Contents

Preface .		VII
-----------	--	-----

Part I Classical Topics Revisited

1	\mathbf{Spl}	nere Packings	3
	1.1	Kissing Numbers of Spheres	3
	1.2	One-Sided Kissing Numbers of Spheres	5
	1.3	On the Contact Numbers of Finite Sphere Packings	6
	1.4	Lower Bounds for the (Surface) Volume of Voronoi Cells in	
		Sphere Packings	7
	1.5	On the Density of Sphere Packings in Spherical Containers	12
	1.6	Upper Bounds on Sphere Packings in High Dimensions	13
	1.7	Uniform Stability of Sphere Packings	15
2	Finite Packings by Translates of Convex Bodies		
	2.1	Hadwiger Numbers of Convex Bodies	17
	2.2	One-Sided Hadwiger Numbers of Convex Bodies	18
	2.3	Touching Numbers of Convex Bodies	19
	2.4	On the Number of Touching Pairs in Finite Packings	20
3	Cov	verings by Homothetic Bodies - Illumination and	
	Rel	ated Topics	23
	3.1	The Illumination Conjecture	23
	3.2	Equivalent Formulations	24
	3.3	The Illumination Conjecture in Dimension Three	24
	3.4	The Illumination Conjecture in High Dimensions	25
	3.5	On the X-Ray Number of Convex Bodies	28
	3.6	The Successive Illumination Numbers of Convex Bodies	29
	3.7	The Illumination and Covering Parameters of Convex Bodies .	31
	3.8	On the Vertex Index of Convex Bodies	32

4	Cov	verings by Planks and Cylinders	35
	4.1	Plank Theorems	35
	4.2	Covering Convex Bodies by Cylinders	37
	4.3	Covering Lattice Points by Hyperplanes	39
	4.4	On Some Strengthenings of the Plank Theorems of Ball and	
		Bang	41
	4.5	On Partial Coverings by Planks: Bang's Theorem Revisited	43
5	On	the Volume of Finite Arrangements of Spheres	47
	5.1	The Conjecture of Kneser and Poulsen	47
	5.2	The Kneser-Poulsen Conjecture for Continuous Contractions .	48
	5.3	The Kneser-Poulsen Conjecture in the Plane	49
	5.4	Non-Euclidean Kneser–Poulsen-Type Results	51
	5.5	Alexander's Conjecture	53
	5.6	Densest Finite Sphere Packings	54
6	Bal	l-Polyhedra as Intersections of Congruent Balls	57
	6.1	Disk-Polygons and Ball-Polyhedra	57
	6.2	Shortest Billiard Trajectories in Disk-Polygons	57
	6.3	Blaschke-Lebesgue-Type Theorems for Disk-Polygons	59
	6.4	On the Steinitz Problem for Ball-Polyhedra	61
	6.5	On Global Rigidity of Ball-Polyhedra	62
	6.6	Separation and Support for Spindle Convex Sets	63
	6.7	Carathéodory- and Steinitz-Type Results	65
	6.8	Illumination of Ball-Polyhedra	65
	6.9	The Euler-Poincaré Formula for Ball-Polyhedra	67

Part II Selected Proofs

7	Sele	ected P	roofs on Sphere Packings	71
	7.1	Proof o	of Theorem 1.3.5	71
		7.1.1	A proof by estimating the surface area of unions of balls	71
		7.1.2	On the densest packing of congruent spherical caps of	
		;	special radius	73
	7.2	Proof o	of Theorem 1.4.7	73
		7.2.1	The Voronoi star of a Voronoi cell in unit ball packings	73
		7.2.2	Estimating the volume of a Voronoi star from below	74
	7.3	Proof c	of Theorem 1.4.8	75
		7.3.1	Basic metric properties of Voronoi cells in unit ball	
			packings	75
		7.3.2	Wedges of types I, II, and III, and truncated wedges	
			of types I, and II	76
		7.3.3	The lemma of comparison and a characterization of	
			regular polytopes	79

		7.3.4	Volume formulas for (truncated) wedges	80
		7.3.5	The integral representation of surface density in	
			(truncated) wedges	81
		7.3.6	Truncation of wedges increases the surface density	84
		7.3.7	Maximum surface density in truncated wedges of type I	85
		7.3.8	An upper bound for the surface density in truncated	
			wedges of type II	86
		7.3.9	The overall estimate of surface density in Voronoi cells .	88
	7.4	Proof	of Theorem 1.7.3	89
		7.4.1	The signed volume of convex polytopes	89
		7.4.2	The volume force of convex polytopes	90
		7.4.3	Critical volume condition	91
		7.4.4	Strictly locally volume expanding convex polytopes	92
		7.4.5	From critical volume condition and infinitesimal	
			rigidity to uniform stability of sphere packings	94
8	Sel	ected]	Proofs on Finite Packings of Translates of	
Ŭ	Cor	ivex B	adies	95
	81	Proof	of Theorem 2.2.1	95
	0.1	8.1.1	Monotonicity of a special integral function	95
		8.1.2	A proof by slicing via the Brunn-Minkowski inequality.	96
	8.2	Proof	of Theorem 2.4.3.	98
9	Sele	ected I	Proofs on Illumination and Related Topics1	01
	9.1	Proof	of Corollary 3.4.2 Using Rogers' Classical Theorem on	
		Econo	mical Coverings	01
	9.2	Proof	of Theorem 3.5.2 via the Gauss Map1	02
	9.3	Proof	of Theorem 3.5.3 Using Antipodal Spherical Codes of	~ ~
		Small	Covering Radii10	03
	9.4	Proofs	s of Theorem 3.8.1 and Theorem 3.8.3 10	06
		9.4.1	From the Banach-Mazur distance to the vertex index 10	06
		9.4.2	Calculating the vertex index of Euclidean balls in	~ -
			dimensions 2 and 3 10	07
		9.4.3	A lower bound for the vertex index using the	
			Blaschke-Santaló inequality and an inequality of Ball	• •
			and Pajor1.	12
		9.4.4	An upper bound for the vertex index using a theorem	10
			of Rudelson1	13
10	Sele	cted F	Proofs on Coverings by Planks and Cylinders 1	15
	10.1	Proof	of Theorem 4.1.7	15
		10.1.1	On coverings of convex bodies by two planks	15
		10.1.2	A proof of the affine plank conjecture of Bang for	
		10.1.2	A proof of the affine plank conjecture of Bang for non-overlapping cuts	16
	10.2	10.1.2 Proof	A proof of the affine plank conjecture of Bang for non-overlapping cuts	16 17

	10.2.1 Covering ellipsoids by 1-codimensional cylinders11 10.2.2 Covering convex bodies by cylinders of given	7
	codimension	8
	10.3 Proof of Theorem 4.5.2	9
	10.4 Proof of Theorem 4.5.8	9
11	Selected Proofs on the Kneser–Poulsen Conjecture	1
	Surface Volume 12	1
	11.2 Proof of Theorem 5.3.3 on Weighted Surface and Codimension	1
	Two Volumes	4
	11.3 Proof of Theorem 5.3.4 - the Leapfrog Lemma12	6
	11.4 Proof of Theorem 5.4.1	7
	11.4.1 The spherical leapfrog lemma12	7
	11.4.2 Smooth contractions via Schläfli's differential formula 12	7
	11.4.3 Relating higher-dimensional spherical volumes to	
	lower-dimensional ones12	8
	11.4.4 Putting pieces together	9
	11.5 Proof of Theorem 5.4.6	0
	11.5.1 Monotonicity of the volume of hyperbolic simplices 13	0
	11.5.2 From Andreev's theorem to smooth one-parameter	
	family of hyperbolic polyhedra	3
12	Selected Proofs on Ball-Polyhedra	5
12	Selected Proofs on Ball-Polyhedra	5 5
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior 13	55
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13	555
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13	555
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4. 13	55 578
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4 13 12.2.1 Strict separation by spheres of radii at most one 13	55 5788
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13	55 578899
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4. 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.2.3 Separating spindle convex sets 13	55 578899
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4. 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14	55 5788990
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4. 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.2.3 Separating spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14 12.3.1 On the boundary of spindle convex hulls in terms of supporting spheres 14	55 5788990 0
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4. 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.2.3 Separating spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14 12.3.1 On the boundary of spindle convex hulls in terms of supporting spheres 14 12.3.2 From the spherical Carathéodory theorem to an 14	55 5788990
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.2.3 Separating spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14 12.3.1 On the boundary of spindle convex hulls in terms of supporting spheres 14 12.3.2 From the spherical Carathéodory theorem to an analogue for spindle convex hulls 14	55 5788990 0 1
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14 12.3.1 On the boundary of spindle convex hulls in terms of supporting spheres 14 12.3.2 From the spherical Carathéodory theorem to an analogue for spindle convex hulls 14 12.4 Proof of Theorem 6.8.3 14	55 5788990 0 12
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.2.3 Separating spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14 12.3.1 On the boundary of spindle convex hulls in terms of supporting spheres 14 12.3.2 From the spherical Carathéodory theorem to an analogue for spindle convex hulls 14 12.4 Proof of Theorem 6.8.3 14 12.4 On the boundary of spindle convex hulls in terms of 14	55 5788990 0 12
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.2.3 Separating spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14 12.3.1 On the boundary of spindle convex hulls in terms of supporting spheres 14 12.3.2 From the spherical Carathéodory theorem to an analogue for spindle convex hulls 14 12.4 Proof of Theorem 6.8.3 14 12.4.1 On the boundary of spindle convex hulls in terms of normal images 14	55 5788990 0 12 2
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.2.3 Separating spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14 12.3.1 On the boundary of spindle convex hulls in terms of supporting spheres 14 12.3.2 From the spherical Carathéodory theorem to an analogue for spindle convex hulls 14 12.4 Proof of Theorem 6.8.3 14 12.4.1 On the boundary of spindle convex hulls in terms of normal images 14 12.4.2 On the Euclidean diameter of spindle convex hulls and 14	55 5788990 0 12 2
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.2.3 Separating spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14 12.3.1 On the boundary of spindle convex hulls in terms of supporting spheres 14 12.3.2 From the spherical Carathéodory theorem to an analogue for spindle convex hulls 14 12.4 Proof of Theorem 6.8.3 14 12.4.1 On the boundary of spindle convex hulls in terms of normal images 14 12.4.2 On the Euclidean diameter of spindle convex hulls and normal images 14	55 5788990 0 12 2 3
12	Selected Proofs on Ball-Polyhedra 13 12.1 Proof of Theorem 6.2.1 13 12.1.1 Finite sets that cannot be translated into the interior of a convex body 13 12.1.2 From generalized billiard trajectories to shortest ones 13 12.2 Proofs of Theorems 6.6.1, 6.6.3, and 6.6.4 13 12.2.1 Strict separation by spheres of radii at most one 13 12.2.2 Characterizing spindle convex sets 13 12.2.3 Separating spindle convex sets 13 12.3 Proof of Theorem 6.7.1 14 12.3.1 On the boundary of spindle convex hulls in terms of supporting spheres 14 12.3.2 From the spherical Carathéodory theorem to an analogue for spindle convex hulls 14 12.4 Proof of Theorem 6.8.3 14 12.4.1 On the boundary of spindle convex hulls in terms of normal images 14 12.4.2 On the Euclidean diameter of spindle convex hulls and normal images 14 12.4.3 An upper bound for the illumination number based on 14	55 5788990 0 12 2 3

	12.4.4	Schramm's lower bound for the proper measure of
		polars of sets of given diameter in spherical space145
	12.4.5	An upper bound for the number of sets of given
		diameter that are needed to cover spherical space147
	12.4.6	The final upper bound for the illumination number 148
12.5	Proof	of Theorem 6.9.1
	12.5.1	The CW-decomposition of the boundary of a standard
		ball-polyhedron148
	12.5.2	On the number of generating balls of a standard
		ball-polyhedron149
	12.5.3	Basic properties of face lattices of standard
		ball-polyhedra150
Reference	ces	