CONTENTS

Preface	V
Part I THE MOLECULAR DESIGN OF LIFE	E
Chapter 1 Biochemistry: An Evolving Science	1
1.1 Biochemical Unity Underlies Biological Diversity	1
1.2 DNA Illustrates the Interplay Between Form and Function	4
DNA is constructed from four building blocks Two single strands of DNA combine to form a	4
double helix DNA structure explains heredity and the storage of information	5 5
1.3 Concepts from Chemistry Explain the Properties of Biological Molecules	6
The double helix can form from its component strands	6
Covalent and noncovalent bonds are important for the structure and stability of biological molecules	7
The double helix is an expression of the rules of chemistry The laws of thermodynamics govern the behavior of	10
biochemical systems	11
Heat is released in the formation of the double helix Acid-base reactions are central in many biochemical	12
processes	13
Acid-base reactions can disrupt the double helix Buffers regulate pH in organisms and in the laboratory	14 15
1.4 The Genomic Revolution Is Transforming Biochemistry and Medicine	17
The sequencing of the human genome is a landmark in human history	17
Genome sequences encode proteins and patterns of expression Individuality depends on the interplay between genes	18
and environment APPENDIX: Visualizing Molecular Structures I:	19
Small Molecules	21
Chapter 2 Protein Composition and Structure	25
2.1 Proteins Are Built from a Repertoire of 20 Amino Acids	27
2.2 Primary Structure: Amino Acids Are Linked by Peptide Bonds to Form Polypeptide Chains	33
Proteins have unique amino acid sequences specified by genes Polymentide chains are florible and conferentiated by	35
Polypeptide chains are flexible yet conformationally restricted	36

2.3 Secondary Structure: Polypeptide Chains Can Fold into Regular Structures Such As the Alpha		3.2 Amino Acid Sequences of Proteins Can Be Determined Experimentally	81
Helix, the Beta Sheet, and Turns and Loops The alpha helix is a coiled structure stabilized	38	Peptide sequences can be determined by automated Edman degradation	82
by intrachain hydrogen bonds	38	Proteins can be specifically cleaved into small	
Beta sheets are stabilized by hydrogen bonding between	40	peptides to facilitate analysis	84 86
polypeptide strands Polypeptide chains can change direction by	40	Genomic and proteomic methods are complementary	
making reverse turns and loops	42	3.3 Immunology Provides Important Techniques with Which to Investigate Proteins	86
Fibrous proteins provide structural support for cells and tissues	43	Antibodies to specific proteins can be generated	86
2.4 Tertiary Structure: Water-Soluble Proteins		Monoclonal antibodies with virtually any	88
Fold into Compact Structures with		desired specificity can be readily prepared Proteins can be detected and quantified by using an	00
Nonpolar Cores	45	enzyme-linked immunosorbent assay	90
2.5 Quaternary Structure: Polypeptide Chains		Western blotting permits the detection of	
Can Assemble into Multisubunit Structures	48	proteins separated by gel electrophoresis	91
2.6 The Amino Acid Sequence of a Protein Determines Its Three-Dimensional Structure	49	Fluorescent markers make the visualization of proteins in the cell possible	92
Amino acids have different propensities for	,,,	3.4 Mass Spectrometry Is a Powerful Technique	
forming alpha helices, beta sheets, and beta turns	50	for the Identification of Peptides and Proteins	93
Protein folding is a highly cooperative process	52	The mass of a protein can be precisely determined by mass spectrometry	93
Proteins fold by progressive stabilization of intermediates rather than by random search	52	Peptides can be sequenced by mass spectrometry	95
Prediction of three-dimensional structure from	52	Individual proteins can be identified by	
sequence remains a great challenge	54	mass spectrometry	96
Some proteins are inherently unstructured and can exist in multiple conformations	54	3.5 Peptides Can Be Synthesized by Automated Solid-Phase Methods	97
Protein misfolding and aggregation are associated		3.6 Three-Dimensional Protein Structure	
with some neurological diseases	55	Can Be Determined by X-ray Crystallography	
Protein modification and cleavage confer new capabilities	57	and NMR Spectroscopy	100
APPENDIX: Visualizing Molecular Structures II: Proteins	60	X-ray crystallography reveals three-dimensional structure in atomic detail	100
		Nuclear magnetic resonance spectroscopy can reveal the structures of proteins in solution	103
Chapter 3 Exploring Proteins and Proteomes	67	the structures of proteins in solution	100
The proteome is the functional representation of		Charter & DNA DNA and the Flore of	
the genome	68	Chapter 4 DNA, RNA, and the Flow of Information	113
3.1 The Purification of Proteins Is an Essential		4.1 A Nucleic Acid Consists of Four Kinds of	
First Step in Understanding Their Function	68	Bases Linked to a Sugar–Phosphate Backbone	114
The assay: How do we recognize the protein		RNA and DNA differ in the sugar component and	117
that we are looking for?	69	one of the bases	114
Proteins must be released from the cell to be purified Proteins can be purified according to solubility, size,	69	Nucleotides are the monomeric units of nucleic acids	115
charge, and binding affinity	70	DNA molecules are very long	117
Proteins can be separated by gel electrophoresis and		4.2 A Pair of Nucleic Acid Chains with	
displayed	73	Complementary Sequences Can Form a	
A protein purification scheme can be quantitatively		Double-Helical Structure	117
evaluated Litracentrifugation is valuable for concreting	77	The double helix is stabilized by hydrogen bonds and van der Waals interactions	117
Ultracentrifugation is valuable for separating biomolecules and determining their masses	78	DNA can assume a variety of structural forms	117
Protein purification can be made easier with the use	, 0	Z-DNA is a left-handed double helix in which	117
of recombinant DNA technology	80	backbone phosphates zigzag	120

Some DNA molecules are circular and supercoiled	121	5.2 Recombinant DNA Technology Has	154
Single-stranded nucleic acids can adopt elaborate structures	121	Revolutionized All Aspects of Biology Restriction enzymes and DNA ligase are key tools in	154
4.3 The Double Helix Facilitates the Accurate		forming recombinant DNA molecules	154
Transmission of Hereditary Information	122	Plasmids and lambda phage are choice vectors for DNA cloning in bacteria	155
Differences in DNA density established the validity of the semiconservative-replication hypothesis	123	Bacterial and yeast artificial chromosomes	157
The double helix can be reversibly melted	124	Specific genes can be cloned from digests of	
4.4 DNA Is Replicated by Polymerases		genomic DNA	157
That Take Instructions from Templates	125	Complementary DNA prepared from mRNA can be expressed in host cells	160
DNA polymerase catalyzes phosphodiester-bridge	105	Proteins with new functions can be created through	100
formation The genes of some viruses are made of RNA	125 126	directed changes in DNA	162
4.5 Gene Expression Is the Transformation of	120	Recombinant methods enable the exploration of the functional effects of disease-causing mutations	163
DNA Information into Functional Molecules	127	5.3 Complete Genomes Have Been	103
Several kinds of RNA play key roles in gene expression	127	Sequenced and Analyzed	163
All cellular RNA is synthesized by RNA polymerases	128	The genomes of organisms ranging from bacteria to	. 00
RNA polymerases take instructions from DNA templates	130	multicellular eukaryotes have been sequenced	164
Transcription begins near promoter sites and ends at terminator sites	130	The sequencing of the human genome has been finished	165
Transfer RNAs are the adaptor molecules in protein		Next-generation sequencing methods enable the rapid	
synthesis	131	determination of a whole genome sequence	166
4.6 Amino Acids Are Encoded by Groups of	132	Comparative genomics has become a powerful research tool	166
Three Bases Starting from a Fixed Point Major features of the genetic code	133	5.4 Eukaryotic Genes Can Be Quantitated and	100
Messenger RNA contains start and stop signals for	100	Manipulated with Considerable Precision	167
protein synthesis	134	Gene-expression levels can be comprehensively	
The genetic code is nearly universal	135	examined	167
4.7 Most Eukaryotic Genes Are Mosaics of		New genes inserted into eukaryotic cells can be efficiently expressed	169
Introns and Exons	135	Transgenic animals harbor and express genes	109
RNA processing generates mature RNA	136 137	introduced into their germ lines	170
Many exons encode protein domains	157	Gene disruption provides clues to gene function	170
		RNA interference provides an additional tool for	4.74
Chapter 5 Exploring Genes and Genomes	145	disrupting gene expression Tumor-inducing plasmids can be used to introduce	171
5.1 The Exploration of Genes Relies on		new genes into plant cells	172
Key Tools	146	Human gene therapy holds great promise for medicine	173
Restriction enzymes split DNA into specific fragments	147		
Restriction fragments can be separated by gel electrophoresis and visualized	147	Chapter 6 Exploring Evolution and Bioinformatics	181
DNA can be sequenced by controlled termination of			101
replication	149	6.1 Homologs Are Descended from a Common Ancestor	182
DNA probes and genes can be synthesized by automated solid-phase methods	150	6.2 Statistical Analysis of Sequence	102
Selected DNA sequences can be greatly amplified		Alignments Can Detect Homology	183
by the polymerase chain reaction	151	The statistical significance of alignments can be estimated by shuffling	185
PCR is a powerful technique in medical diagnostics, forensics, and studies of molecular evolution	152	Distant evolutionary relationships can be detected	103
The tools for recombinant DNA technology		through the use of substitution matrices	186
have been used to identify disease-causing	4 70	Databases can be searched to identify homologous	
mutations	153	sequences	189

Contents xvii

6.3 Examination of Three-Dimensional Structure Enhances Our Understanding of Evolutionary Relationships	190	Additional globins are encoded in the human genome APPENDIX: Binding Models Can Be Formulated in Quantitative Terms: the Hill Plot and the Concerted Mode	219 l 221
Tertiary structure is more conserved than primary structure Knowledge of three-dimensional structures can	191	Chapter 8 Enzymes: Basic Concepts and Kinetics	227
aid in the evaluation of sequence alignments Repeated motifs can be detected by aligning	192	8.1 Enzymes Are Powerful and Highly Specific Catalysts	228
sequences with themselves	192	Many enzymes require cofactors for activity	229
Convergent evolution illustrates common solutions to biochemical challenges	193	Enzymes can transform energy from one form into another	229
Comparison of RNA sequences can be a source of insight into RNA secondary structures	194	8.2 Free Energy Is a Useful Thermodynamic Function for Understanding Enzymes	230
6.4 Evolutionary Trees Can Be Constructed on the Basis of Sequence Information	195	The free-energy change provides information about the spontaneity but not the rate of a reaction	230
6.5 Modern Techniques Make the Experimental Exploration of Evolution Possible	196	The standard free-energy change of a reaction is related to the equilibrium constant	231
Ancient DNA can sometimes be amplified and sequenced	196	Enzymes alter only the reaction rate and not the reaction equilibrium	232
Molecular evolution can be examined experimentally	197	8.3 Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State	233
Chapter 7 Hemoglobin: Portrait of a Protein in Action	203	The formation of an enzyme-substrate complex is the first step in enzymatic catalysis	234
7.1 Myoglobin and Hemoglobin Bind Oxygen at Iron Atoms in Heme	204	The active sites of enzymes have some common features	235
Changes in heme electronic structure upon oxygen binding are the basis for functional imaging studies	205	The binding energy between enzyme and substrate is important for catalysis	237
The structure of myoglobin prevents the release of reactive oxygen species	206	8.4 The Michaelis–Menten Equation Describes the Kinetic Properties of Many Enzymes	237
Human hemoglobin is an assembly of four myoglobin-like subunits	207	Kinetics is the study of reaction rates	237
7.2 Hemoglobin Binds Oxygen Cooperatively	207	The steady-state assumption facilitates a description of enzyme kinetics	238
Oxygen binding markedly changes the quaternary structure of hemoglobin	209	Variations in $K_{ m M}$ can have physiological consequences $K_{ m M}$ and $V_{ m max}$ values can be determined by	240
Hemoglobin cooperativity can be potentially explained by several models	210	several means $K_{ m M}$ and $V_{ m max}$ values are important enzyme	240
Structural changes at the heme groups are transmitted to the $\alpha_1\beta_1$ – $\alpha_2\beta_2$ interface	212	characteristics	241
2,3-Bisphosphoglycerate in red cells is crucial in	414	$k_{\rm cat}/K_{ m M}$ is a measure of catalytic efficiency Most biochemical reactions include multiple substrates	242 243
determining the oxygen affinity of hemoglobin Carbon monoxide can disrupt oxygen transport by	212	Allosteric enzymes do not obey Michaelis–Menten kinetics	245
hemoglobin 7.3 Hydrogen Ions and Carbon Dioxide Promote	213	8.5 Enzymes Can Be Inhibited by Specific Molecules	246
the Release of Oxygen: The Bohr Effect	214	Reversible inhibitors are kinetically distinguishable	247
7.4 Mutations in Genes Encoding Hemoglobin Subunits Can Result in Disease	216	Irreversible inhibitors can be used to map the active site	249
Sickle-cell anemia results from the aggregation of mutated deoxyhemoglobin molecules	217	Transition-state analogs are potent inhibitors of enzymes	251
Thalassemia is caused by an imbalanced production of hemoglobin chains	218	Catalytic antibodies demonstrate the importance of selective binding of the transition state to enzymatic activity	251
The accumulation of free alpha-hemoglobin chains is prevented	219	Penicillin irreversibly inactivates a key enzyme in bacterial cell-wall synthesis	252

		Contents	xix
8.6 Enzymes Can Be Studied One Molecule at a Time	254	The altered conformation of myosin persists for a substantial period of time	290
APPENDIX: Enzymes are Classified on the Basis of the Types of Reactions That They Catalyze	256	Myosins are a family of enzymes containing P-loop structures	291
		Chapter 10 Regulatory Strategies	299
Chapter 9 Catalytic Strategies	261	10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway	300
A few basic catalytic principles are used by many enzymes	262	Allosterically regulated enzymes do not follow Michaelis–Menten kinetics	301
9.1 Proteases Facilitate a Fundamentally Difficult Reaction	263	ATCase consists of separable catalytic and regulatory subunits	301
Chymotrypsin possesses a highly reactive serine residue Chymotrypsin action proceeds in two steps linked	263	Allosteric interactions in ATCase are mediated by large changes in quaternary structure	302
by a covalently bound intermediate	264	Allosteric regulators modulate the T-to-R equilibrium	305
Serine is part of a catalytic triad that also includes histidine and aspartate Catalytic triads are found in other hydrolytic enzymes	265 268	10.2 Isozymes Provide a Means of Regulation Specific to Distinct Tissues and Developmental Stages	306
The catalytic triad has been dissected by site-directed mutagenesis Cysteine, aspartyl, and metalloproteases are other	270	10.3 Covalent Modification Is a Means of Regulating Enzyme Activity	307
major classes of peptide-cleaving enzymes Protease inhibitors are important drugs	271 272	Kinases and phosphatases control the extent of protein phosphorylation	308
9.2 Carbonic Anhydrases Make a Fast Reaction Faster	274	Phosphorylation is a highly effective means of regulating the activities of target proteins	310
Carbonic anhydrase contains a bound zinc ion essential for catalytic activity	275	Cyclic AMP activates protein kinase A by altering the quaternary structure	311
Catalysis entails zinc activation of a water molecule	276	ATP and the target protein bind to a deep cleft in the catalytic subunit of protein kinase A	312
A proton shuttle facilitates rapid regeneration of the active form of the enzyme	277	10.4 Many Enzymes Are Activated by Specific Proteolytic Cleavage	312
Convergent evolution has generated zinc-based active sites in different carbonic anhydrases	279	Chymotrypsinogen is activated by specific cleavage of a single peptide bond	313
9.3 Restriction Enzymes Catalyze Highly Specific DNA-Cleavage Reactions	279	Proteolytic activation of chymotrypsinogen leads to the formation of a substrate-binding site	314
Cleavage is by in-line displacement of 3'-oxygen from phosphorus by magnesium-activated water	280	The generation of trypsin from trypsinogen leads to the activation of other zymogens	315
Restriction enzymes require magnesium for catalytic activity The complete catalytic apparatus is assembled	282	Some proteolytic enzymes have specific inhibitors Blood clotting is accomplished by a cascade of	316
only within complexes of cognate DNA molecules, ensuring specificity	283	zymogen activations Fibrinogen is converted by thrombin into a fibrin clot	317 318
Host-cell DNA is protected by the addition of methyl groups to specific bases	285	Prothrombin is readied for activation by a vitamin K-dependent modification	320
Type II restriction enzymes have a catalytic core in common and are probably related by horizontal gene transfer	286	Hemophilia revealed an early step in clotting The clotting process must be precisely regulated	321 321
9.4 Myosins Harness Changes in Enzyme	200	Chapter 11 Carbohydrates	329
Conformation to Couple ATP Hydrolysis to Mechanical Work	287	11.1 Monosaccharides Are the Simplest	770
ATP hydrolysis proceeds by the attack of water on the gamma-phosphoryl group	287	Carbohydrates Many common sugars exist in cyclic forms	330 332
Formation of the transition state for ATP hydrolysis is associated with a substantial conformational change	288	Pyranose and furanose rings can assume different conformations	334

Glucose is a reducing sugar	335	A membrane lipid is an amphipathic molecule	
Monosaccharides are joined to alcohols and		containing a hydrophilic and a hydrophobic moiety	363
amines through glycosidic bonds	336	12.3 Phospholipids and Glycolipids Readily	
Phosphorylated sugars are key intermediates in	226	Form Bimolecular Sheets in Aqueous Media	364
energy generation and biosyntheses	336	Lipid vesicles can be formed from phospholipids	365
11.2 Monosaccharides Are Linked to Form Complex Carbohydrates	337	Lipid bilayers are highly impermeable to ions and most polar molecules	366
Sucrose, lactose, and maltose are the common disaccharides	337	12.4 Proteins Carry Out Most Membrane Processes	367
Glycogen and starch are storage forms of glucose	338	Proteins associate with the lipid bilayer in a	
Cellulose, a structural component of plants, is made	220	variety of ways	367
of chains of glucose	338	Proteins interact with membranes in a variety	
11.3 Carbohydrates Can Be Linked to Proteins	770	of ways	368
to Form Glycoproteins	339	Some proteins associate with membranes through covalently attached hydrophobic groups	371
Carbohydrates can be linked to proteins through asparagine (<i>N</i> -linked) or through serine or		Transmembrane helices can be accurately	3/1
threonine (<i>O</i> -linked) residues	340	predicted from amino acid sequences	371
The glycoprotein erythropoietin is a vital hormone	340	12.5 Lipids and Many Membrane Proteins	
Proteoglycans, composed of polysaccharides and		Diffuse Rapidly in the Plane of the	
protein, have important structural roles	341	Membrane	373
Proteoglycans are important components of cartilage	342	The fluid mosaic model allows lateral movement	
Mucins are glycoprotein components of mucus	343	but not rotation through the membrane	374
Protein glycosylation takes place in the lumen of the endoplasmic reticulum and in the Golgi complex	343	Membrane fluidity is controlled by fatty acid composition and cholesterol content	374
Specific enzymes are responsible for oligosaccharide		Lipid rafts are highly dynamic complexes formed	
assembly	345	between cholesterol and specific lipids	375
Blood groups are based on protein glycosylation		All biological membranes are asymmetric	375
patterns	345	12.6 Eukaryotic Cells Contain Compartments	
Errors in glycosylation can result in pathological	246	Bounded by Internal Membranes	376
conditions	346	•	
Oligosaccharides can be "sequenced"	346	Charter 17 Mombrano Channels and Dumns	707
11.4 Lectins Are Specific Carbohydrate-Binding	7.47	Chapter 13 Membrane Channels and Pumps	383
Proteins	347	The expression of transporters largely defines the	
Lectins promote interactions between cells	348	metabolic activities of a given cell type	384
Lectins are organized into different classes	348	13.1 The Transport of Molecules Across a	
Influenza virus binds to sialic acid residues	349	Membrane May Be Active or Passive	384
Chapter 12 Lipids and Cell Membranes	357	Many molecules require protein transporters to cross membranes	384
Many common features underlie the diversity of biological membranes	358	Free energy stored in concentration gradients can be quantified	385
12.1 Fatty Acids Are Key Constituents of		13.2 Two Families of Membrane Proteins	
Lipids	358	Use ATP Hydrolysis to Pump Ions and	
Fatty acid names are based on their parent hydrocarbons	358	Molecules Across Membranes	386
Fatty acids vary in chain length and degree of		P-type ATPases couple phosphorylation and	
unsaturation	359	conformational changes to pump calcium ions	
12.2 There Are Three Common Types of		across membranes	386
Membrane Lipids	360	Digitalis specifically inhibits the Na ⁺ –K ⁺ pump by blocking its dephosphorylation	389
Phospholipids are the major class of membrane lipids	360	P-type ATPases are evolutionarily conserved and	307
Membrane lipids can include carbohydrate moieties	361	play a wide range of roles	390
Cholesterol is a lipid based on a steroid nucleus	362	Multidrug resistance highlights a family of	5,0
Archaeal membranes are built from ether lipids with		membrane pumps with ATP-binding cassette	
branched chains	362	domains	300

		Contents	ххі
13.3 Lactose Permease Is an Archetype of Secondary Transporters That Use One		Insulin binding results in the cross-phosphorylation and activation of the insulin receptor	426
Concentration Gradient to Power the Formation of Another	392	The activated insulin-receptor kinase initiates a kinase cascade	426
13.4 Specific Channels Can Rapidly Transport Ions Across Membranes	394	Insulin signaling is terminated by the action of phosphatases	429
Action potentials are mediated by transient changes		14.3 EGF Signaling: Signal-Transduction	420
in Na ⁺ and K ⁺ permeability Patch-clamp conductance measurements reveal	394	Pathways Are Poised to Respond EGF binding results in the dimerization of the	429
the activities of single channels	395	EGF receptor	429
The structure of a potassium ion channel is an archetype for many ion-channel structures	395	The EGF receptor undergoes phosphorylation of its carboxyl-terminal tail	431
The structure of the potassium ion channel reveals	396	EGF signaling leads to the activation of Ras, a small G protein	431
the basis of ion specificity The structure of the potassium ion channel explains	390	Activated Ras initiates a protein kinase cascade	432
its rapid rate of transport Voltage gating requires substantial conformational	399	EGF signaling is terminated by protein phosphatases and the intrinsic GTPase activity of Ras	432
changes in specific ion-channel domains	399	14.4 Many Elements Recur with Variation	.02
A channel can be activated by occlusion of the pore: the ball-and-chain model	400	in Different Signal-Transduction	477
The acetylcholine receptor is an archetype for	100	Pathways 14.5 Defects in Signal-Transduction	433
ligand-gated ion channels	401	Pathways Can Lead to Cancer and Other	
Action potentials integrate the activities of several ion channels working in concert	402	Diseases Monoclonal antibodies can be used to inhibit	434
Disruption of ion channels by mutations or chemicals can be potentially life threatening	404	signal-transduction pathways activated in tumors	434
13.5 Gap Junctions Allow Ions and Small		Protein kinase inhibitors can be effective anticancer drugs	435
Molecules to Flow Between Communicating Cells	405	Cholera and whooping cough are due to altered	
13.6 Specific Channels Increase the Permeability of Some Membranes to Water	406	G-protein activity	435
Chapter 14 Signal-Transduction Pathways	415	Part II TRANSDUCING AND	
Signal transduction depends on molecular circuits	416	STORING ENERGY	
14.1 Heterotrimeric G Proteins Transmit Signals and Reset Themselves	417	Chapter 15 Metabolism: Basic Concepts and Design	443
Ligand binding to 7TM receptors leads to the activation of heterotrimeric G proteins	419	15.1 Motabolism is Composed of Many	
Activated G proteins transmit signals by binding		15.1 Metabolism Is Composed of Many Coupled, Interconnecting Reactions	444
to other proteins Cyclic AMP stimulates the phosphorylation of many	420	Metabolism consists of energy-yielding and energy-requiring reactions	444
target proteins by activating protein kinase A	420	A thermodynamically unfavorable reaction can be	
G proteins spontaneously reset themselves through GTP hydrolysis	421	driven by a favorable reaction 15.2 ATP Is the Universal Currency of Free	445
Some 7TM receptors activate the phosphoinositide cascade	422	Energy in Biological Systems	446
Calcium ion is a widely used second messenger	423	ATP hydrolysis is exergonic	446
Calcium ion often activates the regulatory protein calmodulin	424	ATP hydrolysis drives metabolism by shifting the equilibrium of coupled reactions	447
14.2 Insulin Signaling: Phosphorylation Cascades Are Central to Many		The high phosphoryl potential of ATP results from structural differences between ATP and its	
Signal-Transduction Processes	425	hydrolysis products	449
The insulin receptor is a dimer that closes around a bound insulin molecule	426	Phosphoryl-transfer potential is an important form of cellular energy transformation	450

15.3 The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy	451	Many adults are intolerant of milk because they are deficient in lactase	487
Compounds with high phosphoryl-transfer potential		Galactose is highly toxic if the transferase is missing	488
can couple carbon oxidation to ATP synthesis Ion gradients across membranes provide an	452	16.2 The Glycolytic Pathway Is Tightly Controlled	488
important form of cellular energy that can be coupled to ATP synthesis	453	Glycolysis in muscle is regulated to meet the need for ATP	489
Energy from foodstuffs is extracted in three stages	453	The regulation of glycolysis in the liver illustrates	
15.4 Metabolic Pathways Contain Many		the biochemical versatility of the liver	490
Recurring Motifs	454	A family of transporters enables glucose to enter and leave animal cells	493
Activated carriers exemplify the modular design and economy of metabolism	454	Cancer and exercise training affect glycolysis in a	773
Many activated carriers are derived from vitamins	457	similar fashion	494
Key reactions are reiterated throughout metabolism	459	16.3 Glucose Can Be Synthesized from	
Metabolic processes are regulated in three	107	Noncarbohydrate Precursors	495
principal ways	461	Gluconeogenesis is not a reversal of glycolysis	497
Aspects of metabolism may have evolved from an		The conversion of pyruvate into phosphoenolpyruvate	
RNA world	463	begins with the formation of oxaloacetate	498
		Oxaloacetate is shuttled into the cytoplasm and	
Chapter 16 Glycolysis and Gluconeogenesis	469	converted into phosphoenolpyruvate	499
Chapter 10 diveolysis and diaconcogenesis		The conversion of fructose 1,6-bisphosphate into	
Glucose is generated from dietary carbohydrates	470	fructose 6-phosphate and orthophosphate is an irreversible step	500
Glucose is an important fuel for most organisms	471	The generation of free glucose is an important	300
16.1 Glycolysis Is an Energy-Conversion		control point	500
Pathway in Many Organisms	471	Six high-transfer-potential phosphoryl groups are	
Hexokinase traps glucose in the cell and begins	4774	spent in synthesizing glucose from pyruvate	501
glycolysis	471	16.4 Gluconeogenesis and Glycolysis Are	
Fructose 1,6-bisphosphate is generated from glucose 6-phosphate	473	Reciprocally Regulated	502
The six-carbon sugar is cleaved into two	773	Energy charge determines whether glycolysis or	
three-carbon fragments	474	gluconeogenesis will be most active	502
Mechanism: Triose phosphate isomerase salvages a three-carbon fragment	475	The balance between glycolysis and gluconeogenesis in the liver is sensitive to blood-glucose concentration	503
The oxidation of an aldehyde to an acid powers	4/3	Substrate cycles amplify metabolic signals and	
the formation of a compound with high		produce heat	505
phosphoryl-transfer potential	476	Lactate and alanine formed by contracting muscle	
Mechanism: Phosphorylation is coupled to the		are used by other organs	505
oxidation of glyceraldehyde 3-phosphate by a		Glycolysis and gluconeogenesis are evolutionarily intertwined	507
thioester intermediate	478	mertwined	307
ATP is formed by phosphoryl transfer from 1,3-bisphosphoglycerate	479	Chapter 17 The Citric Acid Cycle	515
Additional ATP is generated with the formation of	400	The citric acid cycle harvests high-energy electrons	516
pyruvate	480	17.1 Pyruvate Dehydrogenase Links Glycolysis	
Two ATP molecules are formed in the conversion of glucose into pyruvate	481	to the Citric Acid Cycle	517
NAD ⁺ is regenerated from the metabolism	701	Mechanism: The synthesis of acetyl coenzyme a from	
of pyruvate	482	pyruvate requires three enzymes and five coenzymes	518
Fermentations provide usable energy in the absence		Flexible linkages allow lipoamide to move between	
of oxygen	484	different active sites	520
The binding site for NAD ⁺ is similar in many		17.2 The Citric Acid Cycle Oxidizes	
dehydrogenases	485	Two-Carbon Units	521
Fructose and galactose are converted into glycolytic	405	Citrate synthase forms citrate from oxaloacetate and	
intermediates	485	acetyl coenzyme A	522

		Contents	xxiii
Mechanism: The mechanism of citrate synthase		Ubiquinol is the entry point for electrons from FADH ₂	
prevents undesirable reactions	522	of flavoproteins	553
Citrate is isomerized into isocitrate	524	Electrons flow from ubiquinol to cytochrome c	
Isocitrate is oxidized and decarboxylated to		through Q-cytochrome c oxidoreductase	553
alpha-ketoglutarate	524	The Q cycle funnels electrons from a two-electron	
Succinyl coenzyme A is formed by the oxidative		carrier to a one-electron carrier and pumps protons	554
decarboxylation of alpha-ketoglutarate	525	Cytochrome <i>c</i> oxidase catalyzes the reduction of	
A compound with high phosphoryl-transfer potential	F25	molecular oxygen to water	555
is generated from succinyl coenzyme A Mechanism: Succinyl coenzyme A synthetase	525	Toxic derivatives of molecular oxygen such as superoxide radical are scavenged by protective enzymes	558
transforms types of biochemical energy	526	Electrons can be transferred between groups that are	330
Oxaloacetate is regenerated by the oxidation	320	not in contact	560
of succinate	527	The conformation of cytochrome c has remained	
The citric acid cycle produces high-transfer-potential		essentially constant for more than a billion years	561
electrons, ATP, and CO ₂	528	18.4 A Proton Gradient Powers the	
17.3 Entry to the Citric Acid Cycle and		Synthesis of ATP	561
Metabolism Through It Are Controlled	530	ATP synthase is composed of a proton-conducting	
The pyruvate dehydrogenase complex is regulated		unit and a catalytic unit	563
allosterically and by reversible phosphorylation	531	Proton flow through ATP synthase leads to the release	
The citric acid cycle is controlled at several points	532	of tightly bound ATP: The binding-change mechanism	564
Defects in the citric acid cycle contribute to the		Rotational catalysis is the world's smallest molecular motor	565
development of cancer	533	Proton flow around the c ring powers ATP synthesis	566
17.4 The Citric Acid Cycle Is a Source of		ATP synthase and G proteins have several common	
Biosynthetic Precursors	534	features	568
The citric acid cycle must be capable of being rapidly replenished	534	18.5 Many Shuttles Allow Movement Across Mitochondrial Membranes	568
The disruption of pyruvate metabolism is the cause of beriberi and poisoning by mercury and arsenic	535	Electrons from cytoplasmic NADH enter mitochondria by shuttles	569
The citric acid cycle may have evolved from		The entry of ADP into mitochondria is coupled to	
preexisting pathways	536	the exit of ATP by ATP-ADP translocase	570
17.5 The Glyoxylate Cycle Enables Plants		Mitochondrial transporters for metabolites have a	
and Bacteria to Grow on Acetate	536	common tripartite structure	571
		18.6 The Regulation of Cellular Respiration Is	
Chapter 18 Oxidative Phosphorylation	543	Governed Primarily by the Need for ATP	572
18.1 Eukaryotic Oxidative Phosphorylation		The complete oxidation of glucose yields about	
Takes Place in Mitochondria	544	30 molecules of ATP	572
Mitochondria are bounded by a double membrane	544	The rate of oxidative phosphorylation is determined by the need for ATP	572
Mitochondria are the result of an		•	573
endosymbiotic event	545	Regulated uncoupling leads to the generation of heat	574
18.2 Oxidative Phosphorylation Depends on		Oxidative phosphorylation can be inhibited at many stages	576
Electron Transfer	546	Mitochondrial diseases are being discovered	576
The electron-transfer potential of an electron is		Mitochondria play a key role in apoptosis	577
measured as redox potential	546	Power transmission by proton gradients is a central motif of bioenergetics	577
A 1.14-volt potential difference between NADH and			377
molecular oxygen drives electron transport through the chain and favors the formation of a proton	T 40	Chapter 19 The Light Reactions of Photosynthesis	585
gradient	548	Photosynthesis converts light energy into chemical energy	586
18.3 The Respiratory Chain Consists of			
Four Complexes: Three Proton Pumps and a Physical Link to the Citric Acid Cycle	549	19.1 Photosynthesis Takes Place in Chloroplasts The primary events of photosynthesis take place in	587

thylakoid membranes

Chloroplasts arose from an endosymbiotic event

551

587

588

The high-potential electrons of NADH enter the respiratory chain at NADH-Q oxidoreductase $\,$

19.2 Light Absorption by Chlorophyll Induces Electron Transfer	588	20.2 The Activity of the Calvin Cycle Depends on Environmental Conditions	617
A special pair of chlorophylls initiate charge separation Cyclic electron flow reduces the cytochrome of the	589	Rubisco is activated by light-driven changes in proton and magnesium ion concentrations	618
reaction center	592	Thioredoxin plays a key role in regulating the Calvin cycle	618
19.3 Two Photosystems Generate a Proton Gradient and NADPH in Oxygenic	592	The C_4 pathway of tropical plants accelerates photosynthesis by concentrating carbon dioxide	619
Photosynthesis Photosystem II transfers electrons from water to	592 592	Crassulacean acid metabolism permits growth in arid ecosystems	620
plastoquinone and generates a proton gradient Cytochrome bf links photosystem II to photosystem I	592 595	20.3 The Pentose Phosphate Pathway Generates NADPH and Synthesizes	
Photosystem I uses light energy to generate reduced ferredoxin, a powerful reductant	595	Five-Carbon Sugars	621
Ferredoxin–NADP ⁺ reductase converts NADP ⁺ into NADPH	596	Two molecules of NADPH are generated in the conversion of glucose 6-phosphate into ribulose 5-phosphate	621
19.4 A Proton Gradient Across the Thylakoid Membrane Drives ATP Synthesis	597	The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase	621
The ATP synthase of chloroplasts closely resembles those of mitochondria and prokaryotes	598	Mechanism: Transketolase and transaldolase stabilize carbanionic intermediates by different mechanisms	624
Cyclic electron flow through photosystem I leads to the production of ATP instead of NADPH	599	20.4 The Metabolism of Glucose 6-phosphate by the Pentose Phosphate Pathway Is	
The absorption of eight photons yields one O_2 , two NADPH, and three ATP molecules	600	Coordinated with Glycolysis The rate of the pentose phosphate pathway is controlled	626
19.5 Accessory Pigments Funnel Energy into Reaction Centers	601	by the level of NADP ⁺ The flow of glucose 6-phosphate depends on the	626
Resonance energy transfer allows energy to move from the site of initial absorbance to the reaction		need for NADPH, ribose 5-phosphate, and ATP Through the looking-glass: The Calvin cycle and the	627
center Light-harvesting complexes contain additional	601	pentose phosphate pathway are mirror images	629
chlorophylls and carotinoids The components of photosynthesis are highly organized	602 603	20.5 Glucose 6-phosphate Dehydrogenase Plays a Key Role in Protection Against Reactive	
Many herbicides inhibit the light reactions of photosynthesis	604	Oxygen Species Glucose 6-phosphate dehydrogenase deficiency causes	629
19.6 The Ability to Convert Light into Chemical Energy Is Ancient	604	a drug-induced hemolytic anemia A deficiency of glucose 6-phosphate dehydrogenase	629
Ellergy is relicite	001	confers an evolutionary advantage in some circumstances	631
Chapter 20 The Calvin Cycle and Pentose Phosphate Pathway	609	Chapter 21 Glycogen Metabolism	637
20.1 The Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water	610	Glycogen metabolism is the regulated release and storage of glucose	638
Carbon dioxide reacts with ribulose 1,5-bisphosphate to form two molecules of 3-phosphoglycerate	611	21.1 Glycogen Breakdown Requires the Interplay of Several Enzymes	639
Rubisco activity depends on magnesium and carbamate	612	Phosphorylase catalyzes the phosphorolytic cleavage of glycogen to release glucose 1-phosphate	639
Rubisco also catalyzes a wasteful oxygenase reaction: Catalytic imperfection	613	Mechanism: Pyridoxal phosphate participates in the phosphorolytic cleavage of glycogen	640
Hexose phosphates are made from phosphoglycerate, and ribulose 1,5-bisphosphate is regenerated	614	A debranching enzyme also is needed for the breakdown of glycogen	641
Three ATP and two NADPH molecules are used to bring carbon dioxide to the level of a hexose	617	Phosphoglucomutase converts glucose 1-phosphate into glucose 6-phosphate	642
Starch and sucrose are the major carbohydrate stores in plants	617	The liver contains glucose 6-phosphatase, a hydrolytic enzyme absent from muscle	643

Interactions and Reversible Phosphorylation	643	The complete oxidation of palmitate yields 106 molecules of ATP	67
Muscle phosphorylase is regulated by the intracellular	015	22.3 Unsaturated and Odd-Chain Fatty Acids	
energy charge	643	Require Additional Steps for Degradation	672
Liver phosphorylase produces glucose for use by other		An isomerase and a reductase are required for	
tissues	645	the oxidation of unsaturated fatty acids	67.
Phosphorylase kinase is activated by phosphorylation and calcium ions	645	Odd-chain fatty acids yield propionyl CoA in the final thiolysis step	67.
21.3 Epinephrine and Glucagon Signal the		Vitamin B ₁₂ contains a corrin ring and a cobalt atom	67
Need for Glycogen Breakdown	646	Mechanism: Methylmalonyl CoA mutase catalyzes a	
G proteins transmit the signal for the initiation of		rearrangement to form succinyl CoA	67.
glycogen breakdown	646	Fatty acids are also oxidized in peroxisomes	670
Glycogen breakdown must be rapidly turned off when necessary	648	Ketone bodies are formed from acetyl CoA when fat breakdown predominates	67
The regulation of glycogen phosphorylase became		Ketone bodies are a major fuel in some tissues	678
more sophisticated as the enzyme evolved	649	Animals cannot convert fatty acids into glucose	680
21.4 Glycogen Is Synthesized and Degraded by Different Pathways	649	22.4 Fatty Acids Are Synthesized by Fatty Acid Synthase	680
UDP-glucose is an activated form of glucose	649	Fatty acids are synthesized and degraded by different	000
Glycogen synthase catalyzes the transfer of glucose		pathways	680
from UDP-glucose to a growing chain	650	The formation of malonyl CoA is the committed step	
A branching enzyme forms α-1,6 linkages	651	in fatty acid synthesis	68
Glycogen synthase is the key regulatory enzyme in glycogen synthesis	651	Intermediates in fatty acid synthesis are attached to an acyl carrier protein	681
Glycogen is an efficient storage form of glucose	651	Fatty acid synthesis consists of a series of condensation,	
21.5 Glycogen Breakdown and Synthesis Are		reduction, dehydration, and reduction reactions	682
Reciprocally Regulated	652	Fatty acids are synthesized by a multifunctional	(0)
Protein phosphatase 1 reverses the regulatory effects	(52	enzyme complex in animals The synthesis of palmitate requires 8 molecules of acetyl	683
of kinases on glycogen metabolism Insulin stimulates glycogen synthesis by inactivating	653	CoA, 14 molecules of NADPH, and 7 molecules of ATP	685
glycogen synthase kinase	654	Citrate carries acetyl groups from mitochondria to	
Glycogen metabolism in the liver regulates the		the cytoplasm for fatty acid synthesis	686
blood-glucose level	655	Several sources supply NADPH for fatty acid synthesis	686
A biochemical understanding of glycogen-storage	6 7 6	Fatty acid synthase inhibitors may be useful drugs	687
diseases is possible	656	22.5 The Elongation and Unsaturation of	
Chapter 22 Fatty Acid Metabolism	663	Fatty Acids Are Accomplished by Accessory Enzyme Systems	687
		Membrane-bound enzymes generate unsaturated fatty acids	
Fatty acid degradation and synthesis mirror each other in their chemical reactions	664	Eicosanoid hormones are derived from polyunsaturated	5 000
22.1 Triacylglycerols Are Highly Concentrated	001	fatty acids	688
Energy Stores	665	22.6 Acetyl CoA Carboxylase Plays a Key Role	
Dietary lipids are digested by pancreatic lipases	665	in Controlling Fatty Acid Metabolism	690
Dietary lipids are transported in chylomicrons	666	Acetyl CoA carboxylase is regulated by conditions in	
22.2 The Use of Fatty Acids As Fuel Requires		the cell	690
Three Stages of Processing	667	Acetyl CoA carboxylase is regulated by a variety of	
Triacylglycerols are hydrolyzed by hormone-stimulated		hormones	690
lipases	667	Chapter 23 Protein Turnover and Amino	
Fatty acids are linked to coenzyme A before they are oxidized	668	Acid Catabolism	697
Carnitine carries long-chain activated fatty acids		23.1 Proteins Are Degraded to Amino Acids	698
into the mitochondrial matrix	669	The digestion of dietary proteins begins in the	
Acetyl CoA, NADH, and FADH ₂ are generated in	(- 0	stomach and is completed in the intestine	698
each round of fatty acid oxidation	670	Cellular proteins are degraded at different rates	699

23.2 Protein Turnover Is Tightly Regulated	699 699	Part III SYNTHESIZING THE MOLECULI	ES
Ubiquitin tags proteins for destruction The proteasome digests the ubiquitin-tagged	099	OF LIFE	
proteins	701	Chapter 24 The Biosynthesis of Amino Acids	729
The ubiquitin pathway and the proteasome have prokaryotic counterparts	701	Amino acid synthesis requires solutions to three key biochemical problems	730
Protein degradation can be used to regulate biological function	702	24.1 Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce	
23.3 The First Step in Amino Acid Degradation Is the Removal of Nitrogen	704	Atmospheric Nitrogen to Ammonia The iron-molybdenum cofactor of nitrogenase binds	730
Alpha-amino groups are converted into ammonium ions by the oxidative deamination	704	and reduces atmospheric nitrogen Ammonium ion is assimilated into an amino acid	731
of glutamate Mechanism: Puridoval phosphate forms Schiff base	704	through glutamate and glutamine	733
Mechanism: Pyridoxal phosphate forms Schiff-base intermediates in aminotransferases	705	24.2 Amino Acids Are Made from Intermediates	5
Aspartate aminotransferase is an archetypal pyridoxal-dependent transaminase	706	of the Citric Acid Cycle and Other Major Pathways	735
Pyridoxal phosphate enzymes catalyze a wide array of reactions	707	Human beings can synthesize some amino acids but must obtain others from the diet	735
Serine and threonine can be directly deaminated	708	Aspartate, alanine, and glutamate are formed by the addition of an amino group to an alpha-ketoacid	736
Peripheral tissues transport nitrogen to the liver	708	A common step determines the chirality of all amino acids	737
23.4 Ammonium Ion Is Converted into Urea in Most Terrestrial Vertebrates	709	The formation of asparagine from aspartate requires an adenylated intermediate	737
The urea cycle begins with the formation of carbamoyl phosphate	709	Glutamate is the precursor of glutamine, proline, and arginine	738
The urea cycle is linked to gluconeogenesis	711	3-Phosphoglycerate is the precursor of serine,	
Urea-cycle enzymes are evolutionarily related to		cysteine, and glycine	738
enzymes in other metabolic pathways Inherited defects of the urea cycle cause	712	Tetrahydrofolate carries activated one-carbon units at several oxidation levels	739
hyperammonemia and can lead to brain damage	712	S-Adenosylmethionine is the major donor of	
Urea is not the only means of disposing of		methyl groups	740
excess nitrogen	713	Cysteine is synthesized from serine and homocysteine	742
23.5 Carbon Atoms of Degraded Amino Acids Emerge As Major Metabolic		High homocysteine levels correlate with	
Intermediates	714	vascular disease	743
Pyruvate is an entry point into metabolism for a	-4-	Shikimate and chorismate are intermediates in the biosynthesis of aromatic amino acids	743
number of amino acids Oxaloacetate is an entry point into metabolism for	715	Tryptophan synthase illustrates substrate channeling in enzymatic catalysis	746
aspartate and asparagine Alpha-ketoglutarate is an entry point into metabolism	716	24.3 Feedback Inhibition Regulates Amino	
for five-carbon amino acids	716	Acid Biosynthesis	747
Succinyl coenzyme A is a point of entry for several nonpolar amino acids	717	Branched pathways require sophisticated regulation	747
Methionine degradation requires the formation of a key methyl donor, S-adenosylmethionine	717	An enzymatic cascade modulates the activity of glutamine synthetase	749
The branched-chain amino acids yield acetyl CoA, acetoacetate, or propionyl CoA	717	24.4 Amino Acids Are Precursors of Many Biomolecules	750
Oxygenases are required for the degradation of aromatic amino acids	719	Glutathione, a gamma-glutamyl peptide, serves as a sulfhydryl buffer and an antioxidant	751
23.6 Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation	721	Nitric oxide, a short-lived signal molecule, is formed from arginine	751 751

xxvii

Contents

xxviii Contents

HDL appears to protect against arteriosclerosis The clinical management of cholesterol levels can be	806	Metabolic adaptations in prolonged starvation minimize protein degradation	838
understood at a biochemical level	807	27.6 Ethanol Alters Energy Metabolism in	
26.4 Important Derivatives of Cholesterol		the Liver	840
Include Bile Salts and Steroid Hormones	807	Ethanol metabolism leads to an excess of NADH	84(
Letters identify the steroid rings and numbers identify the carbon atoms	809	Excess ethanol consumption disrupts vitamin metabolism	842
Steroids are hydroxylated by cytochrome P450 monooxygenases that use NADPH and O_2 The cytochrome P450 system is widespread and	809	Chapter 28 DNA Replication, Repair, and Recombination	849
performs a protective function	810	28.1 DNA Replication Proceeds by the	
Pregnenolone, a precursor of many other steroids, is formed from cholesterol by cleavage of its side chain	811	Polymerization of Deoxyribonucleoside Triphosphates Along a Template	850
Progesterone and corticosteroids are synthesized from pregnenolone	811	DNA polymerases require a template and a primer All DNA polymerases have structural features in	850
Androgens and estrogens are synthesized from pregnenolone	812	common	853
Vitamin D is derived from cholesterol by the	012	Two bound metal ions participate in the	
ring-splitting activity of light	813	polymerase reaction	851
The late and a Charle I'm	001	The specificity of replication is dictated by complementarity of shape between bases	852
Chapter 27 The Integration of Metabolism	821	An RNA primer synthesized by primase enables DNA	032
27.1 Caloric Homeostasis Is a Means of Regulating Body Weight	822	synthesis to begin One strand of DNA is made continuously, whereas	853
27.2 The Brain Plays a Key Role in Caloric		the other strand is synthesized in fragments	853
Homeostasis	824	DNA ligase joins ends of DNA in duplex regions	854
Signals from the gastrointestinal tract induce feelings of satiety	824	The separation of DNA strands requires specific helicases and ATP hydrolysis	854
Leptin and insulin regulate long-term control over caloric homeostasis	825	28.2 DNA Unwinding and Supercoiling Are Controlled by Topoisomerases	855
Leptin is one of several hormones secreted by adipose tissue	826	The linking number of DNA, a topological property, determines the degree of supercoiling	856
Leptin resistance may be a contributing factor to obesity	827	Topoisomerases prepare the double helix for unwinding	858
Dieting is used to combat obesity	827	Type I topoisomerases relax supercoiled structures	858
27.3 Diabetes Is a Common Metabolic Disease Often Resulting from Obesity	828	Type II topoisomerases can introduce negative supercoils through coupling to ATP hydrolysis	859
Insulin initiates a complex signal-transduction	000	28.3 DNA Replication Is Highly Coordinated	861
pathway in muscle Metabolic syndrome often precedes type 2 diabetes	828 830	DNA replication requires highly processive polymerases	861
Excess fatty acids in muscle modify metabolism Insulin resistance in muscle facilitates pancreatic failure	830 831	The leading and lagging strands are synthesized in a coordinated fashion	862
Metabolic derangements in type 1 diabetes result from insulin insufficiency and glucagon excess	832	DNA replication in Escherichia coli begins at a unique site	864
27.4 Exercise Beneficially Alters the Biochemistry of Cells	833	DNA synthesis in eukaryotes is initiated at multiple sites Telomeres are unique structures at the ends of	865
Mitochondrial biogenesis is stimulated by muscular activity	834	linear chromosomes Telomeres are replicated by telomerase, a specialized	866
Fuel choice during exercise is determined by the intensity and duration of activity	835	polymerase that carries its own RNA template	867
27.5 Food Intake and Starvation Induce	000	28.4 Many Types of DNA Damage Can Be Repaired	867
Metabolic Changes	836	Errors can arise in DNA replication	867
The starved-fed cycle is the physiological response to a fast	837	Bases can be damaged by oxidizing agents, alkylating agents, and light	868

DNA damage can be detected and repaired by a variety of systems	869	Enhancer sequences can stimulate transcription at start sites thousands of bases away	900
The presence of thymine instead of uracil in DNA permits the repair of deaminated cytosine	871	29.3 The Transcription Products of Eukaryotic Polymerases Are Processed	901
Some genetic diseases are caused by the expansion	0=0	RNA polymerase I produces three ribosomal RNAs	901
of repeats of three nucleotides	872	RNA polymerase III produces transfer RNA	902
Many cancers are caused by the defective repair of DNA	872	The product of RNA polymerase II, the pre-mRNA transcript, acquires a 5' cap and a 3' poly(A) tail	902
Many potential carcinogens can be detected by their mutagenic action on bacteria	873	Small regulatory RNAs are cleaved from larger precursors	904
28.5 DNA Recombination Plays Important Roles		RNA editing changes the proteins encoded by mRNA	904
in Replication, Repair, and Other Processes	874	Sequences at the ends of introns specify splice sites	
RecA can initiate recombination by promoting strand	07.4	in mRNA precursors	905
invasion Some recombination reactions proceed through	874	Splicing consists of two sequential transesterification reactions	906
Holliday-junction intermediates	875	Small nuclear RNAs in spliceosomes catalyze the splicing of mRNA precursors	907
Chapter 29 RNA Synthesis and Processing	883	Transcription and processing of mRNA are coupled	909
Chapter 25 Kivi Synthesis and Frocessing		Mutations that affect pre-mRNA splicing cause disease	909
RNA synthesis comprises three stages: Initiation, elongation, and termination	884	Most human pre-mRNAS can be spliced in alternative ways to yield different proteins	910
29.1 RNA Polymerases Catalyze Transcription	885	29.4 The Discovery of Catalytic RNA Was	
RNA chains are formed de novo and grow in the		Revealing in Regard to Both Mechanism and	
5'-to-3' direction	886	Evolution	911
RNA polymerases backtrack and correct errors	888		
RNA polymerase binds to promoter sites on the DNA			
template to initiate transcription	888	Chapter 30 Protein Synthesis	921
Sigma subunits of RNA polymerase recognize promoter sites	889	30.1 Protein Synthesis Requires the Translation of Nucleotide Sequences into Amino Acid	
RNA polymerases must unwind the template	000	Sequences	922
double helix for transcription to take place	890	The synthesis of long proteins requires a low error	
Elongation takes place at transcription bubbles that move along the DNA template	890	frequency	922
Sequences within the newly transcribed RNA signal	090	Transfer RNA molecules have a common design	923
termination	891	Some transfer RNA molecules recognize more than	
Some messenger RNAs directly sense metabolite		one codon because of wobble in base-pairing	925
concentrations	892	30.2 Aminoacyl Transfer RNA Synthetases	
The rho protein helps to terminate the transcription		Read the Genetic Code	927
of some genes	892	Amino acids are first activated by adenylation	927
Some antibiotics inhibit transcription	893	Aminoacyl-tRNA synthetases have highly discriminating	
Precursors of transfer and ribosomal RNA are		amino acid activation sites	928
cleaved and chemically modified after transcription in prokaryotes	895	Proofreading by aminoacyl-tRNA synthetases increases the fidelity of protein synthesis	929
29.2 Transcription in Eukaryotes Is Highly		Synthetases recognize various features of transfer RNA	
Regulated	896	molecules	930
Three types of RNA polymerase synthesize RNA in eukaryotic cells	897	Aminoacyl-tRNA synthetases can be divided into two classes	931
Three common elements can be found in the RNA		30.3 The Ribosome Is the Site of Protein	
polymerase II promoter region	898	Synthesis	931
The TFIID protein complex initiates the assembly of the active transcription complex	899	Ribosomal RNAs (5S, 16S, and 23S rRNA) play a central role in protein synthesis	932
Multiple transcription factors interact with eukaryotic	0//	tole in protein synthesis	,

The start signal is usually AUG preceded by several bases that pair with 16S rRNA	934	31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression	964
Bacterial protein synthesis is initiated by formylmethionyl transfer RNA	935	Lambda repressor regulates its own expression A circuit based on lambda repressor and Cro form	964
Formylmethionyl- $tRNA_f$ is placed in the P site of the ribosome in the formation of the 70S	2.24	a genetic switch Many prokaryotic cells release chemical signals that	965
initiation complex	936	regulate gene expression in other cells	965
Elongation factors deliver aminoacyl-tRNA to the ribosome	936	Biofilms are complex communities of prokaryotes 31.4 Gene Expression Can Be Controlled at	966
Peptidyl transferase catalyzes peptide-bond synthesis	937	Posttranscriptional Levels	967
The formation of a peptide bond is followed by the GTP-driven translocation of tRNAs and mRNA	938	Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent	967
Protein synthesis is terminated by release factors that read stop codons	940	RNA secondary structure	907
30.4 Eukaryotic Protein Synthesis Differs from Prokaryotic Protein Synthesis Primarily		Chapter 32 The Control of Gene Expression in Eukaryotes	973
in Translation Initiation Mutations in initiation factor 2 cause a curious	941	32.1 Eukaryotic DNA Is Organized into Chromatin	974
pathological condition	942	Nucleosomes are complexes of DNA and histones	975
30.5 A Variety of Antibiotics and Toxins Can Inhibit Protein Synthesis	943	DNA wraps around histone octamers to form nucleosomes	975
Some antibiotics inhibit protein synthesis	943	32.2 Transcription Factors Bind DNA and	
Diphtheria toxin blocks protein synthesis in eukaryotes		Regulate Transcription Initiation	977
by inhibiting translocation Ricin fatally modifies 28S ribosomal RNA	944 945	A range of DNA-binding structures are employed by eukaryotic DNA-binding proteins	977
30.6 Ribosomes Bound to the Endoplasmic		Activation domains interact with other proteins	978
Reticulum Manufacture Secretory and Membrane Proteins	945	Multiple transcription factors interact with eukaryotic regulatory regions	979
Signal sequences mark proteins for translocation across the endoplasmic reticulum membrane	945	Enhancers can stimulate transcription in specific cell types	979
Transport vesicles carry cargo proteins to their final destination	947	Induced pluripotent stem cells can be generated by introducing four transcription factors into	
		differentiated cells	980
Chapter 31 The Control of Gene Expression in Prokaryotes	957	32.3 The Control of Gene Expression Can Require Chromatin Remodeling	980
31.1 Many DNA-Binding Proteins Recognize		The methylation of DNA can alter patterns of gene expression	981
Specific DNA Sequences The helix-turn-helix motif is common to many	958	Steroids and related hydrophobic molecules pass through membranes and bind to DNA-binding receptors	982
prokaryotic DNA-binding proteins	959	Nuclear hormone receptors regulate transcription by	
31.2 Prokaryotic DNA-Binding Proteins Bind		recruiting coactivators to the transcription complex	982
Specifically to Regulatory Sites in Operons	959	Steroid-hormone receptors are targets for drugs Chromatin structure is modulated through covalent	984
An operon consists of regulatory elements and protein-encoding genes	960	modifications of histone tails	985
The <i>lac</i> repressor protein in the absence of lactose binds to the operator and blocks transcription	961	Histone deacetylases contribute to transcriptional repression	986
Ligand binding can induce structural changes in		32.4 Eukaryotic Gene Expression Can Be	
regulatory proteins	962	Controlled at Posttranscriptional Levels	987
The operon is a common regulatory unit in prokaryotes	962	Genes associated with iron metabolism are translationally regulated in animals	987
Transcription can be stimulated by proteins that contact RNA polymerase	963	Small RNAs regulate the expression of many eukaryotic genes	989

Part IV RESPONDING TO ENVIRONMENTAL CHANGES		34.1 Antibodies Possess Distinct Antigen-Binding and Effector Units	1021
Chapter 33 Sensory Systems	995	34.2 Antibodies Bind Specific Molecules Through Hypervariable Loops	1023
33.1 A Wide Variety of Organic Compounds Are Detected by Olfaction	996	The immunoglobulin fold consists of a beta-sandwich framework with hypervariable loops	1024
Olfaction is mediated by an enormous family of seven-transmembrane-helix receptors	996	X-ray analyses have revealed how antibodies bind antigens Large antigens bind antibodies with numerous	1024
Odorants are decoded by a combinatorial mechanism	998	interactions	1026
33.2 Taste Is a Combination of Senses That Function by Different Mechanisms	1000	34.3 Diversity Is Generated by Gene Rearrangements	1027
Sequencing of the human genome led to the discovery of a large family of 7TM bitter receptors	1001	J (joining) genes and D (diversity) genes increase antibody diversity	1027
A heterodimeric 7TM receptor responds to sweet compounds	1002	More than 10^8 antibodies can be formed by combinatorial association and somatic mutation	1028
Umami, the taste of glutamate and aspartate, is mediated by a heterodimeric receptor related to the sweet receptor	1003	The oligomerization of antibodies expressed on the surfaces of immature B cells triggers antibody secretion	1029
Salty tastes are detected primarily by the passage of sodium ions through channels	1003	Different classes of antibodies are formed by the hopping of V _H genes	1030
Sour tastes arise from the effects of hydrogen ions (acids) on channels	1003	34.4 Major-Histocompatibility-Complex Proteins Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors	1031
33.3 Photoreceptor Molecules in the Eye Detect Visible Light	1004	Peptides presented by MHC proteins occupy a deep groove flanked by alpha helices	1031
Rhodopsin, a specialized 7TM receptor, absorbs visible light	1004	T-cell receptors are antibody-like proteins containing variable and constant regions	1034
Light absorption induces a specific isomerization of bound 11-cis-retinal	1005	CD8 on cytotoxic T cells acts in concert with T -cell receptors	1034
Light-induced lowering of the calcium level coordinates recovery	1006	Helper T cells stimulate cells that display foreign peptides bound to class II MHC proteins	1036
Color vision is mediated by three cone receptors that are homologs of rhodopsin Rearrangements in the genes for the green and	1007	Helper T cells rely on the T-cell receptor and CD4 to recognize foreign peptides on antigen-presenting cells	1036
red pigments lead to "color blindness"	1008	MHC proteins are highly diverse Human immunodeficiency viruses subvert the	1038
33.4 Hearing Depends on the Speedy Detection of Mechanical Stimuli	1009	immune system by destroying helper T cells 34.5 The Immune System Contributes to the	1039
Hair cells use a connected bundle of stereocilia to detect tiny motions	1009	Prevention and the Development of Human Diseases	1040
Mechanosensory channels have been identified in Drosophila and vertebrates	1010	T cells are subjected to positive and negative selection in the thymus	1040
33.5 Touch Includes the Sensing of Pressure, Temperature, and Other Factors	1011	Autoimmune diseases result from the generation of immune responses against self-antigens	1041
Studies of capsaicin reveal a receptor for sensing high temperatures and other painful stimuli	1011	The immune system plays a role in cancer prevention Vaccines are a powerful means to prevent and	1041
More sensory systems remain to be studied	1012	eradicate disease	1042
Chapter 34 The Immune System	1017	Chapter 35 Molecular Motors	1049
Innate immunity is an evolutionarily ancient defense system	1018	35.1 Most Molecular-Motor Proteins Are Members of the P-Loop NTPase Superfamily	1050
The adaptive immune system responds by using the principles of evolution	1019	Molecular motors are generally oligomeric proteins with an ATPase core and an extended structure	1050

Contents

xxxi

xxxii Contents

ATP binding and hydrolysis induce changes in the conformation and binding affinity of motor proteins	1052	36.2 Drug Candidates Can Be Discovered by Serendipity, Screening, or Design	1081
35.2 Myosins Move Along Actin Filaments	1054	Serendipitous observations can drive drug	
Actin is a polar, self-assembling, dynamic polymer	1054	development	1081
Myosin head domains bind to actin filaments	1056	Screening libraries of compounds can yield drugs	4000
Motions of single motor proteins can be directly		or drug leads	1083
observed	1056	Drugs can be designed on the basis of three-dimensional structural information	
Phosphate release triggers the myosin power stroke	1057	about their targets	1086
Muscle is a complex of myosin and actin	1057	•	1000
The length of the lever arm determines motor		36.3 Analyses of Genomes Hold Great	1089
velocity	1060	Promise for Drug Discovery	1003
35.3 Kinesin and Dynein Move Along		Potential targets can be identified in the human proteome	1089
Microtubules	1060	Animal models can be developed to test the	1007
Microtubules are hollow cylindrical polymers	1060	validity of potential drug targets	1090
Kinesin motion is highly processive	1062	Potential targets can be identified in the genomes	
35.4 A Rotary Motor Drives Bacterial Motion	1064	of pathogens	1090
Bacteria swim by rotating their flagella	1064	Genetic differences influence individual responses	
Proton flow drives bacterial flagellar rotation	1064	to drugs	1091
Bacterial chemotaxis depends on reversal of the		36.4 The Development of Drugs Proceeds	
direction of flagellar rotation	1066	Through Several Stages	1092
		Clinical trials are time consuming and expensive	1092
Chapter 36 Drug Development	1073	The evolution of drug resistance can limit	
36.1 The Development of Drugs Presents		the utility of drugs for infectious agents	
Huge Challenges	1074	and cancer	1094
Drug candidates must be potent modulators of their targets	1074	Answers to Problems	A1
Drugs must have suitable properties to reach their		Index	В1
targets	1075		וט
Toxicity can limit drug effectiveness	1080		