerkstoffen	293
	5.4.1	Wärmebehandlung	293
	5.4.2	Fügeverfahren	296
	5.4.2.1	Thermisches Fügen	
	5.4.2.2	Mechanisches Fügen	297
	5.4.2.3	Chemisches Fügen	299
	5.4.3	Spanende Bearbeitung	299
	5.4.4	Trennen, Stanzen, Lochen und Abtragen	300
	5.4.5	Umformen	300
	5.4.6	Oberflächenbearbeitung	301
	5.4.6.1	Dekorative Schichten	301
	5.4.6.2	Verschleißschutzschichten	302
	5.4.6.3	Festigkeitsstrahlen	302
5.5	Sicherh	neitsaspekte und Recycling	302
5.6	Halbzei	ugherstellung und Halbzeugformen	303
5.7	Anwen	dungsbeispiele	304
5.8	Zusamı	menfassung und Ausblick	306
5.9	Weiterf	führende Informationen	307
,	77		
6	Kunsts	stotte suffmann	200
	Ахеі Ки	tujjmann	309
6.1	Grundla	agen	313
6.2	Thermo	pplaste	316
	6.2.1	Standardkunststoffe	321
	6.2.2	Technische Kunststoffe	322
	6.2.3	Hochleistungspolymere	322
6.3	Durome	ere	323
	6.3.1	Harzsysteme, Formmassen	323
	6.3.2	Vernetzte Polyurethane	325
6.4	Elaston	nerwerkstoffe	326
	6.4.1	Vernetzte Elastomere (Gummiwerkstoffe, Kautschuk)	326
	6.4.2	Thermoplastische Elastomere (TPE)	326
6.5	Geschä	umte Polymere	328
	6.5.1	Weichelastische Schaumstoffe	330
	6.5.2	Halbharte Schaumstoffe	331
	6.5.3	Harte Schaumstoffe	332
6.6	Füllstof	ffe und Additive	333
6.7	Weiterf	führende Informationen	335

7	Faserv	Faserverstärkte Kunststoffe		
	Frank I	Henning unter Mitarbeit von Klaus Drechsler und Lazarula Chatzigeorgiou	337	
7.1	Das Pri	inzip von Verbundwerkstoffen	341	
7.2	Kunsts	stoffe als Matrix	342	
7.3	Verstäi	rkungsfasern und ihre Eigenschaften	344	
	7.3.1	Glasfasern	344	
	7.3.2	Kohlenstofffasern	346	
	7.3.3	Aramidfasern	348	
	7.3.4	Naturfasern	350	
7.4	Textile	Halbzeuge	352	
	7.4.1	Matten und Vliese	354	
	7.4.2	Gewebe	354	
	7.4.3	Gelege	356	
	7.4.4	Geflechte	357	
	7.4.5	Gesticke	359	
	7.4.6	Fibre Patch Preforming	361	
	7.4.7	Nähtechnologie	361	
	7.4.8	Bindertechnologie	365	
7.5	Imprä	gnierte Halbzeuge	365	
	7.5.1	Duromere Systeme	366	
	7.5.2	Nicht-fließfähige (endlosfaserverstärkte) Duromerprepregs	368	
	7.5.2	Thermoplastische Systeme	370	
7.6	Eigens	schaften von faserverstärkten Kunststoffen	376	
	7.6.1	Haftung zwischen Matrix und Faser	378	
	7.6.2	Einfluss auf Festigkeit und Steifigkeit	379	
7.7	Anwe	ndungsgebiete	383	
7.8	Weiter	rführende Informationen	390	
8		ische Keramik		
	Walter	r Krenkel	393	
8.1		turkeramiken für Leichtbauanwendungen		
	8.1.1	Eigenschaften im Vergleich zu anderen Konstruktionswerkstoffen		
	8.1.2	Keramische Wälzlager für die Antriebstechnik		
	8.1.3	Leichtbau-Kameragehäuse aus Siliciumnitrid		
8.2		tbau mit Faserverbund-Keramiken		
	8.2.1	Keramische Verbundwerkstoffe		
	8.2.2	Verstärkungsfasern		
	8.2.3	Herstellverfahren für CMC-Bauteile		
	8.2.4	Eigenschaften der CMC-Werkstoffe		
	8.2.5	Hochtemperatur-Leichtbau in der Raumfahrt		
	8.2.6	Keramische Leichtbaubremsen		
8.3		nmenfassung und Ausblick		
8.4	Weite	rführende Informationen	410	

9	Hybride Werkstoffverbunde	
	Frank Henning, Kay Weidenmann, Bernd Bader	413
9.1	Verbundwerkstoffe vs. Werkstoffverbund	415
9.2	Grundlagen der Hybridisierung	416
9.3	Leichtbaurelevante Hybridkonzepte	419
	9.3.1 Kunststoff-Metall-Hybride	419
	9.3.2 Kunststoff-Kunststoff-Hybride	422
	9.3.3 Kunststoff-Keramik-Hybride	424
	9.3.4 Kunststoff-Holz-Hybride	425
9.4	Zusammenfassung	427
9.5	Weiterführende Informationen	427
Teil	l III – Fertigungsverfahren im Leichtbau – Formgebung, Be- und Verarbeitung	429
1	Urformen von metallischen Leichtbauwerkstoffen	
-	Andreas Bührig-Polaczek unter Mitarbeit von Samuel Bogner,	
	Stephan Freyberger, Matthias Jakob,	
	Gerald Klaus, Heiner Michels, Christian Oberschelb, Uwe Vroomen	433
1.1	Gießen	
	1.1.1 Verfahrensspezifische Möglichkeiten zur gegossenen Leichtbaukonstruktion	437
	1.1.1.1 Konstruieren von Gussteilen	437
	1.1.1.2 Charakteristische Größen der Gießprozesse	438
	1.1.2 Auswirkungen von Prozess und Legierung auf die Eigenschaften des Bauteils	
	1.1.2.1 Auswirkungen der Erstarrungsbedingungen auf Gefüge und Festigkeit	
	1.1.2.2 Gießbare Magnesiumwerkstoffe	
	1.1.2.3 Gießbare Aluminiumlegierungen	
	1.1.2.4 Titanlegierungen für den Formguss	440
	1.1.2.5 Gusseisenwerkstoffe und gießbare Stähle	441
	1.1.2.6 Hybride Werkstoffe	
	1.1.3 Verfahren der Gießereitechnik	
	1.1.3.1 Dauerform und verlorene Form	443
	1.1.3.2 Wirkgrößen im Gießprozess	443
	1.1.3.3 Schmelze, Gießen und Nachbearbeitung	
	1.1.4 Schwerkraftguss	
	1.1.4.1 Schwerkraftkokillenguss	447
	1.1.4.2 Schwerkraftsandguss	
	1.1.4.3 Eignung des Sandgussverfahrens für den Leichtbau	
	1.1.5 Das Niederdruck-Kokillengießverfahren	
	1.1.6 Das Druckgießverfahren	453
	1.1.7 Das Feingussverfahren	
	1.1.7.1 Leichtbau im Feinguss	457

	1.1.7.2	Beispiele von Feingussbauteilen	
	1.1.8	Ausblick	459
	1.1.9	Weiterführende Informationen	461
Hans	Claus Ne	eubing, Klaus Hummert	
1.2	Sintern	l	462
	1.2.1	Herstellen des Pulvers	
	1.2.1.1	Pulverlegierungstechnik	
	1.2.1.2	Pulvermischungen zum Flüssigphasensintern	464
	1.2.1.3	Pulvermischungen zum Hetero-Supersolidus-Flüssigphasensintern (SLPS)	
	1.2.1.4	Zubereiten der pressfertigen Mischungen	
	1.2.2	Herstellung von Aluminium-Sinterformteilen	465
	1.2.2.1	Formgebung durch Pulverpressen	
	1.2.2.2	Sintern des Pulvers	466
	1.2.2.3	Sinterschmieden	467
	1.2.2.4	Nachbearbeitung der Aluminium-Sinterformteile	468
	1.2.3	Anwendungsbeispiele für Aluminium-Sinterformteile	469
	1.2.3.1	Nockenwellenlagerdeckel	469
	1.2.3.2	Komponenten für Nockenwellenversteller (Camphaser)	470
	1.2.4	Herstellung von Aluminium-Hochleistungswerkstoffen	470
	1.2.4.1	Fertigung schnell erstarrter Aluminiumwerkstoffe (RS-Werkstoffe)	471
	1.2.4.2	Eigenschaften von RS-Werkstoffen	472
	1.2.4.3	Anwendungsbeispiele für RS-Aluminiumwerkstoffe	475
	1.2.5	Ausblick	475
	1.2.6	Weiterführende Information	476
2	Umfor	rmen von metallischen Leichtbauwerkstoffen	
	Sami (Chatti, Daniel Pietzka, Alessandro Selvaggio, Michael Trompeter, A. Erman Tekkaya	477
2.1	Herste	ellung von Leichtbaustrukturen aus Blech durch Umformen	481
	2.1.1	Unterschiedliche Leichtbaustrategien	
	2.1.2	Erweiterte Formgebungsgrenzen durch wirkmedienbasierte Blechumformverfahren	
	2.1.3	Herstellung belastungsangepasster Blechformteile	
	2.1.4	Presshärten höchstfester Blechformteile	
	2.1.5	Hybridbauweisen auf Basis von Blechhalbzeugen	
	2.1.6	Weiterführende Informationen zu 2.1	
2.2	Herste	ellung von Leichtbaustrukturen durch Massivumformung	
	2.2.1	Einordnung der Massivumformung und deren Verfahren	
	2.2.2	Strangpressen	
	2.2.2.1		
	2.2.2.2	2 Verfahrensprinzip des Strangpressens	497
		3 Warmstrangpressen und Wärmebehandlung	
		Runden beim Strangpressen	
		5 Verbundstrangpressen	

	2.2.3	Schmieden	505
	2.2.3.1		
	2.2.3.2	Gesenkschmieden	506
	2.2.3.3	Werkzeugversagen	508
	2.2.4	Weiterführende Informationen zu 2.2	508
2.3	Herste	llung von Leichtbaustrukturen durch Biegeumformung	509
	2.3.1	Profile als Basis für den Leichtbau	509
	2.3.2	Herstellung von geraden Profilen durch Biegen	510
	2.3.3	Herstellung von belastungsangepassten Profilen durch Biegen	516
	2.3.4	Biegen von Rohren und Profilen	519
	2.3.5	Biegen von belastungsangepassten Rohren und Profilen	524
2.4	Zusam	menfassung	526
2.5	Weiter	führende Informationen zu 2.3	527
3		en von metallischen Leichtbauwerkstoffen	
	Volker .	Schulze, Jürgen Michna	531
3.1	Zerteil	en	535
	3.1.1	Verfahren des Zerteilens	535
	3.1.2	Verschleiß und Formfehler an der Schnittfläche	536
	3.1.3	Zerteilen von NE-Metallen	536
3.2	Spaner	n mit geometrisch bestimmter Schneide	538
	3.2.1	Einfluss auf den Prozess des Zerspanens	
	3.2.2	Zerspanen von NE-Metallen	541
		Titanzerspanung	
	3.2.2.2	Magnesiumzerspanung	545
		Aluminiumzerspanung	
3.3	Spaner	n mit geometrisch unbestimmter Schneide	
	3.3.1	Wasserstrahlschneiden	
	3.3.2	Schleifen	
3.4	Abtrag	en	
	3.4.1	Laserbearbeitung	
	3.4.2	Funkenerosives Abtragen	
3.5		menfassung	
3.6	Weiter	führende Informationen	552
4	0	schaftsänderungen bei metallischen Leichtbauwerkstoffen	
	Alexan	der Erz, Jürgen Hoffmeister, Volker Schulze	555
4.1	Verfest	tigung durch Umformen	559
	4.1.1	Verfestigungsstrahlen (Kugelstrahlen)	559
	4.1.2	Verfestigung durch Walzen (Festwalzen)	560
4.2	Wärme	ebehandlung	560
	4.2.1	Härten	560
	4.2.1.1	Martensitische Umwandlung	560

	4.2.1.2 Zeit-Temperatur-Umwandlungsschaubilder (ZTU-Schaubilder)	562
	4.2.1.3 Härtbarkeit von Stahl	
	4.2.2 Vergütung von Stahl	
	4.2.3 Chemische Verfahren bei Stählen	566
	4.2.4 Aushärten am Beispiel einer Aluminiumlegierung	
	4.2.5 Aushärtung von Magnesiumlegierungen	
	4.2.6 Härten und thermomechanisches Behandeln von Titanlegierungen	
4.3	Zusammenfassung	
4.4	Weiterführende Informationen	574
5	Verarbeitung von Kunststoffen	
	Axel Kauffmann	577
5.1	Extrusion	581
	5.1.1 Rohr- und Profilextrusion	582
	5.1.2 Extrusionsblasformen	583
5.2	Spritzgießen	585
	5.2.1 Thermoplast-Spritzgießen	587
	5.2.2 Elastomer-Spritzgießen	588
	5.2.3 Duroplast-Spritzgießen	588
	5.2.4 Sonderverfahren	589
5.3	Schäumverfahren	592
	5.3.1 Extrusionsschäumen	592
	5.3.2 Partikelschäumen	
	5.3.3 Polyurethanschäumen	595
5.4	Pressen	-
5.5	Tiefziehen	
5.6	Rotationsformen	
5.7	Zusammenfassung	
5.8	Weiterführende Informationen	600
6	Verarbeitung faserverstärkter Kunststoffe	
	Frank Henning	603
6.1	Verarbeitung kurzfaserverstärkter Kunststoffe	
	6.1.1 Verfahren mit duromerer Matrix	
	6.1.1.1 Bulk Moulding Compound (BMC)	
	6.1.1.2 Reinforced-Reaction Injection Moulding (R-RIM)	
, -	6.1.2 Verfahren mit thermoplastischer Matrix	
6.2	Verarbeitung langfaserverstärkter Kunststoffe	
	6.2.1 Herstellung langfaserverstärkter Duromerer	
	6.2.1.1 Fasersprühen von Polyurethan	610
	6.2.1.2 Fließpressen von SMC	611
	6.2.1.3 Herstellung langfaserverstärkter duromerer Compounds im Direktverfahren.	613
	6.2.2 Herstellung langfaserverstärkter Thermoplaste	616

ermopaste	617617618621623
moplaste im Direkt-Verfahren	617618621623
ärkte Thermoplaste im Vergleich moplasteserverstärkte Langfaserverbundesermoplaste Duromerbauteile	618 621 623
moplasteserverstärkte LangfaserverbundeermoplasteDuromerbauteile	621 623 623
serverstärkte LangfaserverbundeermoplasteDuromerbauteile	623
ermoplaste Duromerbauteile	623
Duromerbauteile	
laminierens	
•	
_	
	669
	673
•••••••••••	083
	∠n.
	liche Prepreg-Technologien M-Technologien Thermoplastbauteile ssyerfahren de

8	Formgebung bei Technischer Keramik	
	Reinhard Lenk	687
8.1	Technologie der Keramikherstellung	691
8.2	Formgebung Technischer Keramik	
	8.2.1 Prinzipien keramischer Formgebung	693
	8.2.2 Keramische Formgebungsverfahren	696
	8.2.2.1 Pressformgebung	696
	8.2.2.2 Plastische und thermoplastische Formgebung	700
	8.2.2.3 Gießformgebung	704
	8.2.2.4 Sonderverfahren	706
	8.2.3 Binderkonzepte und Entbinderungsverfahren	707
8.3	Komplexe keramische Bauteilstrukturen	708
	8.3.1 Grundlagen	708
	8.3.2 Fertigungstechnische Möglichkeiten und Anwendungsbeispiele für den Leichtbau	711
	8.3.2.1 Direkte Formgebung	712
	8.3.2.2 Formgebung und Fügen	713
	8.3.2.3 Replikationstechniken	715
	8.3.2.4 Verwendung von Trägermaterialien (PT-Keramik®)	717
	8.3.2.5 Keramik aus biogenen Rohstoffen	719
8.4	Zusammenfassung	721
8.5	Weiterführende Informationen	722
9	Fertigungsrouten zur Herstellung von Hybridverbunden	
	Frank Henning, Kay Weidenmann, Bernd Bader	723
9.1	Oberflächenbehandlung als Vorbereitung zur Fertigung	727
	9.1.1 Oberflächenmodifizierung mit Plasma	
	9.1.2 Chemische Aktivierung	
9.2	In-mould Assembly (IMA)	
	9.2.1 Umspritzen und Umpressen	
	9.2.2 Verarbeitung von Organoblechen in hybriden Verbunden	
	9.2.2.1 Allgemeine Aspekte	
	9.2.2.2 Fertigung von verstärkten Bauteilen auf Basis von Organoblechen	
	9.2.3 Fertigungsverfahren für lokal endlosfaserverstärkte Langfaserverbunde	
	9.2.4 Hybride Innenhochdruckumformung	
9.3	Post Moulding Assembly (PMA)	
	9.3.1 Vergleich von PMA und IMA	
	9.3.2 Verbindungstechnik als wesentlicher Aspekt der PMA-Route	
9.4	Fügen von Hybridverbunden mit anderen Bauteilen	
9.5	Zusammenfassung	
9.6	Weiterführende Informationen	

Teil	eil IV – Fügetechnologien im Leichtbau		
1	Mech	anisches Fügen	
		n Hahn, Sushanthan Somasundaram	745
1.1		nieten	
	1.1.1	Verfahrensbeschreibung	
	1.1.2	Qualitätsbestimmende Größen von Stanznietverbindungen	
	1.1.3	Konstruktive Hinweise	
	1.1.4	Einsatzbereich	
	1.1.5	Mechanische Eigenschaften der Verbindungen	
	1.1.6	Systemtechnik zum Stanznieten	
	1.1.7	Prozessüberwachung des Setzvorgangs	
	1.1.8	Nacharbeitslösungen und Reparatur	
	1.1.9	Anwendungsbeispiele für das Stanznieten	
1.2		nieten	
	1.2.1	Blindnietsysteme – genormt und anwendungsbezogen	
	1.2.2	Allgemeine Richtlinien zur Auswahl von Blindnieten	
	1.2.3	Qualitätssicherung	
	1.2.4	Anwendungsbeispiele für das Blindnieten	
1.3		ßringbolzensetzen	
	1.3.1	Schließringbolzensysteme	
	1.3.2	Eigenschaften von Schließringbolzenverbindungen	
	1.3.3	Allgemeine Richtlinien	
	1.3.4	Qualitätssicherung	
	1.3.5	Anwendungsbeispiele für das Schließringbolzensetzen	
1.4		ıen	
	1.4.1	Clinchsysteme	
	1.4.2	Mechanische Eigenschaften von Clinchverbindungen	
	1.4.3	Allgemeine Richtlinien	
	1.4.4	Qualitätssicherung	
	1.4.5	Anwendungsbeispiele für das Clinchen	
1.5		und gewindeformendes Schrauben	
	1.5.1	Schraubsysteme	
	1.5.2	Eigenschaften der Schraubverbindungen	
	1.5.3	Allgemeine Richtlinien	
	1.5.4	Qualitätssicherung	
	1.5.5	Anwendungsbeispiele für Verschraubungen im Automobilbau	
1.6	Hochg	eschwindigkeitsbolzen setzen	
	1.6.1	Grundlagen und Begriffe	
	1.6.2	Verfahrensablauf und Verbindungsausbildung	
	1.6.3	Eigenschaften der Bolzensetzverbindungen im Vergleich mit anderen Verfahren	
	1.6.4	Korrosionsbeständigkeit	
	1.6.5	Setzgerät zum Bolzensetzen	
	1.6.6	Richtlinien zur Konstruktion und Fertigung	819

	1.6.7	Anwendungsbeispiele für das Bolzensetzen	820
1.7		zausgleich	
	1.7.1	Definitionen und Funktionsprinzipien	
	1.7.2	Automatischer rotatorischer Toleranzausgleich	
	1.7.3	Automatischer translatorischer Toleranzausgleich	827
	1.7.4	Manueller Toleranzausgleich	
	1.7.5	Einbauwerkzeuge und Hinweise zur Fertigung	
	1.7.6	Anwendungsbereiche	
1.8	Weiterf	führende Infomationen	
2	Fügen	durch Umformen	
	Michae	el Marré, A. Erman Tekkaya	837
2.1	Fügen	durch Umformen von Rohr- und Profilteilen	839
2.2	Fügen	durch Weiten	840
	2.2.1	Einsatz eines Wirkmediums	841
	2.2.2	Einsatz eines starren Werkzeuges	844
	2.2.3	Einsatz von Wirkenergie	846
2.3	Fügen	durch Engen	847
	2.3.1	Einsatz von Wirkenergie	847
	2.3.2	Einsatz eines starren Werkzeuges	850
2.4	Zusam	menfassung	850
2.5	Weiter	führende Informationen	851
3	Therm	isches Fügen	
	Thoma	s Nitschke-Pagel	853
3.1	Schwei	ißen	855
	3.1.1	Anforderungen an Schweißverfahren für den Leichtbau	
	3.1.2	Übersicht wichtiger Schweißverfahren	
	3.1.2.1		
	3.1.2.2	1	
	3.1.3	Lichtbogenarten beim MSG-Schweißen	
	3.1.4	Wärmereduzierte MSG-Prozesse	
	3.1.4.1	MSG-Prozesse mit Treppenstufenimpuls	
	3.1.4.2		
	3.1.4.3		
	3.1.4.4		
	3.1.5	Anwendung der energiereduzierten MSG-Prozesse	
	3.1.6	Schweißen von Leichtmetalldruckguss	
	3.1.7	Besonderheiten beim Schweißen verfestigter Werkstoffe	
	3.1.8	Weiterführende Informationen	882

Jean Pierre Bergmann

3.2	Löten		886
	3.2.1	Löten als stoffschlüssiges Fügeverfahren	886
	3.2.2	Löten artgleicher Werkstoffe	889
	3.2.2.1	Löten von Stählen	889
	3.2.2.2	Löten von Aluminiumwerkstoffen	892
	3.2.2.3	Löten von Magnesiumwerkstoffen	892
	3.2.2.4	Löten von Titanwerkstoffen	893
	2.2.3	Löten von Mischverbindungen	893
	3.2.4	Fazit	895
	3.2.5	Weiterführende Informationen	896
4	Kleben	1	
	Klaus L	Dilger	899
4.1	Kleben	als Fügeverfahren	903
	4.1.1	Klebgerechte Gestaltung	
	4.1.1.1	Kleben geschlossener Profile	
	4.1.1.2	Kleben von T-Stößen	
	4.1.2	Klebstoffe für den Leichtbau	907
	4.1.2.1	Epoxidharzklebstoffe	907
	4.1.2.2	Polyurethanklebstoffe	909
4.2	Vorbeh	andlung der Oberflächen zum Kleben	909
4.3	Leichtb	pauwerkstoffe und deren Klebbarkeit	909
	4.3.1	Kleben von Stahlblechen	911
	4.3.2	Kleben formgehärteter Stahlbauteile	911
	4.3.3	Kleben von Aluminiumblechen	915
	4.3.4	Kleben von Aluminium-Druckguss	917
	4.3.5	Kleben von Magnesium	920
	4.3.6	Kleben von Titan	921
	4.3.7	Kleben lackierter Bleche	921
	4.3.8	Kleben von Kunststoffen	923
	4.3.8.1	Kleben thermoplastischer Kunststoffe	923
	4.3.8.2	Kleben von Elastomeren	924
	4.3.8.3	Kleben von Duromeren	
	4.3.9	Kleben von Faserverbundwerkstoffen	
4.4	Rechne	erische Auslegung von Leichtbauklebungen	
	4.4.1	Analytische Berechnungsmethoden für Klebverbindungen	
	4.4.1.1	Berechnung von dünnen, strukturellen Klebschichten	
	4.4.1.2	Berechnung von flexiblen, gummielastischen Klebschichten	
	4.4.2	Numerische Berechungsmethoden für Klebverbindungen	
		Berücksichtigung mehrachsiger Spannungszustände	
	4.4.2.2	Kohäsivzonenmodelle	933

4.5	Kleben im Fahrzeugbau	934
	4.5.1 Kleben im Karosserie-Rohbau	934
	4.5.2 Kleben in der Automobilmontage	936
4.6	Zusammenfassung	
4.7	Weiterführende Informationen	937
5	Hybridfügen	0.44
	Ortwin Hahn, Sushanthan Somasundaram	941
5.1	Grundlagen des Hybridfügens	943
5.2	Fertigung nach verschiedenen Verfahren	944
5.3	Eigenschaften der Verbindungen und deren Prüfung	947
	5.3.1 Qualitätssicherung	947
	5.3.2 Quasistatische Beanspruchung	948
	5.3.3 Schwingende Beanspruchung	950
	5.3.4 Schlagartige Beanspruchung	950
	5.3.5 Alterungs- und Korrosionsverhalten	953
	5.3.6 Temperaturabhängigkeit der Verbindungseigenschaften	954
5.4	Besonderheiten bei loch- und gewindeformendem Schrauben in Kombination mit dem Kleben	
5.5	Anwendungsbeispiele	957
5.6	Weiterführende Informationen	960
6	Qualitätssicherung in der Produktion Jens Ridzewski	961
6.1	Ziele der Qualitätssicherung	963
6.2	Qualitätsmanagement – eine Unternehmensphilosophie	964
6.3	Maßnahmen zur Qualitätssicherung	966
	6.3.1 Aufgaben in der Produktion von Faserverbundbauteilen	966
	6.3.2 Einteilung der Qualitätssicherungsmaßnahmen	967
	6.3.3 OS-Maßnahmen bei zulassungspflichtigen Bauteilen im Bauwesen	970
	6.3.3.1 Einteilung	970
	6.3.3.2 Eigenüberwachung	970
	6.3.3.3 Fremdüberwachung	971
6.4	Prüfverfahren an faserverstärkten Kunststoffen	971
	6.4.1 Werkstoffprüfung	971
	6.4.1.1 Übersicht der Verfahren	
	6.4.1.2 Zerstörungsfreie Prüfverfahren	972
	6.4.1.3 Rheologische Prüfverfahren	973
	6.4.1.4 Physikalische Prüfverfahren	974
	6.4.1.5 Prüfverfahren zur Bestimmung der mechanischen Eigenschaften	
	6.4.1.6 Prüfverfahren zur Bestimmung der thermischen Eigenschaften	
	6.4.1.7 Bewertung auf Eignung für die werkseigene Produktionskontrolle	
	6.4.1.8 Übersicht über weitere Prüfnormen	
	6.4.2 Bauteilprüfung	

6.5	Zusam	menfassung	986
6.6	Weiter	ührende Informationen	987
Teil	V – Be	wertung von Bauteilen und Leichtbaustrukturen	989
1		toffmodelle für die Prozess- und Bauteilsimulation nn Riedel	993
1.1	Dogghn	eibung von Plastizitätsmodellen	007
1.1	1.1.1	Überblick	
	1.1.1	von Mises-Modell	
	1.1.2	Chaboche-Modell	
	1.1.4	Anwendung des Chaboche-Modells auf die Rückfederung	
	1.1.5	Phänomenologische Modelle für Anisotropie	
	1.1.6	Texturmodelle	
	1.1.7	Anwendung von Texturmodellen auf Leichtbauwerkstoffe	
1.2		eibung von Schädigungs- und Versagensmodellen	
1.2	1.2.1	Bruchmechanismen	
	1.2.2	Bruchkriterien für duktilen Bruch	
	1.2.3	Schädigungsmechanik für duktilen Bruch	
	1.2.4	Anwendung des Gologanu-Modells auf die Kantenrissbildung beim Walzen	
	1.2.5	Anwendung des Gologanu-Modells auf das Grenzformänderungsschaubild	
	1.2.6	Faseryerstärkte Kunststoffe	
	1.2.7	Bruchmechanik	
	1.2.8	Weiterführende Informationen	1016
Dong	-Zhi Sun		
1.3	Crashv	erhalten von metallischen Werkstoffen und deren Fügeverbindungen	1020
	1.3.1	Werkstoff- und Versagensmodelle für Crashsimulation	
	1.3.1.1	Werkstoffmodelle für Dehnratenabhängigkeit und Anisotropie	1021
	1.3.1.2	Versagensmodelle	
	1.3.2	Crashsimulation von Aluminium- und Magnesiumwerkstoffen	1023
	1.3.3	Durchgängige Simulation eines TRIP-Stahls vom Umformen bis Crash	1024
	1.3.3.1	Einflüsse der Mehrachsigkeit und Belastungsgeschichte auf die Bruchdehnungen	1024
	1.3.3.2	Versagensmodellierung mit Berücksichtigung von Vordehnungen und Vorschädigung	1025
	1.3.4	Crashsimulation von Fügeverbindungen	1026
	1.3.4.1	Ersatzmodelle für Punktschweißverbindungen	1027
	1.3.4.2	Modellierung von Klebverbindungen	1028
	1.3.4.3	Simulation von Hybridverbindungen (Punktschweißkleben)	1029
	1.3.5	Weiterführende Informationen	1030

Stefan Hiermaier

1.4	Crashve	rhalten von Polymerwerkstoffen	.1033
	1.4.1	Mechanische Eigenschaften unverstärkter Thermoplaste	1033
	1.4.2	Numerische Simulation faserverstärkter Kunststoffe unter Crashlast	.1038
	1.4.3	Weiterführende Informationen	
2	Bedeut	ung der Betriebsfestigkeit im Leichtbau	
		s Büter, Holger Hanselka	.1041
2.1	Einleitu	ing	1043
2.2		sfestigkeit als Basis für die Bauteilauslegung	
	2.2.1	Inhalt des Lastenheftes	
	2.2.2	Formen des Versagens	1051
	2.2.2.1		
	2.2.2.2	Stabilität gegen Knicken und Beulen	
	2.2.2.3	Festigkeitsversagen	1052
	2.2.3	Auswahl des Materials	
	2.2.4	Beispiel 1: Betriebsfeste Auslegung einer hochbelasteten Kunststoffkomponente	
		im Motorraum	
	2.2.4.1		
		Übertragung der Ergebnisse auf ein Bauteil	
		Bewertung mehrachsiger Beanspruchungszustände	
2.3		ische und experimentelle Betriebslastensimulation	
	2.3.1	Materialeigenschaften	
	2.3.2	Mehrachsigkeit	
	2.3.3	Festigkeit von Proben und Bauteilen im Vergleich	
	2.3.4	Schadensakkumulation	
2.4		hkeiten der Betriebsfestigkeit im Entwicklungsprozess	1069
	2.4.1	Beispiel 2: Entwicklung eines innovativen Hochleistungsradsatzes –	
		Besonderheiten bei der Auslegung und Bewertung von Bauteilen aus Metall	1069
	2.4.1.1	Umlaufbiegeversuche unter variablen Amplituden an skalierten Proben	
		zur Reibkorrosion zwischen Aluminium-scheibe und Stahlachse	
	2.4.1.2	, , , , , , , , , , , , , , , , , , , ,	1073
	2.4.2	Beispiel 3: Einsatz faserverstärkter Kunststoffe in Primär- und Sekundärkomponenten – Entwicklung von Kunststoffrädern	1076
	2.4.2.1	Fahrzeugräder aus faserverstärkten Kunststoffen	
		Anforderungen an Kraftfahrzeugräder aus Sicht der Betriebsfestigkeit	
		Mechanisches und physikalisches Verhalten von faserverstärkten Kunststoffen	
		Numerische Betriebsfestigkeitssimulation an Kunststoffrädern	
		Entwicklung einer ersten Bemessungsphilosophie für Kunststoffräder	
		Betriebsfestigkeitsversuche an Kunststoffrädern	
2.5		menfassung	
2.6		führende Informationen	
			IU0/

3	Zerstörungsfreie Prüfung von Werkstoffen und Bauteilen	
	Gerd Dobmann	1091
3.1	Standardisierte ZFP für den Leichtbau	1095
3.2	ZFP-Entwicklungen für die Prüfung von Ausgangswerkstoffen	1097
	3.2.1 Fertigungsprüfung von Feinblechen – prozessintegrierte mikromagnetische Charakte	
	von Werkstoffkenngrößen	_
	3.2.1.1 Das Multiparameter-Konzept 3MA	1100
	3.2.1.2 Mikromagnetische Online-Bestimmung von Streckgrenze und Zugfestigkeit	1102
	3.2.2 ZFP begleitend zur Werkstoffentwicklung hochfester Karosseriestähle –	
	mikromagnetische Charakterisierung von plastischem Verformungsverhalten	1105
	3.2.2.1 ZFP-Verfahren zum Online-Monitoring der plastischen Verformung an Dualphasen-St	ahl 1106
	3.2.2.2 Monitoring von Laststeigerungsversuchen	1106
	3.2.3 ZFP von Faserverbundwerkstoffen	1110
	3.2.3.1 ZFP von Faserverbundmaterial mit Ultraschall	1110
	3.2.3.2 Thermographie von Faserverbundwerkstoffen	1111
	3.2.3.3 Wirbelstromprüfung von CFK	1115
3.3	ZFP-Entwicklungen für die Prüfung von Halbzeugen und Werkstoffverbunden	1115
	3.3.1 Fertigungsintegrierte Prüfung von Tailored Blanks	1115
	3.3.2 Fertigungsprüfung von Laserschweißungen	1120
	3.3.3 Fertigungsprüfung mechanischer Fügungen	1121
	3.3.4 Prozessintegrierte Qualitätsüberwachung und -optimierung beim Rührreibschweißer	1122
	3.3.4.1 Unregelmäßigkeiten beim FSW	1123
	3.3.4.2 Zerstörungsfreie Prozessüberwachung beim Rührreibschweißen	1124
	3.3.4.3 Zerstörungsfreier Nachweis von Schlauchporen	1128
	3.3.4.4 Oxideinschlüsse	1131
	3.3.4.5 Mit Leistungsultraschall unterstütztes FSW	1133
3.4	Zusammenfassung	1135
3.5	Weiterführende Informationen	1137
4	Structural Health Monitoring – Schadensdetektion	4444
	Hans-Jürgen Schmidt, Bianka Schmidt-Brandecker	1141
4.1	Einleitung	1143
4.2	SHM-Methoden	1144
4.3	Erfassung von Betriebslasten durch SHM	1146
	4.3.1 Systeme zur Erfassung der Betriebslasten	1146
	4.3.2 Identifizierung von extremen Landelasten (hard landing detection)	1147
	4.3.3 Anpassung der Inspektionsforderungen	1147
	4.3.4 Sicherheitsfaktoren	1148
4.4	Strukturoptimierung durch SHM	1149
	4.4.1 Grundlagen für die SHM-Anwendung am Druckrumpf	1151
	4.4.2 Beispiele zur Gewichtsreduzierung für typische Rumpfschalen	1152
	4.4.3 Alternative Stringer-Überwachung	1155
	4.4.4 Schlussfolgerungen	1155

4.5	Inspekt	ion von Leichtbaustrukturen	1155
	4.5.1	Reduzierung oder Ersatz von konventionellen Inspektionen	
	4.5.2	Reduzierung oder Ersatz von Modifikationen	
	4.5.3	Lebensdauerverlängerung	1157
	4.5.4	Zustandsabhängige Wartung	1158
	4.5.4.1	Erfassung von Betriebslasten	
	4.5.4.2	Kontinuierliche Überwachung	1158
4.6	Ausblic	.k	1159
4.7	Weiterf	ührende Informationen	1159
5	Repara (FVK)	turfähigkeit und Reparaturkonzepte bei Strukturen aus faserverstärkten Kunststoffe	n
	Georg V	Vachinger, Christian Thum, Peter Scheid	1161
5.1	Einleitt	ıng	1163
5.2	Schäde	n und Reparaturen an FVK-Strukturen	1163
	5.2.1	Schadensursachen	1164
	5.2.2	Schadensformen	1164
	5.2.3	Schadensbereiche	1164
	5.2.4	Reparaturkategorien	1165
5.3	Repara	turverfahren monolithischer Verbundwerkstoffe	1165
	5.3.1	Provisorischer Oberflächenschutz mit Reparaturklebebändern	1166
	5.3.2	Schleifen	1166
	5.3.3	Reparatur von Delaminationen mit injizierenden Verfahren	1166
	5.3.4	Reparatur von Delaminationen durch Einsetzen von Nieten	1167
	5.3.5	Reparatur von Schäden durch zusätzliche Lagen	1167
	5.3.5.1	Reparatur durch Auflaminieren	1167
	5.3.5.2	Quick Repair Methode von Boeing	1168
	5.3.6	Schäften als Reparaturverfahren	1169
	5.3.6.1	Allgemeines und Empfehlungen von Airbus	1169
		Empfehlungen von Boeing	
	5.3.6.3	Empfehlung von EADS	1172
	5.3.7	Verfahren mit Aufdopplung	1176
5.4	Repara	tur von Sandwichstrukturen	1180
	5.4.1	Anbindungsfehler zwischen Wabe und Decklaminat	1180
	5.4.2	Oberflächenversiegelung bei zulässigen Schadensgrößen	
	5.4.3	Beschädigung von Decklaminat und Kernstruktur	
	5.4.4	Reparatur bei einem durchgehenden Schaden	1186
5.5	Fazit		1187
5.6	Weiters	gehende Informationen	1197

6	Recycli	ingfähigkeit und End-of-Life-Konzept im Leichtbau	
	Jörg Wo	idasky	1189
6.1	Ressou	rceneffizienz als Leitbild	1193
6.2		Life-Konzept	
6.3	Beispie	le für das Recycling von Leichtbauwerkstoffen	1195
	6.3.1	Materialidentifikation als Schlüsselprozess: Metalle in Luftfahrtanwendungen	1197
	6.3.2	Mechanische Aufbereitung als Schlüsselprozess: Werkstoffliche Kreislaufführung von GFK	1198
	6.3.2.1	Ausgangsmaterialien	1199
	6.3.2.2	Aufbereitungstechnik	1199
	6.3.2.3	Produkte	1199
	6.3.3	Thermische Behandlung als Schlüsselprozess: Pyrolyseprozesse zur Rückgewinnung von Kohlenstofffasern	1200
	6.3.4	Kombination mit der Rohstofferzeugung als Schlüsselprozess: GFK-Verwertung im Zementwerk	
6.4		sfolgerungen	
6.5		ührende Informationen	
Teil	VI – Ga	anzheitliche Bilanzierung	1205
1	Ganzhe	eitliche Bilanzierung und Nachhaltigkeit im Leichtbau	
1		Baitz	1207
1.1	Bedeuti	ung von Nachhaltigkeit und Lebenszyklusanalyse	1211
1.2	Entwick	klung und Stand der Technik	1213
	1.2.1	Entwicklung der Ökobilanz nach ISO	1213
	1.2.2	Attributional und Consequential LCA	1215
1.3	Problen	natik der Vereinfachung komplexer Zusammenhänge	1217
	1.3.1	Ökonomisch basierte Input-Output-Ökobilanz-Ansätze	1218
	1.3.2	Bewertung der Ressourcen	1218
	1.3.3	Ansätze mit "Footprinting"	1219
1.4	Populär	re Fehleinschätzungen von Werkstoffen und Materialen	1220
	1.4.1	Polymere und Erdöl-Ressourcen	1220
	1.4.2	Produkte aus nachwachsenden Rohstoffen	1222
	1.4.3	Bioabbaubare Produkte	1222
	1.4.4	Recycling	1223
	1.4.5	Leichtbau	1224
1.5	Einflüss	se von Leichtbau-Aspekten auf die technisch-ökologischen Eigenschaften	
	von Pro	odukten und Systemen	
	1.5.1	Material und Rohstoffbereitstellung in der Vorkette	
	1.5.2	Vom Material zum System	
	1.5.3	Systemverhalten in der Nutzung	
	1.5.4	Nachnutzungsoptionen	
1.6	Folgeru	ingen und Empfehlungen	1233
1.7	Weiterf	ührende Informationen	1235