Contents

Pre	eface		vii
Pre	eface to	o Second Edition	ix
Pre	eface to	o First Edition	xi
\mathbf{Ac}	knowle	dgments	xiii
Chapt	er 1 I	introduction	1
I	Histor	rical Developments	4
	I.1	Natural Accelerators	5
	I.2	Electrostatic Accelerators	5
	I.3	Induction Accelerators	6
	I.4	Radio-Frequency (RF) Accelerators	8
	I.5	Colliders and Storage Rings	16
	I.6	Synchrotron Radiation Storage Rings	18
II	Layou	t and Components of Accelerators	18
	II.1	Acceleration Cavities	19
	II.2	Accelerator Magnets	20
	II.3	Other Important Components	22
III	Accele	erator Applications	22
	III.1	High Energy and Nuclear Physics	22
	III.2	Solid-State and Condensed-Matter Physics	23
	III.3	Other Applications	23
	Exerc	ise 1: Basics	24
Chapt	er 2]	Transverse Motion	33
I	Hamil	Itonian for Particle Motion in Accelerators	34
	I.1	Hamiltonian in Frenet-Serret Coordinate System	35
	I.2	Magnetic Field in Frenet-Serret Coordinate System	37
	I.3	Equation of Betatron Motion	38
	I.4	Particle Motion in Dipole and Quadrupole Magnets	39
	Exerc	ise 2.1	40

Η	Linear	Betatron Motion	44	
	II.1	Transfer Matrix and Stability of Betatron Motion	44	
	II.2	Courant–Snyder Parametrization	47	
	II.3	Floquet Transformation	48	
	II.4	Action-Angle Variable and Floquet Transformation	53	
	II.5	Courant-Snyder Invariant and Emittance	55	
	II.6	Stability of Betatron Motion: A FODO Cell Example	60	
	II.7	Symplectic Condition	61	
	II.8	Effect of Space-Charge Force on Betatron Motion	62	
	Exercis	se 2.2	69	
III	Effect	of Linear Magnet Imperfections	80	
	III.1	Closed-Orbit in the Presence of Dipole Field Error	80	
	III.2	Extended Matrix Method for the Closed Orbit	86	
	III.3	Application of Dipole Field Error	86	
	III.4	Quadrupole Field (Gradient) Errors	95	
	III.5	Basic Beam Observation of Transverse Motion	99	
	III.6	Application of Quadrupole Field Error	102	
	III.7	Beam Spectra	104	
	III.8	Beam Injection and Extraction	108	
	III.9	Mechanisms of Emittance Dilution and Diffusion	110	
	Exerci	se 2.3	115	
IV	Off-Mo	omentum Orbit	122	
	IV.1	Dispersion Function	122	
	IV.2	H-Function, Action, and Integral Representation	126	
	IV.3	Momentum Compaction Factor	129	
	IV.4	Dispersion Suppression and Dispersion Matching	132	
	IV.5	Achromat Transport Systems	134	
	IV.6	Transport Notation	136	
	IV.7	Experimental Measurements of Dispersion Function	137	
	IV.8	Transition Energy Manipulation	138	
	IV.9	$\operatorname{Minimum} \langle \mathcal{H} \rangle \operatorname{Modules} \ldots \ldots$	149	
	Exercise 2.4			
V	Chrom	natic Aberration	160	
	V.1	Chromaticity Measurement and Correction	161	
	V.2	Nonlinear Effects of Chromatic Sextupoles	165	
	V.3	Chromatic Aberration and Correction	165	
	V.4	Lattice Design Strategy	170	
	Exerci	se 2.5	171	
VI	Linear	Coupling	173	
	V1.1	The Linear Coupling Hamiltonian	173	
	V1.2	Effects of an Isolated Linear Coupling Resonance	175	
	V1.3	Experimental Measurement of Linear Coupling	179	

	VI.4	Linear Coupling Correction with Skew Quadrupoles	. 182
	VI.5	Linear Coupling Using Transfer Matrix Formalism	. 183
	Exercis	se 2.6	. 184
VII	Nonlin	ear Resonances	. 188
	VII.1	Nonlinear Resonances Driven by Sextupoles	. 188
	VII.2	Higher-Order Resonances	. 195
	VII.3	Nonlinear Detuning from Sextupoles and Octupoles	. 197
	VII.4	Betatron Tunes and Nonlinear Resonances	. 198
	VII.5	Emittance Growth and Dynamic Aperture	. 199
	Exercis	se 2.7	. 203
VIII	Collect	ive Instability and Landau Damping	. 209
	VIII.1	Impedance	. 209
	VIII.2	Transverse Wave Modes	. 212
	VIII.3	Effect of Wakefield on Transverse Wave	. 213
	VIII.4	Frequency Spread and Landau Damping	. 217
	Exercis	se 2.8	. 220
IX	Synchr	o-Betatron Hamiltonian	. 223
	Exercis	se 2.9	. 227
			000
Cnapte	rs S	ynchrotron Motion	229
1	Longit	udinal Equation of Motion	. 230
	1.1	The Synchrotron Hamiltonian	. 233
	1.2	Figure of Complete the Dress Charles Ellipses	. 204 025
	1.3	Evolution of Synchrotron Phase-Space Empses	. 200 026
	1.4	Some Practical Examples	. 200
	1.0 Eveneir	Summary of Synchrotron Equations of Motion $\ldots \ldots \ldots$. 201 020
тт	Adiaba	68 J.I	. 200
11	Adlaba	Eined Deinte	. 240
	11.1 11.0	Pucket Area	. 240
	11.2 11.2	Small Amplitude Oscillations and Bunch Area	. 241 943
	11.5 11.4	Small Amplitude Symphretron Motion at the UED	. 243 946
	11.4 11 5	Sunchrotron Motion for Large Amplitude Particles	240 246
	11.5 11.6	Experimental Tracking of Synchrotron Motion	. 240 248
	Fvorcis	a 2.9	250
тт	RF Ph	ase and Voltage Modulations	255 255
111	III 1	Normalized Phase-Space Coordinates	. 200 255
	III.1 III.2	RF Phase Modulation and Parametric Resonances	. 200 258
	III 3	Measurements of Synchrotron Phase Modulation	. <u>2</u> 00 262
	III.0	Effects of Dipole Field Modulation	. 202 266
	HI 5	BE Voltage Modulation	. 200 974
	III.0 III.6	Measurement of BF Voltage Modulation	· 214 970
	111.0	Measurement of the voltage modulation	. 413

	Exercis	se 3.3	281
IV	Nonad	iabatic and Nonlinear Synchrotron Motion	284
	IV.1	Linear Synchrotron Motion Near Transition Energy	285
	IV.2	Nonlinear Synchrotron Motion at $\gamma \approx \gamma_{\rm T}$	288
	IV.3	Beam Manipulation Near Transition Energy	291
	IV.4	Synchrotron Motion with Nonlinear Phase Slip Factor	292
	IV.5	The QI Dynamical Systems	294
	Exercis	se 3.4	298
V	Beam 1	Manipulation in Synchrotron Phase Space	299
	V.1	RF Frequency Requirements	300
	V.2	Capture and Acceleration of Proton and Ion Beams	302
	V.3	Bunch Compression and Rotation	304
	V.4	Debunching	308
	V.5	Beam Stacking and Phase Displacement Acceleration	308
	V.6	Double rf Systems	309
	V.7	The Barrier RF Bucket	316
	Exercis	se 3.5	322
VI	Funda	mentals of RF Systems	324
	VI.1	Pillbox Cavity	324
	VI.2	Low Frequency Coaxial Cavities	326
	VI.3	Beam Loading	334
	VI.4	Beam Loading Compensation and Robinson Instability	336
	Exercis	se 3.6	339
VII	Longit	udinal Collective Instabilities	342
	VII.1	Beam Spectra of Synchrotron Motion	343
	VII.2	Collective Microwave Instability in Coasting Beams	348
	VII.3	Longitudinal Impedance	349
	VII.4	Single Bunch Microwave Instability	352
	Exercis	se 3.7	359
VIII	Introdu	uction to Linear Accelerators	361
	VIII.1	Historical Milestones	361
	VIII.2	Fundamental Properties of Accelerating Structures	364
	VIII.3	Particle Acceleration by EM Waves	366
	VIII.4	Longitudinal Particle Dynamics in a Linac	378
	VIII.5	Transverse Beam Dynamics in a Linac	381
	Exercis	se 3.8	385
Chapte	er4P	hysics of Electron Storage Rings	391
1	Fields	of a Moving Charged Particle	396
	I.1	Non-relativistic Reduction	398
	I.2	Radiation Field for Particles at Relativistic Velocities	398
	I.3	Frequency and Angular Distribution	400

	I.4	Quantum Fluctuation	406
	Exerc	ise 4.1	408
II	Radia	tion Damping and Excitation	410
	II.1	Damping of Synchrotron Motion	410
	II.2	Damping of Betatron Motion	414
	II.3	Damping Rate Adjustment	417
	II.4	Radiation Excitation and Equilibrium Energy Spread	420
	II.5	Radial Bunch Width and Distribution Function	424
	II.6	Vertical Beam Width	426
	II.7	Beam Lifetime	427
	II.8	Summary: Radiation Integrals	432
	Exerc	ise 4.2	433
III	Emitt	ance in Electron Storage Rings	438
	III.1	Emittance of Synchrotron Radiation Lattices	438
	III.2	Insertion Devices	450
	III.3	Effect of IDs on Beam Dynamics	456
	III.4	Beam Physics of High Brightness Storage Rings	461
	Exerc	ise 4.3	464
			100
Chapt	er 5 8	Special Topics in Beam Physics	469
1	Free f	Electron Laser (FEL) \ldots \ldots \ldots \ldots \ldots \ldots	470
	1.1	Small Signal Regime	472
	1.2	Interaction of the Radiation Field with the Beam	4//
	1.3 E	High Gain FEL Facilities	480
11	Exerc	186 5.1	480
11	Beam	-Beam Interaction	482
	11.1	The Beam-Beam Force in Round Beam Geometry	482
	11.2	The Concrent Beam-Beam Effects	485
	11.3	Nonlinear Beam-Beam Effects	480
	11.4	Experimental Observations and Numerical Simulations	487
	11.5 E	Beam-Beam Interaction in Linear Colliders	491
	Exerc	1se o.2	492
Appen	dix A	Classical Mechanics and Analysis	495
I	Hamil	Itonian Dynamics	495
	L.1	Canonical Transformations	495
	I.2	Fixed Points	496
	I.3	Poisson Bracket	496
	I.4	Liouville Theorem	496
	L.5	Floquet Theorem	497
И	Stoch	astic Beam Dynamics	498
	II.1	Central Limit Theorem	498

	II.2	Langevin Equation of Motion	499 501
	11.3	Fokker-Planck Equation	501
111	Model	Independent Analysis	504
	111.1	Model Independent Analysis	502
	111.2	Independent Component Analysis	503
Appen	dix B	Numerical Methods and Physical Constants	505
Ι	Fourie	$\mathbf{r} \mathrm{Transform} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	505
	I.1	Nyquist Sampling Theorem	505
	1.2	Discrete Fourier Transform	506
	I.3	Digital Filtering	507
	I.4	Some Simple Fourier Transforms	508
II	Cauch	y Theorem and the Dispersion Relation	508
	II.1	Cauchy Integral Formula	508
	II.2	Dispersion Relation	509
III	Useful	Handy Formulas	509
	III.1	Generating Functions for the Bessel Functions	509
	III.2	The Hankel Transform	510
	III.3	The Complex Error Function [30]	510
	III.4	A Multipole Expansion Formula	510
	III.5	Cylindrical Coordinates	510
	III.6	Gauss' and Stokes' Theorems	511
	III.7	Vector Operation	511
IV	Maxw	ell's Equations	512
	IV.1	Lorentz Transformation of EM Fields	512
	IV.2	Cylindrical Waveguides	512
	IV.3	Voltage Standing Wave Ratio	514
$^{\circ}\mathrm{V}$	Physic	cal Properties and Constants	515
Bib	liograp	bhy	519
Inde	ex		521
Syn	ibols a	nd Notations	529
\mathbf{List}	of Ta	bles	533