Contents

1	Introduction				
	1.1	The N	avier–Stokes Equations	3	
		1.1.1	Integral Invariants	5	
		1.1.2	The K41 Theory of Homogeneous,		
			Isotropic Turbulence	7	
	1.2	Large	Eddy Simulation	13	
	1.3	Eddy Viscosity Closures			
	1.4	Closure by van Cittert Approximate Deconvolution			
		1.4.1	The Bardina Model	20	
		1.4.2	The Accuracy of van Cittert Deconvolution	21	
	1.5	Appro	eximate Deconvolution Regularizations	25	
		1.5.1	Time Relaxation	25	
		1.5.2	The Leray-Deconvolution Regularization	27	
		1.5.3	The NS-Alpha Regularization	28	
		1.5.4	The NS-Omega Regularization	28	
	1.6	The P	roblem of Boundary Conditions	29	
		1.6.1	The Commutator Error	30	
		1.6.2	Near Wall Modeling	30	
		1.6.3	Changing the Averaging Operator		
			to a Differential Filter	31	
		1.6.4	Ad Hoc Corrections and Regularization Models	32	
		1.6.5	Near Wall Resolution	32	
	1.7	Ten Open Problems in the Analysis of ADMs		32	
2	Large Eddy Simulation				
	2.1 The Idea of Large Eddy Simulation		The I	dea of Large Eddy Simulation	35
		2.1.1	Differing Dynamics of the Large and Small Eddies	35	
		2.1.2	The Eddy-Viscosity Hypothesis/Boussinesq		
			Assumption	36	

v

	2.2	Local Spacial Averages 37			
		2.2.1 Top Hat Filter			
		2.2.2 Discrete Filters 40			
		2.2.3 Weighted Discrete Filters 40			
		2.2.4 Other Filters			
		2.2.5 Weighted Compact Discrete Filter from [SAK01a] 41			
		2.2.6 Differential Filters 42			
		2.2.7 Scale Space: What Is the Right Averaging? 45			
2.3 The SFNSE		The SFNSE			
	2.4	Eddy Viscosity Models 48			
		2.4.1 A First Choice of ν_T			
2.5 The Smagorinsky Model		The Smagorinsky Model 51			
	2.6	Some Smagorinsky Variants			
		2.6.1 Using the Q-Criterion 55			
		2.6.2 A Multiscale Turbulent Diffusion Coefficient			
		2.6.3 Localization of Eddy Viscosity in Scale Space 56			
		2.6.4 Vreman's Eddy Viscosity 57			
	2.7	A Glimpse into Near Wall Models 58			
	2.8	Remarks 59			
3	Ар	proximate Deconvolution Operators and Models 61			
	3.1	Useful Deconvolution Operators			
		3.1.1 Approximate Deconvolution			
	3.2	LES Approximate Deconvolution Models			
	3.3	Examples of Approximate Deconvolution Operators			
		3.3.1 Tikhonov Regularization			
		3.3.2 Tikhonov-Lavrentiev Regularization			
		3.3.3 A Variant on Tikhonov-Lavrentiev Regularization 68			
		3.3.4 The van Cittert Regularization			
		3.3.5 van Cittert with Relaxation Parameters			
		3.3.6 Other Approximate Deconvolution Methods			
	3.4	Analysis of van Cittert Deconvolution			
		3.4.1 Proof 75			
	3.5	Discrete Differential Filters			
	3.6	Reversibility of Approximate Deconvolution Models			
	3.7	The Zeroth Order Model			
		3.7.1 Proof 81			
	3.8	Remarks			
4	Phe	nomenology of ADMs			
	4.1	Basic Properties of ADMs			
	4.2 The ADM Energy Cascade				
		4.2.1 Another Approach to the ADM Energy Spectrum 94			
		4.2.2 The ADM Helicity Cascade			

	4.3	The AD	DM Micro-Scale	95		
		4.3.1	Design of an Experimental Test			
			of the Model's Energy Cascade	97		
	4.4	Remark	S	97		
5	Tim	ime Relaxation Truncates Scales				
	5.1	Time R	elaxation	99		
	5.2	The Mi	croscale of Linear Time Relaxation	102		
		5.2.1	Case 1: Fully Resolved	109		
		5.2.2	Case 2: Under Resolved	109		
		5.2.3	Case 3: Perfect Resolution	110		
	5.3	Time R	elaxation Does Not Alter Shock Speeds	110		
	5.4	Nonlinear Time Relaxation				
		5.4.1	Open Question 1: Does Nonlinear Time			
			Relaxation Dissipate Energy in All Cases?	113		
		5.4.2	Open Question 2: If not, What Is the			
		:	Simplest Modification to Nonlinear Time			
			Relaxation that Always Dissipates Energy?	113		
		5.4.3	Open Question 3: How Is Nonlinear Time			
			Relaxation to be Discretized in Time so as			
			to be Unconditionally Stable and Require			
		-	Filtering Only of Known Functions?	113		
	5.5	Analysis	s of a Nonlinear Time Relaxation	114		
		5.5.1	Open Question 4: Is the Extra $(I - G)$			
			Necessary to Ensure Energy Dissipation			
			or Just a Mathematical Convenience?	115		
		5.5.2	Open Question 5: If the Extra $(I - G)$			
			Is Necessary, How Is it to be Discretized in Time?	115		
		5.5.3 '	The $N = 0$ Case	117		
		5.5.4 '	The Analysis of Lilly	118		
		5.5.5	Open Question 8: Is It Possible to			
			Extend the Above Calculation of the			
		I	Optimal Relaxation Parameter to the			
			Original Version of Nonlinear Time Relaxation?	120		
	5.6	Remark	·S	120		
6	The	Leray-I	Deconvolution Regularization	121		
	6.1	The Ler	ray Regularization	121		
	6.2	Dunca's	S Leray-Deconvolution Regularization	124		
	6.3	Analysis	s of the Leray-Deconvolution Regularization	125		
		6.3.1	Existence of Solutions	125		
		6.3.2	Proof	126		
		6.3.3	Limits of the Leray-Deconvolution Regularization	129		
	6.4	Accurac	cy of the Leray-Deconvolution Family	130		
		6.4.1	The Case of Homogeneous, Isotropic Turbulence	131		

	6.5	Microscales	134
		6.5.1 Case 1	135
		6.5.2 Case 2	136
	6.6	Discretization	136
	6.7	Numerical Experiments with Leray-Deconvolution	138
		6.7.1 Convergence Rate Verification	138
		6.7.2 Two-Dimensional Channel Flow Over	
		a Step	139
		6.7.3 Three-Dimensional Channel Flow Over a Step	142
	6.8	Remarks	144
7	NS-	Alpha- and NS-Omega-Deconvolution Regularizations	145
•	71	Integral Invariants of the NSE	145
	72	The NS-Alpha Regularization	140
		7.2.1 The Periodic Case	147
		7.2.2 Discretizations of the NS-alpha Regularization	150
	7.3	The NS-Omega Regularization	151
	1.0	7.3.1 Motivation for NS- ω : The Challenges	101
		of Time Discretization	153
	7.4	Computational Problems with Rotation Form	154
	7.5	Numerical Experiments with NS- α	157
		7.5.1 Two-Dimensional Flow Over a Step	157
		7.5.2 Three-Dimensional Flow Over a Step	157
	7.6	Model Synthesis	158
		7.6.1 Synthesis of NS- α and ω Models	159
		7.6.2 Scale Truncation, Eddy Viscosity, VMMs	
		and Time Relaxation	160
	7.7	Remarks	161
٨	Doc	onvolution Under the No-Slip Condition	
A	and	the Loss of Regularity	163
		Regularity by Direct Estimation of Derivatives	164
	A 2	The Bootstrap Argument	167
	11.2	A 2.1 The Case $k = 3$	167
		A 2.2 Observation	167
	A.3	Examples	170
	A.4	Application to Differential Filters	172
	A.5	Remarks	173
-			175
ке	teren	ces	175
Inc	lex		183