Contents

For	reword			v		
Ac	knowle	edgment	8 2	xxv		
1.	General introduction					
2.	Gene	ral back	kground	7		
	21	Introd	luction	7		
	2.1 9.9	The ty	we interacting systems: atom and field	9		
	4.4	221	External and internal atomic variables	9		
		2.2.1	Classical versus quantum treatments of atomic variables	10		
		2.2.2	Classical description of field variables	10		
		2.2.4	Quantum description of field variables	11		
		2.2.5	Atom-field interaction Hamiltonian in the long wavelength	~~		
		2.2.0	approximation	12		
		2.2.6	Elementary interaction processes	14		
	2.3	Basic	conservation laws	14		
		2.3.1	Conservation of the total linear momentum	14		
		2.3.2	Conservation of the total angular momentum	17		
	2.4	Two-le	evel atom interacting with a coherent monochromatic field.			
		The R	abi oscillation	20		
		2.4.1	A simple case: magnetic resonance of a spin $1/2$	20^{-5}		
		2.4.2	Extension to any two-level atomic system	23		
		2.4.3	Perturbative limit	25		
		2.4.4	Two physical pictures for Ramsey fringes	27		
	2.5	Two-le	evel atom interacting with a broadband field. Absorption and			
		emissi	on rates	29		
		2.5.1	Absorption rate deduced from a semiclassical treatment of			
			the field	29		
		2.5.2	Physical discussion. Relaxation time and correlation time .	31		

2.5.4 Extension to spontaneous emission 3 2.6 Two-level atom interacting with a coherent monochromatic field in the presence of damping 3 Light: a source of information on atoms 3 3. Optical methods 4 3.1 Introduction 4 3.2 Double resonance 4	 32 33 33 41 41 41
 2.6 Two-level atom interacting with a coherent monochromatic field in the presence of damping	33 5 41
the presence of damping 3 Light: a source of information on atoms 3 3. Optical methods 4 3.1 Introduction 4 3.2 Double resonance 4 3.2 Double resonance 4	33 5 41
Light: a source of information on atoms 3 3. Optical methods 4 3.1 Introduction 4 3.2 Double resonance 4 2.2.1 Dringiple of the method 4	5 41
Light: a source of information on atoms 3 3. Optical methods 4 3.1 Introduction 4 3.2 Double resonance 4 2.2.1 Dringiple of the method 4	8 5 41 41
3. Optical methods 4 3.1 Introduction 4 3.2 Double resonance 4 2.2.1 Dringiple of the method 4	41 41
3.1 Introduction 4 3.2 Double resonance 4 2.2.1 Dringiple of the method 4	41
3.2 Double resonance	чт
2.2.1 Dringing of the method	43
$5.2.1 \mathbf{Principle of the method} \ldots \ldots \ldots \ldots \ldots 4$	43
3.2.2 Predicted shape for the double resonance curve 4	44
$3.2.3$ Experimental results $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$	45
3.2.4 Interpretation of the Majorana reversal $\ldots \ldots \ldots \ldots 4$	45
3.3 Optical pumping [Kastler (1950)] $\ldots \ldots \ldots \ldots \ldots \ldots 4$	46
3.3.1 Principle of the method for a $J_g = 1/2 \rightarrow J_e = 1/2$	
transition	47
3.3.2 Angular momentum balance	48
3.3.3 Double role of light $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$	48
3.4 First experiments on optical pumping	49
3.5 How can optical pumping polarize atomic nuclei?	49
3.5.1 Using hyperfine coupling with polarized electronic spins 4	49
3.5.2 First example: optical pumping experiments with	
mercury-199 atoms	52
3.5.3 Second example: combining optical pumping with	
metastability exchange collisions for helium- 3	52
3.5.4 A new application: magnetic resonance imaging of the	
$lung cavities \ldots \ldots$	54
3.6 Brief survey of the main applications of optical methods 5	55
3.7 Concluding remarks 5	58
4. Linear superpositions of internal atomic states	61
4.1 Introduction	61
4.2 First experimental evidence of the importance of	
atomic coherences	62
4.3 Zeeman coherences in excited states	64
4.3.1 How to prepare Zeeman coherences in excited states e?	64
4.3.2 Physical interpretation	64
4.3.3 How to detect Zeeman coherences in $e?$	66
4.3.4 Equation of motion of Zeeman coherences in e	66
4.3.5 Level crossing resonances in the excited state e	67

		4.3.6	Pulsed excitation. Quantum beats	69
		4.3.7	Excitation with modulated light	70
		4.3.8	Modulation of the fluorescence light in a double resonance	
			experiment. Light beats	70
	4.4	Zeema	an coherences in atomic ground states	71
		4.4.1	Hanle effect in atomic ground states	71
		4.4.2	Detection of the magnetic resonance in the ground state by	
			the modulation of the absorbed light	74
	4.5	Transf	fer of coherences	74
	4.6	Dark 1	resonances. Coherent population trapping	79
		4.6.1	Discovery of dark resonances	79
		4.6.2	First theoretical treatment of dark resonances	80
		4.6.3	Interpretation of the Raman resonance condition	81
		4.6.4	A few applications of dark resonances	82
	4.7	Conclu	usion	84
5.	Reso	nance fl	uorescence	87
	51	Introd	uction	87
	5.2	Low ir	ntensity limit. Perturbative approach	88
	0.2	5.2.1	Lowest order process	88
		5.2.2	Resonant scattering amplitude	89
		5.2.3	Scattering of a light wave packet	91
		5.2.4	First higher order processes	92
	5.3	Optica	al Bloch equations	93
	5.4	The d	lressed atom approach	96
		5.4.1	The interacting systems	96
		5.4.2	Uncoupled states of the atom-laser system	97
		5.4.3	Effect of the coupling. Dressed states	98
		5.4.4	Two different situations	99
		5.4.5	Radiative cascade in the basis of uncoupled states	101
		5.4.6	A new description of quantum dissipative processes	104
	5.5	Photo	n correlations. The quantum jump approach	105
		5.5.1	The waiting time distribution	105
		5.5.2	From the waiting time distribution to the second order	
			correlation function	106
		5.5.3	Photon antibunching	106
	5.6	Fluore	escence triplet at high laser intensities	108
		5.6.1	Limit of large Rabi frequency	108
		5.6.2	Mollow fluorescence triplet	108
		5.6.3	Widths and weights of the components of the Mollow	
			triplet	110
			-	

		5.6.4	Time correlations between the photons emitted in the two sidebands of the fluorescence triplet
	5.7	Conclu	usion
6.	Adva	ances in	high resolution spectroscopy 115
	6.1	Introd	luction
	6.2	Satura	ated absorption $\ldots \ldots 117$
		6.2.1	Principle of the method
		6.2.2	Crossover resonances
		6.2.3	Recoil doublet
	6.3	Two-p	bhoton Doppler-free spectroscopy
		6.3.1	Principle of the method
		6.3.2	Examples of results
		6.3.3	Comparison between saturated absorption and two-photon
			spectroscopy
	6.4	Recoil	suppressed by confinement: the Lamb-Dicke effect 124
		6.4.1	Intensities of the vibrational lines
		6.4.2	Influence of the localization of the ion
		6.4.3	Case of a harmonic potential
		6.4.4	Historical perspective
	6.5	The sl	nelving method
		6.5.1	Single ion spectroscopy
		6.5.2	Intermittent fluorescence
		6.5.3	Properties of the detected signal
		6.5.4	Observation of quantum jumps
	6.6	Quant	um logic spectroscopy
	6.7	Freque	ency measurement with frequency combs
	6.8	Conclu	usion

Atom-photon interactions: a source of perturbations for atoms which can be useful 141

7.	Pertu	rbations	s due to a quasi resonant optical excitation	145
	7.1	Introdu	uction	145
	7.2	Light s	hift, light broadening and Rabi oscillation	147
		7.2.1	Effective Hamiltonian	147
		7.2.2	Weak coupling limit. Light shift and light broadening	148
		7.2.3	High coupling limit. Rabi oscillation	149
		7.2.4	Absorption rate versus Rabi oscillation	151
		7.2.5	Semiclassical interpretation in the weak coupling limit	151
		7.2.6	Generalization to a non-resonant excitation	152

		7.2.7	Case of a degenerate ground state	154
	7.3	Pertur	bation of the field. Dispersion and absorption	155
		7.3.1	Atom in a cavity	155
		7.3.2	Frequency shift of the field due to the atom	156
		7.3.3	Damping of the field	157
	7.4	Experi	imental observation of light shifts	158
		7.4.1	Principle of the experiment	158
		7.4.2	Examples of results	159
	7.5	Using	light shifts for manipulating atoms	161
		7.5.1	Laser traps	161
		7.5.2	Atomic mirrors	162
		7.5.3	Blue detuned traps: a few examples	163
		7.5.4	Optical lattices	164
		7.5.5	Internal state dependent optical lattices	165
		7.5.6	Coherent transport	167
	7.6	Using	light shifts for manipulating fields	167
		7.6.1	Linear superposition of two field states with different	
			phases	168
		7.6.2	Non-destructive detection of photons	168
	7.7	Conclu	ision	169
8.	Pertu	irbation	s due to a high frequency excitation	171
	8.1	Introd	uction	171
	8.2	Spin 1	/2 coupled to a high frequency RF field	173
		8.2.1	Hamiltonian	174
		8.2.2	Perturbative treatment of the coupling	174
		8.2.3	Stimulated corrections	176
		8.2.4	Radiative corrections	177
	8.3	Weakl	y bound electron coupled to a high frequency field	178
		8.3.1	Effective Hamiltonian describing the modifications of the	
			dynamical properties of the electron	178
		8.3.2	Stimulated effects	180
		8.3.3	Spontaneous effects. Vacuum fluctuations and	
			radiation reaction	182
	8.4	New in	nsights into radiative corrections	183
		8.4.1	Examples of spontaneous corrections	183
		8.4.2	Interpretation of the Lamb shift	185
		8.4.3	Interpretation of the spin anomaly $g-2$	186
	8.5	Conch	usion	188

Atom-photon interactions: a simple system for studying higher order effects 191

9.	Multi	photon	processes between discrete states	195
	9.1	Introdu	action	195
	9.2	Radiof	requency multiphoton processes	196
		9.2.1	Multiphoton RF transitions between two Zeeman sublevels	
			m_F and $m_F + 2$	196
		9.2.2	Experimental observation on sodium atoms	198
		9.2.3	Multiphoton resonances between two Zeeman sublevels m_F	
			and $m_F + 1$	199
	9.3	Radiat	ive shift and radiative broadening of multiphoton	
		resonai	nces	202
		9.3.1	Energy levels of the atom+RF photons system.	
			Transition amplitude	202
		9.3.2	Pure single photon resonance. Simple anticrossing	204
		9.3.3	Higher order anticrossing for a <i>p</i> -photon resonance $(p > 1)$	205
		9.3.4	Application to the case of a spin $1/2$ coupled to a σ -	
			polarized RF field	206
	9.4	Optical	l multiphoton processes between discrete states $\ldots \ldots$	211
		9.4.1	Introduction	211
		9.4.2	Radiative shift of Doppler-free two-photon resonances	211
		9.4.3	Stimulated Raman processes	212
		9.4.4	Phase matching condition. Application to degenerate	
			four-wave mixing	217
	9.5	Conclu	sion \ldots	219
10.	Phote	oionizati	on of atoms in intense laser fields	221
	10.1	Introdu	ıction	221
	10.2	Multip	hoton ionization	223
		10.2.1	Parameters influencing the multiphoton ionization rate	223
		10.2.2	Quantum interference effects in multiphoton ionization	225
		10.2.3	Asymmetric line profiles in resonant multiphoton	
			ionization	226
	10.3	Above	threshold ionization (ATI)	227
		10.3.1	Multiphoton transitions between states of the continuum .	227
		10.3.2	Consequences of the oscillatory motion of the electron in	
			the laser field	228
		10.3.3	Evidence for non-perturbative effects	229
	10.4	Harmo	nic generation	231
		10.4.1	Physical interpretation	231

	10.4.2	High order harmonic generation (HHG). Evidence for non-
		perturbative effects
10.5	Tunnel	ionization and recollision
	10.5.1	The breakdown of perturbation theory 233
	10.5.2	Keldysh parameter
	10.5.3	Two-step quantum-classical model
	10.5.4	Recollision
	10.5.5	Full quantum treatments
10.6	Conclu	sion

 $\mathbf{241}$

Atom-photon interactions: a tool for controlling and manipulating atomic motion

11.	Radiative forces exerted on a two-level atom at rest				
	11.1	Introdu	uction	247	
		11.1.1	Order of magnitude of the force	247	
		11.1.2	Characteristic times	248	
		11.1.3	Validity of the concept of a mean force at a given point	249	
	11.2	Calcula	ation of the mean radiative force	250	
		11.2.1	Principle of the calculation	250	
		11.2.2	Hamiltonian and the rotating wave approximation	251	
		11.2.3	Heisenberg equations for the external variables.		
			Force operator	252	
		11.2.4	Approximations. Mean radiative force	253	
		11.2.5	The two types of mean radiative forces: dissipative		
			and reactive \ldots	253	
	11.3	Dissipa	utive force	256	
		11.3.1	Theoretical results	256	
		11.3.2	Physical interpretation	257	
		11.3.3	Application to the deflection and to the slowing down		
of an atomic be			of an atomic beam	258	
		11.3.4	Fluctuations	260	
	11.4	Reactiv	ve force	261	
		11.4.1	Theoretical results	262	
		11.4.2	Physical interpretation	262	
		11.4.3	Dressed atom interpretation	263	
	11.5	Conclu	sion	266	
12.	Laser	cooling	of two-level atoms	269	
	12.1	Introdu	uction	269	
	12.2	Dopple	er-induced friction force	271	

		12.2.1	Doppler effect in a red detuned laser plane wave	271
		12.2.2	Low velocity behavior of the force	272
		12.2.3	Idea of Doppler cooling for trapped ions	273
		12.2.4	Idea of Doppler cooling for neutral atoms	273
	12.3	Two-le	vel atom moving in a weak standing wave.	
		Dopple	$r cooling \ldots \ldots$	275
		12.3.1	Perturbative approach for calculating the force	275
		12.3.2	Friction coefficient for a red-detuned weak standing wave .	276
		12.3.3	Momentum-energy balance. Entropy balance	276
		12.3.4	Limits of Doppler cooling. Lowest temperature	277
		12.3.5	Consistency of the various approximations	279
		12.3.6	Spatial diffusion. Optical molasses	279
	12.4	Beyond	the perturbative approach	280
		12.4.1	Optical Bloch equations for a moving atom	280
		12.4.2	Time lag of internal variables	281
		12.4.3	Low velocity limit $(k_L v \ll \Gamma)$	282
		12.4.4	Higher velocities	282
	12.5	Dressee	d atom approach to atomic motion in an intense	
		standin	g wave. Blue cooling	284
		12.5.1	Energy and radiative widths of the dressed states \ldots .	284
		12.5.2	Friction mechanism	285
		12.5.3	High intensity Sisyphus cooling	286
		12.5.4	Experimental results	288
	12.6	Conclu	sion	289
13.	Sub-I	Doppler	cooling. Sub-recoil cooling	291
	13.1	Introdu	1ction	291
	13.2	Sub-Do	oppler cooling	293
		13.2.1	The basic ingredients of sub-Doppler cooling	293
		13.2.2	Laser configuration and atomic transition	294
		13.2.3	Light shifts and optical pumping for an atom at rest	294
		13.2.4	Low intensity Sisyphus cooling for a moving atom	296
		13.2.5	Characteristics of the friction force. Qualitative discussion	298
		13.2.6	Quantum limits of sub-Doppler cooling	300
	13.3	Sub-ree	coil cooling	302
		13.3.1	Physical mechanism	302
		13.3.2	Velocity selective coherent population trapping (VSCPT) .	304
		13.3.3	Sub-recoil Raman cooling	308
		13.3.4	Quantitative predictions for sub-recoil cooling	310
	13.4	Resolve	ed sideband cooling of trapped ions	312
	13.5	Conclu	sion \ldots	314

14.	Trapping of particles				
	14.1	Introduction	317		
	14.2	Trapping of charged particles	318		
		14.2.1 The Earnshaw theorem	318		
		14.2.2 The Penning trap	319		
		14.2.3 The Paul trap	321		
		14.2.4 Cooling of the trapped ions	323		
		14.2.5 High precision measurements performed with ultracold			
		trapped ions	324		
	14.3	Magnetic traps	325		
		14.3.1 Introduction	325		
		14.3.2 Quadrupole trap and Majorana losses	326		
		14.3.3 Ioffe-Pritchard trap	327		
		14.3.4 Time-averaged orbiting potential (TOP)	329		
		14.3.5 Loading neutral atoms in a magnetic trap	330		
	14.4	Electric dipole traps	330		
		14.4.1 Induced dipole moment	330		
		14.4.2 Application of dipole forces to trapping	332		
		14.4.3 Optical lattices	335		
	14.5	Artificial orbital magnetism for neutral atoms	338		
		14.5.1 Introduction	338		
		14.5.2 Rotating a harmonically trapped quantum gas	338		
		14.5.3 Artificial gauge potential from adiabatic evolution	339		
	14.6	Magneto-optical trap (MOT)	341		
	14.7	Conclusion	344		
Ul	tracc	old interactions and their control 3	47		
15.	Two-l	body interactions at low temperatures	351		
	15.1	Introduction	351		
	15.2	Quantum scattering: a brief reminder	352		
		15.2.1 Scattering amplitude	353		
		15.2.2 Scattering cross section	355		
		15.2.3 Partial wave expansion	355		
	15.3	Scattering length	358		

15.3	Scatter	ing length	358
	15.3.1	Low-energy limit	358
	15.3.2	Scattering amplitude and scattering length	360
	15.3.3	Square potential and resonances	361
	15.3.4	Effective interactions and the sign of the scattering length	363
15.4	Pseudo	-potential	365
	15.4.1	Motivation for introducing this pseudo-potential	365

		15.4.2	Localized pseudo-potential giving the correct	365
		15/3	Scattering amplitude Validity of the Born approximation	367
		15.4.0	Bound state of the pseudo-potential for a positive	001
		10.4.4	scattering length	368
	15.5	Delta r	potential truncated in momentum space	369
	10.0	15.5.1	Expression of the potential	369
		15.5.2	Determination of the new coupling constant	369
		15.5.3	Comparison with the pseudo-potential	370
	15.6	Forwar	d scattering	371
		15.6.1	Gaussian incident wave and scattered wave	371
		15.6.2	Interference of the incident and scattered waves in the	
		20:012	far-field zone	373
		15.6.3	Phase shift of the incident wave and mean field energy	375
	15.7	Conclu	sion	377
16	Contr	olling of	tom atom interactions	370
10.	Contr	oning a	tom-atom interactions	019
	16.1	Introdu	action	379
	16.2	Collisio	on channels	380
		16.2.1	Microscopic interactions	380
		16.2.2	Quantum numbers of the initial collision state.	
			Collision channels	382
		16.2.3	Coupled channel equations	382
		16.2.4	Two-channel model	383
	16.3	Qualita	ative discussion. Analogy between Feshbach resonances and	
		resonar	nt light scattering	384
	16.4	Scatter	ing states of the two-channel Hamiltonian	386
		16.4.1	Calculation of the dressed scattering states	386
		16.4.2	Existence of a resonance in the scattering amplitude	388
		16.4.3	Asymptotic behavior of the dressed scattering states	389
		16.4.4	Scattering length. Feshbach resonance	391
	16.5	Bound	states of the two-channel Hamiltonian	393
		16.5.1	Calculation of the energy of the bound state	393
		16.5.2	Wave function of the bound state	396
		16.5.3	Halo states	397
	16.6	Produc	cing ultracold molecules	399
		16.6.1	Magnetic tuning of a Feshbach resonance	399
		16.6.2	Photoassociation of ultracold atoms	400
	16.7	Conclu	sion	402

Exploring quantum interferences with few atoms and photons

40	5
-----------	---

17.	Interference of atomic de Broglie waves				
	17.1	Introdu	nction	409	
	17.2	De Bro	glie waves versus optical waves	410	
		17.2.1	Dispersion relations. Position and momentum		
			distributions	410	
		17.2.2	Spatial coherences. Coherence length	411	
		17.2.3	Fragility of spatial coherences	413	
	17.3	Young's	s two-slit interferences with atoms	414	
		17.3.1	Important parameters of Young's double-slit interferometer	414	
		17.3.2	Young's double-slit interferences with supersonic beams	415	
		17.3.3	Young's double-slit interferences with cold atoms $\ \ . \ . \ .$	416	
		17.3.4	Can one determine which slit the atom passes through?	417	
	17.4	Diffract	ion of atoms by material structures	418	
	17.5	Diffract	tion by laser standing waves	420	
		17.5.1	New features compared to the diffraction by		
			material gratings	420	
		17.5.2	Light-atom momentum exchange	422	
		17.5.3	Raman-Nath regime	423	
		17.5.4	Bragg regime	424	
	17.6	Bloch o	scillations	427	
		17.6.1	Review on the quantum treatment of a particle in a		
			periodic potential	427	
		17.6.2	Implementation with cold atoms	428	
		17.6.3	Physical interpretations	430	
	17.7	tion of atomic de Broglie waves by time-dependent			
		structu	res	431	
		17.7.1	Phase modulation of atomic de Broglie waves	432	
		17.7.2	Atomic wave diffraction and interference using		
			temporal slits	433	
	17.8	Conclus	sion \ldots	433	
18.	Rams	ey fringe	es revisited and atomic interferometry	435	
	18.1	Introdu	letion	435	
	18.2	Microw	ave atomic clocks with cold atoms	437	
		18.2.1	Principle of an atomic clock	437	
		18.2.2	Atomic fountains	437	
		18.2.3	Performances of atomic fountains	438	
		18.2.4	Cold atoms clocks in space	441	
		18.2.5	Tests of general relativity	441	

	18.3	Extens	sion of Ramsey fringes to the optical domain	442
		18.3.1	Equivalence of the crossing of a laser beam with a coherent	
			beam splitter	442
		18.3.2	Spatial separation of the two final wave packets. Quenching	
			of the interference	443
		18.3.3	How to restore the interference signal?	444
		18.3.4	Other possible schemes	448
	18.4	Calcula	ation of the phase difference between the two arms of an	
		atomic	interferometer	449
		18.4.1	Quantum propagator and Feynman path integral	450
		18.4.2	Simple case of quadratic Lagrangians	451
		18.4.3	Phase shift in the absence of external potentials and	
			inertial fields	452
		18.4.4	Phase shift due to external potentials and inertial fields in	
			the perturbative limit	453
	18.5	Applica	ations of atomic interferometry	454
		18.5.1	Measurement of gravitational fields. Gravimeters	454
		18.5.2	Measurement of rotational inertial fields	457
		18.5.3	Measurement of h/M and α	459
	18.6	New pe	erspectives opened by optical clocks	461
19.	Quan	tum cor	relations. Entangled states	463
	19.1	Introdu	action	463
	19.2	Interfe	rence effects in double counting rates	464
	-0	19.2.1	Photodetection signals	464
		19.2.2	Two-mode model for the light field	465
		19.2.3	What are the "objects" which interfere in w_{II} ?	466
		19.2.4	Establishment of correlations between the two modes	467
	19.3	Entang	ded states	469
		19.3.1	Definition \ldots	469
		19.3.2	Schmidt decomposition of an entangled state	469
		19.3.3	Information content of an entangled state	471
	19.4	Prepar	ing entangled states	472
		19.4.1	Entanglement between one atom and one field mode	472
		19.4.2	Entanglement between two atoms	473
		19.4.3	Entanglement between two separate cavity fields	475
		19.4.4	Entanglement between two photons	475
	19.5	Entang	glement and interference	477
	19.6	Entang	glement and non-separability	479
		19.6.1	The Einstein-Podolsky-Rosen (EPR) argument [Einstein	
			<i>et al.</i> (1935)]	479
		19.6.2	Bell's inequalities	480

	19.6.3	Experimental results and conclusion
19.7	Entang	glement and which-path information
19.8	Entang	glement and the measurement process
	19.8.1	Von Neumann model of an ideal measurement process 486
	19.8.2	Difficulty associated with macroscopic coherences 487
	19.8.3	A possible solution: coupling of ${\cal M}$ with the environment . 487
	19.8.4	Simple example of pointer states
	19.8.5	The infinite chain of Von Neumann
19.9	Conclu	sion $\ldots \ldots 490$

Degenerate quantum gases

491

20.	20. Emergence of quantum effects in a gas			497
	20.1	Introdu	action	497
	20.2	Quantu	ım effects in collisions	499
		20.2.1	S-matrix and T-matrix	499
		20.2.2	Interfering scattering amplitudes for identical particles	500
		20.2.3	Polarized Fermi gas at low temperature	503
		20.2.4	Interference effects in forward and backward scattering	503
		20.2.5	Identical spin rotation effect (ISRE)	506
		20.2.6	A few examples of effects involving ISRE	508
	20.3	The first	st prediction of BEC in a gas	512
		20.3.1	A new derivation of Planck's law for black body radiation	512
		20.3.2	Extension of Bose statistics to atomic particles	513
		20.3.3	The condensation phenomenon	514
		20.3.4	Critical temperature	515
20.3.5 Variation of the nu			Variation of the number N_0 of condensed atoms with the	
			temperature. Thermodynamic limit	518
		20.3.6	Influence of dimensionality	519
	20.4	Conclu	sion \ldots	520
21.	The le	ong ques	st for Bose-Einstein condensation	523
	21.1	Introdu	nction	523
	21.2	First at	ttempts on hydrogen	524
		21.2.1	Spin polarized hydrogen as a quantum gas	524
		21.2.2	Production of a spin polarized sample at low temperature .	525
		21.2.3	Difficulties associated with collisions	526
		21.2.4	Need for other methods	527
	21.3	Second	attempts on hydrogen	527
		21.3.1	Wall free confinement. Magnetic trapping	527
	21.3.2 Bose-Einstein condensation in a harmonic trap			

		21.3.3	New cooling method: evaporative cooling	529
		21.3.4	Need for new detection method of polarized hydrogen	532
	21.4	The qu	est for BEC for alkali atoms	533
		21.4.1	Difficulties associated with alkali atoms	533
		21.4.2	Advantages of alkali atoms	534
	21.5	First o	bservation of Bose-Einstein condensation	535
		21.5.1	Time sequence	535
		21.5.2	Signature of Bose-Einstein condensation	536
		21.5.3	Subsequent observation on hydrogen	538
	21.6	Bose-E	instein condensation of other atomic species $\ldots \ldots \ldots$	538
		21.6.1	Experimental improvements	538
		21.6.2	Review of new condensates	540
	21.7	The first	st experiments on quantum degenerate Fermi gases	542
		21.7.1	Ideal Fermi gas in a three-dimensional harmonic trap $\ . \ . \ .$	543
		21.7.2	Cooling fermions	544
		21.7.3	Spatial distribution and Fermi pressure	545
		21.7.4	Pairs of fermionic atoms	545
	21.8	Conclu	sion	546
22.	Mean	field de	scription of a Bose-Einstein condensate	549
	22.1	Introdu	iction	549
	22.2	Mean fi	ield description of the condensate	550
		22.2.1	Variational calculation of the condensate wave function	550
		22.2.2	Stationary Gross-Pitaevskii equation	551
		22.2.3	Expression of the various quantities in terms of the	
			spatial density	552
	22.3	Conden	sate in a box and healing length	553
		22.3.1	Condensate in a one-dimensional box	553
		22.3.2	Healing length	554
	22.4	Conden	nsate in a harmonic trap	555
		22.4.1	Total energy and the different interaction regimes	555
		22.4.2	Condensate with a positive scattering length and the	
			Thomas-Fermi limit	556
	22.5	Conder	sate with a negative scattering length	559
		22.5.1	Condition of stability in 3D	559
		22.5.2	Solitonic solution in 1D	560
		22.5.3	Collapse and explosion of a condensate	
			in 3D with a negative scattering length	560
	22.6	Quantu	m vortex in an homogeneous condensate	561
		22.6.1	Effective Gross-Pitaevskii equation	561
		22.6.2	Properties of the velocity field	562
	22.7	Time-d	ependent problems	563

		22.7.1	Time-dependent Gross-Pitaevskii equation	563
		22.7.2	Analogy with hydrodynamic equations	564
		22.7.3	The two contributions to the kinetic energy: Thomas-Fermi	
			approximation for time-dependent problems $\ldots \ldots \ldots$	565
		22.7.4	Harmonic confinement	567
	22.8	Conclu	sion	570
	22.9	Appen	dix: Normal modes of a harmonically trapped	
		conden	sate	571
		22.9.1	Isotropic trap	572
		22.9.2	Cylindrically-symmetric trap	575
		22.9.3	Scissors mode for anisotropic traps	575
23.	Cohe	rence pr	operties of Bose-Einstein condensates	577
	23.1	Introdu	uction	577
	23.2	Atomic	e field operators and correlation functions	579
		23.2.1	Brief reminder on second quantization	579
		23.2.2	Atomic field operators	580
		23.2.3	Examples of physical operators. Field correlation functions	581
		23.2.4	Heisenberg equation of the field operator	583
	23.3	Calcula	ation of correlation functions in a few simple cases \ldots .	583
		23.3.1	First-order correlation function for an ideal Bose	
			gas in a box	583
		23.3.2	Higher-order spatial correlation functions for an ideal gas	
			of bosons above T_c	586
		23.3.3	Correlation functions for a Bose-Einstein condensate \ldots	587
		23.3.4	A few experimental results	588
	23.4	$\operatorname{Relativ}$	e phase of two independent condensates $\ldots \ldots \ldots \ldots$	592
		23.4.1	Two condensates in Fock states	593
		23.4.2	Phase states	593
		23.4.3	Conjugate variable of the relative phase	595
		23.4.4	Emergence of a relative phase in an interference	
			experiment	596
	23.5	Long ra	ange order and order parameter	597
		23.5.1	Long range order	597
		23.5.2	Order parameter	598
	23.6	New ef	fects in atom optics due to atom-atom interactions	599
		23.6.1	Collapse and revival of first-order coherence due	
			to interactions	599
		23.6.2	An example of nonlinear effects in atom optics: Four-wave	
			mixing with matter waves	601
	23.7	Conclu	sion	602

24.	Elementary excitations and superfluidity in Bose-Einstein condensates				
	24.1	Introdu	action	603	
	24.2	Bogolu	bov approach for an homogeneous system	605	
		24.2.1	Second quantized Hamiltonian	606	
		24.2.2	Bogolubov quadratic Hamiltonian	607	
		24.2.3	Physical discussion	608	
		24.2.4	Energy of the ground state	611	
		24.2.5	Extension to inhomogeneous systems	612	
	24.3	Landau	a criterion for superfluidity in an homogeneous system	614	
		24.3.1	Microscopic probe	614	
		24.3.2	Macroscopic approach	616	
	24.4	Extens	ion of Landau criterion for a condensate in a		
		rotating	g bucket	616	
		24.4.1	The rotating bucket	617	
		24.4.2	Other possible states of the condensate: quantized vortices	617	
		24.4.3	Various threshold rotation frequencies	620	
	24.5	Experie	mental study of vortices in gaseous condensates	621	
		24.5.1	Introduction $\ldots \ldots \ldots$	621	
		24.5.2	A few experimental results	621	
		24.5.3	Measuring the angular momentum per atom in a		
			rotating condensate \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	623	
		24.5.4	Routes to vortex nucleation	624	
	24.6	Conclu	sion \ldots	628	

Frontiers of atomic physics

25.	5. Testing fundamental symmetries. Parity violation in atoms					
	25.1	Introdu	ction	637		
		25.1.1	Historical perspective	637		
		25.1.2	Atomic parity violation (APV)	639		
		25.1.3	Organization of this chapter	641		
	25.2	The first	st cesium experiment	641		
		25.2.1	Principle of the experiment	641		
		25.2.2	Transition dipole moment	642		
		25.2.3	Existence of a chiral signal in the re-emitted light	645		
		25.2.4	Calibration of the parity violation amplitude	647		
	25.3	Connec	tion between the parity violation amplitude and the			
		parame	eters of the electroweak theory	648		
		25.3.1	Non-relativistic limit of the weak interaction Hamiltonian .	648		
		25.3.2	Calculation of the parity violation amplitude	649		
			*			

 $\mathbf{631}$

		25.3.3	Nuclear spin-dependent parity violating interactions.	
			Anapole moment	649
	25.4	Survey	of experimental results	651
		25.4.1	Cesium experiments	651
		25.4.2	Experiments using other atoms	652
	25.5	Conclu	sion about the importance of APV experiments	653
	25.6	Appen	dix: Testing time reversal symmetry	
		by lool	sing for electric dipole moments	655
26.	Quan	tum gas	es as simple systems for many-body physics	659
	26.1	Introdu	action	659
	26.2	The do	buble well problem for bosonic gases	661
		26.2.1	Introduction	661
		26.2.2	The Hubbard Hamiltonian	662
		26.2.3	The superfluid regime	662
		26.2.4	The insulator regime	665
		26.2.5	Connection between the superfluid and insulator regimes .	667
		26.2.6	Production of Schrödinger cat states when interactions	
			are attractive	668
		26.2.7	Controlling the tunnelling rate with a modulation of the	
			difference of the two potential depths	669
	26.3	Superfl	uid-Mott insulator transition for a quantum bosonic gas in	
		an opti	cal lattice	670
		26.3.1	Bose Hubbard model	670
		26.3.2	Qualitative interpretation of the superfluid-Mott	
			insulator transition	670
		26.3.3	Experimental observation	672
	26.4	Quantu	1m fermionic gas in an optical lattice	672
	26.5	Feshba	ch resonances and Fermi quantum gases	674
		26.5.1	Introduction	674
		26.5.2	Brief survey of BCS theory	675
		26.5.3	A simple model for the BEC-BCS crossover	682
		26.5.4	Experimental investigations	684
	26.6	Conclu	sion	689
27.	Extre	me light	-	695
	27.1	Introdu	uction	695
	27.2	Attosed	cond science	697
		27.2.1	Mechanism of production of attosecond pulses	697
		27.2.2	Multiple-cycle laser pulse. Train of attosecond pulses	697
		27.2.3	Few-cycle laser pulse. Control of the carrier-envelope	
			phase	699

		27.2.4	Attosecond metrology	700
		27.2.5	A few applications of attosecond pulses	703
	27.3	Ultra in	ntense laser pulses	704
		27.3.1	Q-switched lasers	705
		27.3.2	Mode locking techniques	706
		27.3.3	Chirped pulse amplification	709
		27.3.4	A few applications of high intensity table-top lasers	709
	27.4	Conclus	sion	713
28.	Gener	al concl	usion	715
Bib	liograp	hy		719
Ind	ex			751