Inhaltsverzeichnis

Einführung	21			
Über dieses Buch Konventionen in diesem Buch Törichte Annahmen über den Leser				
			Wie dieses Buch aufgebaut ist	22
			Teil I: Die exakten Grundlagen	22
Teil II: Stoffgesetze und ihre praktischen Anwendungen	23			
Teil III: Energieprinzip, Hauptsätze und Entropie	23			
Teil IV: Thermodynamische Kreisprozesse	23			
Teil V: Wasser und Wasserdampf	24			
Teil VI: Chemische Thermodynamik	24			
Teil VII: Der Top-Ten-Teil	24			
Symbole, die in diesem Buch verwendet werden	24			
Wie es weitergeht	25			
Teil I				
Die exakten Grundlagen	27			
Kapitel 1				
Warum ist die Thermodynamik wichtig	29			
Was genau ist Thermodynamik?	29			
Systeme grenzen Prozesse ab	30			
Wie die Temperatur die Eigenschaften der Materie verändert	30			
Energieumwandlung ist Thermodynamik	31			
Die Stellung der Thermodynamik in der Ingenieurwissenschaft	32			
Grundgleichungen der technischen Mechanik	32			
Flüssigkeiten sind geschmolzene Festkörper, Gase sind Flüssigkeitsdämpfe	33			
Grundgleichungen der Strömungsmechanik	34			
Die Gleichung für das Temperaturfeld	37			
Ganzheitliche Betrachtung der Grundgleichungen	38			
Kapitel 2				
Betrachtung der Materie mit Feldgrößen	39			
Grundgrößen der Thermodynamik	39			
Verbrennen Sie sich nicht die Finger: Die Temperatur	40			
Unter Druck	40			
Was noch bleibt: Masse, Volumen, Dichte	40			
Wie lassen sich die Grundgrößen exakt berechnen?	40			
Kontinuitätsgleichung oder Erhaltungsgleichung für die Masse	41			

Das Strömungsfeld als Rechengebiet	41
Die Bilanz der Masse anschaulich gemacht	42
Anwendungsbeispiel: Wie funktioniert ein Ram-Jet?	45
Anwendungsbeispiel: Trägerrakete	48
Spezialfälle der Kontinuitätsgleichung	48
Die Kontinuitätsgleichung für stationäre Strömungen	49
Die Kontinuitätsgleichung für stationäre und inkompressible Strömungen	49
Die eindimensionale und stationäre Kontinuitätsgleichung	50
Beispiel: Stromverzweigung in einer Wasserleitung	51
Die berühmten Navier-Stokes-Gleichungen	52
Das hydrostatische Grundgesetz	53
Was Sie bisher gelernt haben	57
Was noch kommt	57
Gleichung für das Temperaturfeld	57
Was Wärmeleitung ist	58
Eindimensionale und instationäre Wärmeleitung in Festkörpern	60
Die eindimensionale Temperaturverteilung in einer unendlich	
ausgedehnten Wand	63
Temperaturerhöhung durch adiabatische Kompression	65
Eine Grundgleichung fehlt noch!	68
Kapitel 3	
Makroskopische Betrachtung der Materie	71
Aus Feldgrößen werden Zustandsgrößen	71
Erster Handschlag: System abgrenzen	7]
Zweiter Handschlag: Systeme leben von Zustandsgrößen	72
Thermodynamik verbindet Physik mit Chemie	73
Masse und Stoffmenge	73
Eine berühmte Naturkonstante: Avogadro-Zahl	76
Grundgrößen der Physik und Chemie	76
Druckmessgeräte: Manometer und Barometer	84
Der thermodynamische Zustand eines Stoffes	89
Physik und Technik: Der Normzustand eines Gases	90
Chemie: Der Standardzustand eines Gases	90
Eine andere berühmte Naturkonstante: Loschmidt-Zahl	90
Das Molvolumen	91
Kompressibilität der Fluide	91
Ausgangssituation: Ein Festkörper	91
Vom Festkörper zum Fluid: Hooke'sches Gesetz der Fluide	93
Beispiel: Gesucht ist das Kompressibilitätsmodul von Wasser	
bei verschieden Temperaturen?	97
Beispiel: Wie groß ist die Dichte von Wasser bei 600 bar?	98
Ihr erster Kontakt mit dem idealen Gas	100
Was ist eigentlich die Temperatur?	101

Teil II	105
Stoffgesetze und ihre praktische Anwendung	105
Kapitel 4	
Zustandsgleichungen der idealen Gase	107
Ideale Gase	107
Die Modelleigenschaften der idealen Gase	107
Geschichte der idealen Gasgleichung	108
Heute: Die Vereinigung der Gasgesetze ist die ideale Gasgleichung	109
Weitere praktische Formen der idealen Gasgleichung	110
Übung macht den Meister: Beispiele	113
Folgerungen aus der idealen Gasgleichung	118
Die ideale Gasgleichung für relative Zustandsänderungen	120
Die Vereinigung der Koeffizienten	128
Was auch immer kommt: praktische Beispiele lösen	129
Kapitel 5	
Reale Gase	131
Wie erkennen Sie ein reales Gas?	- 131
Der genaue Blick auf die Realgasgleichung	132
Entscheidungskriterium: Ideales oder reales Gas?	133
Die Van-der-Waals-Zustandsgleichung für reale Gase	137
Eigenschaften der Van-der-Waals-Gasgleichung	138
Kritischer Druck und kritische Temperatur eines Gases	139
Die kritischen Daten eines Gases berechnen	141
Kapitel 6	
In der Nähe des absoluten Nullpunkts	147
Den absoluten Nullpunkt bestimmen	147
Absolute Temperaturskala und andere Skalen	150
Ein Maß für die Wärmeaufnahme eines Stoffes: Die Wärmekapazität	151
Mit Wärmemengen umgehen	152
Spezifische Wärmekapazität der Gase	153
Molare Wärmekapazitäten der Gase	155
Spezifische Wärmekapazität der Festkörper	155
Spezifische Wärmekapazität der Flüssigkeiten	157
Experimentelle Bestimmung der Wärmekapazität	158
Mittlere spezifische Wärmekapazität bei konstantem Druck	159
Mittlere spezifische Wärmekapazität bei konstantem Volumen	162

Teil III	
Energieprinzip, Hauptsätze und Entropie	165
Kapitel 7	
Arbeit und Wärme ist Energie	167
Was ist Arbeit?	167
Mechanische Arbeit der Physik	167
Die Arbeit der Thermodynamik	169
Was ist Wärme?	171
Die fünf thermodynamischen Systeme der Technik	172
Kapitel 8	
Energieprinzip und totale Differentiale	175
Intensive und extensive Zustandsgrößen	175
Etwas Besonderes: Das Energieprinzip der Thermodynamik	178
Formen der Energie	181
Das totale Differential einer Funktion	183
Ein Stahlkörper dehnt sich. Wie ändert sich sein Volumen?	184
Das totale Differential einer Funktion finden	185
Totales Differential und Linienintegral: Passt das zusammen?	186
Zurück zum Stahlkörper: das anschauliche Ergebnis	186
Kapitel 9	
Der erste Hauptsatz für offene Systeme	195
Alltägliche Formen der Energie	195
Herleitung des ersten Hauptsatzes	196
Wärme fließt über Systemgrenzen	198
Kein wirkliches System ist ohne Reibung	198
Offene Systeme können nur technische Arbeit abgeben oder aufnehmen	199
Die Energien im Eintrittsmassenstrom erfassen	200
Die Energien im Austrittsmassenstrom feststellen	201
Der erste Hauptsatz in differentieller Form	202
Der erste Hauptsatz in integraler Form	204
Der erste Hauptsatz für die Gesamtmasse eines offenen Systems	206
Der erste Hauptsatz als Leistungsbilanz	208

Beispiel: Wärmeübertrager in einer Luftkühlanlage

Technische Arbeit

Kolbenverdichter in Aktion

Absolute technische Arbeit

Leistung der technischen Arbeit

209

217

218

220

220

Kapitel 10	
Der erste Hauptsatz für geschlossene Systeme	223
Herleitung des ersten Hauptsatzes für geschlossene Systeme Spezifische integrale Form des Hauptsatzes	223 225
Energiebilanz des Gesamtsystems	226
Leistungsbilanz im geschlossenen System	227 228
Die thermodynamische Arbeit Zum Unterschied zwischen thermodynamischer und technischer Arbeit	229
Ein neuer Begriff: reversible Wärme	231
Kapitel 11	
Entropie und der zweite Hauptsatz der Thermodynamik	237
Alltägliche Vorgänge und gesunder Menschenverstand	237
Reversible Wärme und das Energieprinzip	239
Herleitung des zweiten Hauptsatzes für reversible Prozesse	239
Allgemeine Entropieänderung reversibler Prozesse	244
Entropieänderung reiner Stoffe	246
Entropieänderung irreversibler Prozesse	248
Den zweiten Hauptsatz bei irreversiblen Prozessen prüfen	249
Entropieänderung eines Universums	253
Reversible und irreversible Prozesse	259
Entropie und Unordnung Was ist Ordnung und was Unordnung?	260 260
Statistische Entropie	261
Kapitel 12	
Dritter und nullter Hauptsatz der Thermodynamik	265
Der dritte Hauptsatz der Thermodynamik	265
Die Unerreichbarkeit des absoluten Nullpunkts	266
Die Entropie eines Prüfkörpers am absoluten Nullpunkt	266
Absoluter Nullpunkt: Lässt sich ein Körper auf 0 Kelvin abkühlen?	268
Nullter Hauptsatz der Thermodynamik	269
Teil IV	
Thermodynamische Kreisprozesse	271
Kapitel 13	
Grundlagen der Kreisprozesse	273
Eigenschaften aller Kreisprozesse	273
Rechtsläufige Kreisprozesse mit dem Uhrzeigersinn	275
Linksläufige Kreisprozesse entgegen dem Uhrzeigersinn	275
Ausführungsarten der Kreisprozesse	276
Charakteristische Prozessfunktionen der Kreisprozesse	276

Graphen der Prozessfunktionen	278
Der erste Hauptsatz für beliebige Kreisprozesse	280
Capitel 14	
Rechtsläufige Kreisprozesse	283
Theoretische Berechnung der Nutzarbeit	283
Rechenansatz für die abzugebende Nutzarbeit	284
Theoretische Betrachtung zur Feststellung der abgegebenen Nutzarbeit	
ohne Linienintegrale lösen zu müssen	285
Thermischer Wirkungsgrad rechtsläufiger Kreisprozesse	289
Musterbeispiel: rechtsläufiger Carnot-Kreisprozess	290
Die Transformation des Carnot-Prozesses in das T-s-Diagramm	291
Weg A: Die Berechnung der Nutzarbeit im p-v-Diagramm	292
Nutzarbeit im p-v-Diagramm als Flächen repräsentieren	298
Schwierig: Gleichungen vereinfachen	300
Weg B: Die Nutzarbeit im T-s-Diagramm berechnen	301
Weg C: Nutzarbeit aus den Wärmeumsätzen berechnen	303
Thermischer Wirkungsgrad des rechtsläufigen Carnot-Kreisprozesses	304
Allgemeine Energieflüsse rechtsläufiger Kreisprozesse	304
Übersicht: rechtsläufige Kreisprozesse	305
Otto-Kreisprozess	305
Diesel-Kreisprozess	308
Seilinger-Kreisprozess	309
Stirling-Kreisprozess	311
Joule-Kreisprozess	312
Ericson-Kreisprozess	313
Clausius-Rankine-Kreisprozess	314
Capitel 15	
inksläufige Kreisprozesse	315
Allgemeiner Energiefluss linksläufiger Kreisprozesse	315
Wärme- und Kälteziffer	317
Nutzarbeit bei linksläufigen Kreisprozessen	318
Musterbeispiel: Linksläufiger Carnot-Kreisprozess	319
Notwendig: die zuzuführende Nutzarbeit	319
Wärmeziffer des linksläufigen Carnot-Kreisprozesses	323
Kälteziffer des linksläufigen Carnot-Kreisprozesses	324
Temperaturniveaus von Wärmepumpen und Kältemaschinen	325

Teil V	
Wasser und Wasserdampf	329
Kapitel 16	
Wasser und Wasserdampf	331
Allgemeine Phasenänderungen	331
Aus Eis wird heißer Dampf: isobarer Verdampfungsvorgang	332
Neuordnung der Variablen bei Wasserdampfprozessen	334
3-d-Phasendiagramm des Wassers	336
Isobarer Verdampfungsvorgang im 3-d-Phasendiagramm	339
Die Dampfdruckkurve des Wassers	340
Internationale Formel zur Berechnung von p_s als Funktion von ϑ_s	340
Zweidimensionale Phasendiagramme	342
Das p-v-Diagramm des reinen Wassers	342
Das p-9-Diagramm des reinen Wassers	343
Das 9-s-Diagramm des reinen Wassers	344
Das h-s-Diagramm des reinen Wassers	346
Wasserdampftafel	347
Die Temperaturtafel (Tafel I)	347 352
Die Drucktafel (Tafel II)	352 352
Wasser und überhitzter Dampf (Tafel III)	332
Kapitel 17	
Dampfprozesse	359
Aus Wasser überhitzten Dampf bereiten	359
Gesucht: Sattdampfmasse	361
Abkühlung einer Sattdampfmasse	362
Idealer und realer Dampfturbinenprozess	365
Teil VI	
	260
Chemische Thermodynamik	369
Kapitel 18	
Verbrennungsreaktionen	371
Vom Wesen der chemischen Reaktionen	371
Reaktionsenthalpie	372
Exotherme Reaktionen	372
Endotherme Reaktion	373
Brennstoffe und ihre Reaktionsgleichungen	374
Vollständige Verbrennung von Kohlenstoff mit Sauerstoff	375
Unvollständige Verbrennung von Kohlenstoff mit Sauerstoff	376
Vollständige Verbrennung von Kohlenmonoxid mit Sauerstoff	376
Vollständige Verbrennung von Wasserstoff mit Sauerstoff	377

Vollständige Verbrennung von Schwefel mit Sauerstoff Vollständige Verbrennungen von Kohlenstoff mit Luft Vollständige Verbrennung von Kohlenwasserstoffen Vollständige Verbrennung von organischen Stoffen	378 379 380 381
Kapitel 19	
Erster Hauptsatz für chemisch reagierende Substanzen	383
Herleitung des ersten Hauptsatzes für reagierende Substanzen Molare Enthalpie der Stoffe Brennwert und Heizwert	383 387 392
Kapitel 20	
Entropiefunktionen und der zweite Hauptsatz für chemische Reaktionen	395
Molare Entropiefunktion eines Einzelgases	395
Entropiefunktion einer Gasmischung	398
Partialdruck einer Gasmischung	399
Entropieänderung einer chemischen Reaktion	401
Der zweite Hauptsatz der chemischen Thermodynamik	402
Gesamtentropie ΔS _{ges} des Universums	403
Gesamtentropie einer Knallgasreaktion	405
Gibbs-Funktion oder freie Enthalpie	407
Der chemische Lebensprozess einer Kreatur	407
Glanz der Wissenschaft: freie Enthalpie	407
Bedeutungen der Gibbs-Funktion	409
Die Gibbs-Funktionen bei festen, flüssigen und gasförmigen Stoffen	411
Die Standard-Gibbs-Funktion	413
Standard-Gibbs-Funktion ausgewählter Substanzen Das Verhalten von chemischen Reaktionen aus Sicht	415
des zweiten Hauptsatzes	416
des zweiten Hauptsatzes	416
Teil VII	
Der Top-Ten-Teil	419
Kapitel 21	
Zehn wichtige Gleichungen	421
Realgasgleichung	421
Der erste Hauptsatz für offene Systeme	421
Der erste Hauptsatz für geschlossene Systeme	422
Reversible Wärme	422
Der erste Hauptsatz für Kreisprozesse	423
Der zweite Hauptsatz für reversible Prozesse	423
Die spezifische Entropieänderung	423
Gesamtentropie eines Universums	424
Absolute Größen	424
Leistung einer Energiegröße	425

1.0	٠.		22
Nα	pite	21 2	42

Zehn Energiebetrachtungen	427
Die Gesichter der potentiellen Energie	427
Die kinetische Energie	428
Die innere Energie	429
Die mechanische Arbeit	430
Die Enthalpie eines Stoffes	430
Chemisch gebundene Energie	431
Die Wärmestrahlung eines Körpers	43:
Was ist Wärme?	433
Gibbs-Energie und maximal mögliche Arbeit	433
Helmholtz-Energie und maximale Arbeit	434
Stichwortverzeichnis	43