Contents

Preface

Li	List of Contributors				
1	Car	ncer Biotherapy: Progress in China	1		
	Zhen-Yu Ding and Yu-Quan Wei				
	1.1	Introduction	1		
	1.2	Immunotherapy	2		
		1.2.1 Cancer Vaccine	2		
		1.2.2 Cell Therapy	3		
		1.2.3 Antibody Therapy	8		
	1.3	Gene Therapy	11		
	1.4	Antiangiogenesis Therapy	19		
	1.5	Targeted Therapy	21		
2	Cancer Targeting Gene–Viro–Therapy and Its Promising Future Xin-Yuan Liu, Wen-Lin Huang, Qi-Jun Qian, Wei-Guo Zou, Zi-Lai Zhang, Liang Chu, Kang-Jian Zhang, Li-Li Zhao, Yan-Hong Zhang, Song-Bo Qiu,				
	Zhei	n-Wei Zhang, Tian Xiao, Jun-Kai Fan, Na Wei, Xin-Ran Liu, Xin Cao,			
	Jin-	Fa Gu, Rui-Cheng Wei, Miao Ding, and Shuai Wu			
	2.1	Gene Therapy of Cancer	34		
		2.1.1 Introduction	34		
	2.2	Replicating Oncolytic Virus on Cancer Therapy	45		
	2.3	Cancer Targeting Gene–Viro–Therapy (CTGVT)	47		
		2.3.1 General Description of CTGVT	47		
	2.4	Modification of CTGVT	55		
		2.4.1 Cancer Targeting Dual Gene-Viro-Therapy	55		
		2.4.2 CTGVT with RNAi	63		
		2.4.3 CTGVT by Killing CSC	64		
		2.4.4 CTGVT for Tissue-Specific Cancer	67		
		2.4.5 CTGVT with Cytokine Armed Antibodies	68		
	2.5	Questions	71		
	2.6	Conclusion	73		

xvii

3	Rela MH	ationship Between Antiproliferative Activities and Class I C Surface Expression of Mouse Interferon Proteins on					
	B16	-F10 Melanoma Cells	85				
	Ron	ald G. Jubin, Doranelly H. Koltchev, Diane Vy, and Sidney Pestka					
	3.1	Introduction	85				
	3.2	Materials and Methods	87				
		3.2.1 AP Assay	87				
		3.2.2 MHC I Up-Regulation	87				
	3.3	Results	88				
		3.3.1 AP Activity	88				
		3.3.2 MHC I Surface Expression	90				
	3.4	Discussion	91				
4	Mite Erin	otic Regulator Hec1 as a Potential Target for Cancer Therapy M. Goldblatt, Eva Lee and Wen-Hwa Lee	97				
	4.1	Cell Growth and Cancer	98				
	4.2	Mitotic Regulators as Cancer Therapy Targets	101				
	4.3	Discovery of Hec1, a Novel Protein in Mitotic Regulation	103				
	4.4	Development of Hec1 Inhibitors for Cancer Therapeutics	106				
	4.5	Conclusion 109					
5	5 Advances in Liposome-Based Targeted Gene Therapy of Cancer Jennifer L. Hsu, Chi-Hong Chao, Xiaoming Xie. and Mien-Chie Hung		113				
	5.1	Introduction	113				
	5.2	Cationic Liposome-Mediated Nonviral Gene Delivery					
	5.3	Improvement of Therapeutic Efficiency					
		of Liposome-Mediated Gene Therapy	115				
		5.3.1 Modifications of Liposome Composition	115				
		5.3.2 Combinational Strategy for Liposome-Mediated					
		Gene Therapy	116				
	5.4	Improvement of Nonviral Gene Expression System	117				
		5.4.1 Cancer/Tissue-Specific Promoters	117				
		5.4.2 Two-Step Transcription Amplifier Module	120				
		5.4.3 VISA Expression Platform	120				
	5.5	Therapeutic Genes for Cancer Gene Therapy	121				
		5.5.1 p53	121				
		5.5.2 E1A	122				
		5.5.3 Bik	123				
		5.5.4 HSV-TK	124				
	5.6	Conclusion	124				
6	Rev	viring the Intracellular Signaling Network in Cancer	135				
	Jing	g Liu and Anning Lin					
	6.1	Introduction	135				
	6.2	The JNK Signaling Pathway	136				

	6.3	The N	VF-κB Signaling Pathway	136
	6.4	The N	legative Crosstalk Between NF-κB and JNK1 Wires	
		the T	NF- α Signaling Circuitry for Cell Survival	137
		6.4.1	The TNF- α Signaling Circuitry and Cell Death	137
		6.4.2	The Crosstalk Between NF-KB and JNK Determines	
			TNF- α Cytotoxicity	138
		6.4.3	Multiple Mechanisms Are Involved in	
			NF- κ B-Mediated Inhibition of TNF- α -Induced	
			Prolonged JNK Activation	139
		6.4.4	Prolonged JNK1 Activation Contributes to	
			TNF- α -Induced Cell Death Through Elimination of	
			Caspase Inhibitor(S)	141
	6.5	The P	Positive Crosstalk Between NF-KB and JNK1 Wires	
		the U	V Signaling Circuitry for Cell Death	142
		6.5.1	The UV Signaling Circuitry and Cell Death	142
		6.5.2	Augmentation of UV-Induced Rapid and Robust JNK	
			Activation by NF-KB Promotes UV-Induced Cell Death	142
		6.5.3	The "Priming" Model in Which the Preexisting Nuclear	
			RelA/NF- κ B via Induction of PKC δ to Promote	
			UV-Induced Cell Death	143
		6.5.4	The RelA-PKC δ Axis May Be Involved in the Assembly	
			of UV-Induced JNK1 Signalsome	143
		6.5.5	JNK1 Contributes to UV-Induced Cell Death Through	
			Promotion of both Cytoplasmic and Nuclear Death Events	144
	6.6	Towa	rd Cell Signaling-Based Cancer Therapy	145
7	Res	earch a	and Development of Highly Potent Antibody-Based	
	Dru	g Conj	ugates and Fusion Proteins for Cancer Therapy	153
	Ron	g-guang	g Shao and Yong-su Zhen	
	7.1	Introd	luction	153
	7.2	Intact	AbDCs	154
		7.2.1	mAb-Maytansinoid Drugs	155
		7.2.2	mAb–Auristatin Drugs	159
		7.2.3	mAb–Enediyne Drugs	161
	7.3	Down	sizing ADCs	163
		7.3.1	Fragment mAb-Drug Conjugates	164
		7.3.2	Engineered Antibody-Based Fusion Proteins	165
	7.4	Concl	usion	167
8	Can	cer Ste	em Cell	173
	Qiar	ıg Liu,	Feng-Yan Yu, Wei Tang, Shi-Cheng Su, and Er-Wei Song	480
	8.1	Introd	uction	173
	8.2	Histor	ry of CSC	175
	8.3	Contro	oversy Over CSC	177
	8.4	Origir	n of CSC	178

	8.5	Pivotal Signaling Pathways in CSCs	180
		8.5.1 Wnt Pathway	181
		8.5.2 Hedgehog Pathway	181
		8.5.3 Notch Pathway	182
		8.5.4 Pathways Related with Cancer Therapy	182
		8.5.5 Other Pathways	183
	8.6	CSCs and Metastasis	184
		8.6.1 Phenotype of CSCs Related to Metastasis	184
		8.6.2 Mechanism of Cancer Metastasis Regulated	
		by Niche	184
		8.6.3 CSC and EMT	185
		8.6.4 CSC and Angiogenesis	185
		8.6.5 Anoikis and Circulating Tumor Cells	186
	8.7	Cancer Therapies Targeting CSCs	186
		8.7.1 Targeting the Self-Renewal Ability	187
		8.7.2 Targeting Survival Pathways	187
		8.7.3 Targeting ABC Transporters	188
		8.7.4 Targeting Cell Surface Marker and the Interaction	
		with Niche	188
	8.8	Future Directions of CSC	188
9	p53: Xin	: A Target and a Biomarker of Cancer Therapy?	197
	9.1	Introduction	197
	9.2	Can p53 Act as a Biomarker in Cancer Management	
		and Therapy?	200
		9.2.1 p53 Mutation Status and Cancer Management	200
		9.2.2 Clinical Implications of Serological Analysis	
		of Auto-Anti-p53 Antibodies	202
	9.3	p53-Based Cancer Therapy	203
		9.3.1 Increasing Wild-Type p53-Mediated Killing	203
		9.3.2 Utilizing Mutant p53 to Induce Cancer Cell Death	204
	9.4	What Can We Do to Accelerate p53-Based Cancer	
		Management and Therapy?	207
10	Rec	ombinant Adenoviral-p53 Agent (Gendicine [®]): Quality	
	Con	trol, Mechanism of Action, and Its Use for Treatment	
	of N	Ialignant Tumors	215
	Shu-	-Yuan Zhang, You-Yong Lu, and Zhao-Hui Peng	
	10.1	Introduction	215
	10.2	Recombinant Adenoviral-p53 Agent (Trademarked Gendicine)	218
		10.2.1 Product Description	218
		10.2.2 Quality Control	219
	10.3	Mechanisms of Actions	220
	10.4	Safety of Gendicine in Clinics	223

	10.5	Efficacy of Gendicine in Clinics	224
		10.5.1 Gendicine in Combination with Radiation Therapy fo	r
		Treatment of Nasopharyngeal Carcinoma and HNSCO	C 224
		10.5.2 Gendicine in Combination with Chemotherapy	
		for Treatment of Advanced Cancers	226
		10.5.3 Gendicine in Combination with Hyperthermia for	
		Treatment of Advanced Cancers	232
	10.6	Overview of Intellectual Property Rights of Recombinant	
		Ad-p53, Methods of Manufacture, and Clinical Applications	233
		10.6.1 Four Core Patents Covering Recombinant Ad-p53	
		Compositions	233
		10.6.2 Two Patents for Methods of Recombinant Ad-p53	
		Manufacture	235
		10.6.3 Two Patented Cell Lines for Production	
		of Recombinant Adenoviral Vectors	235
		10.6.4 Patents Covering Clinical Use of Recombinant	
		Ad-p53	236
	10.7	Summary and Prospective	237
11	Thus	o Dimensional Tumor Medal and T. Lumph contes	
11	Inre	ee-Dimensional Tumor Wodel and T-Lymphocytes	245
			245
	11 1	Liu	245
	11.1	Three Dimensional Tumor Models	243
	11.2	11.2.1 Antionnar Drug Discovery	240
		11.2.1 Anticancel Diug Discovery	250
		11.2.2 <i>In VIIIO</i> Diug Resistance Test	251
		11.2.5 Intelastasis Funiti 11.2.4 Concer Stem Cells	252
	113	3D Tumor Model and T-I ymphocytes Immune Therapy	
	11.5	for Cancer	253
		11.3.1 New Dimension of Immune Therapy	253
		11.3.2 Activation of Immune Cells (Initial Stage)	255
		11.3.3 Proliferation of the Effectors (Induced Stage)	256
		11.3.4 Biologic Effects Against Tumor	200
		(Effective Stage)	256
		1135 Clinical Observation	258
	11.4	Recent Advances in Cancer Immune Therapy	258
		11.4.1 The Tumor Antigens	258
		11.4.2 The Immune Effectors	259
		11.4.3 The Host Environment	263
	11.5	New Strategies for Cancer Therapy Based on Immune	
	-	Intervention	266
		11.5.1 Synergy and Individualized Cancer Treatments	266
		11.5.2 Combinatorial Immunotherapy for Cancer	276
	11.6	Conclusion	281

12	Advances in Cancer Chemotherapeutic Drug Research in China			
	Bin X	Ku, Jian Ding, Kai-Xian Chen, Ze-Hong Miao, He Huang,		
	Hong	g Liu, and Xiao-Min Luo		
	12.1	Introduction of Background of Anticancer Drug		
		Research in China	287	
	12.2	Natural-Derived Anticancer Agents Developed in China	290	
		12.2.1 Gengshengmeisu (Actinomycin K, D)	290	
		12.2.2 Hydroxycamptothecin	292	
		12.2.3 Homoharringtonine	292	
		12.2.4 Polysaccharide Preparations	293	
		12.2.5 Some Meaningful Anticancer Substances from		
		Traditional Chinese Medicine (TCM)	293	
	12.3	Synthetic Anticancer Drugs	294	
		12.3.1 Alkylating Agents	294	
		12.3.2 Metal Anticancer Agents, Antimony-71 (Sb-71),		
		Sb-57, and so forth	298	
		12.3.3 Other Effective Compounds and Preparations	299	
	12.4	New Inhibitors of Topoisomerases and Molecular-Targeted		
		Anticancer Agents	300	
		12.4.1 New Inhibitors of Topoisomerases	300	
		12.4.2 Molecular-Targeted Anticancer Agents	311	
	12.5	Recent Work on Design, Synthesis, and Antitumor		
		Evaluation of Several Series of Derivatives	317	
		12.5.1 N-Substituted-Thiourea Derivatives	317	
		12.5.2 3,5-Substituted Indolin-2-One Derivatives	321	
		12.5.3 3-Nitroquinolines	325	
		12.5.4 Quercetin-3-O-Amino Acid-Esters	328	
		12.5.5 Triaminotriazine Derivatives	332	
	12.6	Discussion and Perspectives	338	
13	Doxo	orubicin Cardiotoxicity Revisited: ROS Versus Top2	351	
	Yi Lis	isa Lyu and Leroy F. Liu		
	13.1	Doxorubicin Kills Tumor Cells Through Top2		
		Poisoning	351	
	13.2	Doxorubicin Causes Unique Tissue Toxicities	355	
	13.3	Doxorubicin Cardiotoxicity, an ROS Theory		
	13.4	Doxorubicin Cardiotoxicity, a Top2 Twist	356	
	13.5	Prevention of Doxorubicin Cardiotoxicity by ICRF-187	357	
		13.5.1 Antagonizing the Formation of Doxorubicin-		
		Induced Top2–DNA Covalent Adducts	359	
		13.5.2 Top2 β Depletion Through Proteasome-Mediated		
		Degradation	360	
	13.6	Conclusion	360	

14	Bioc	hemistry and Pharmacology of Human ABCC1/MRP1 and			
	Its R	ole in Detoxification and in Multidrug Resistance of			
	Cano	cer Chemotherapy	371		
	Wei	Mo, Jing-Yuan Liu, and Jian-Ting Zhang			
	14.1	Introduction	371		
	14.2	Structure of ABCC1	372		
	14.3	Monomer Versus Dimer	376		
	14.4	Regulations of ABCC1 Expression	377		
	14.5	Biogenesis and Trafficking	378		
	14.6	Mechanism of Action	380		
	14.7	Substrates of ABCC1	384		
	14.8	Inhibitors of ABCC1	386		
	14.9	Physiologic Functions of ABCC1	389		
	14.10) ABCC1 in Clinical Drug Resistance	390		
	14.11	Conclusion and Perspectives	391		
15	The	Role of Traditional Chinese Medicine in Clinical Oncology	405		
	Yan S	Sun and Jing-Yu Huang			
	15.1	Historical Note on the Understanding of Cancer: West and East	405		
	15.2	Search for Anticancer Agents from Medicinal Plants	407		
	15.3	Traditional Medicinal Herbs as BRMs	409		
		15.3.1 Results of Clinical Trials	409		
		15.3.2 Experimental Studies	412		
		15.3.3 Long-Term Follow-Up	415		
	15.4	TCM as Angiogenesis Inhibitors	416		
		15.4.1 Studies in Esophageal Cancer	416		
		15.4.2 In Nonsmall Cell Lung Cancer	423		
		15.4.3 Other TCM Herbs	424		
	15.5	Future Perspective-Integration of TCM with Modern			
		Medicine Both in Experimental and in Clinical Study	425		
16	Effec	t of Arsenic Trioxide on Acute Promvelocytic Leukemia			
	and (Glioma: Experimental Studies, Clinical Applications,			
	and l	Perspectives	431		
	Shi-C	Guang Zhao, Jin Zhou, Yao-Hua Liu, Li-Gang Wang,			
	and E	Bao-Feng Yang			
	16.1	Historical Perspectives of Arsenic Derivatives			
		in Medicine	431		
	16.2	Effect of Arsenic Trioxide in APL	432		
		16.2.1 What Is the Role of Arsenic in Newly			
		Diagnosed APL?	432		
		16.2.2 Conclusion and Perspectives: Can We Induce	-		
		a 100% CR Rate in Newly Diagnosed APL?	434		

	16.3	The Application of Arsenic Trioxide in Glioma	434
		16.3.1 Characteristics of Glioma	434
		16.3.2 Experimental Studies	437
		16.3.3 Clinical Application	441
		16.3.4 Perspectives	445
	16.4	Experimental Studies and Clinical Applications of As ₂ O ₃	
		in Harbin Medical University	447
	16.5	Conclusions	447
17	Rece	nt Advances in Nasopharyngeal Carcinoma Research	
	and I	ts Pathogenesis	453
	Yi-Xi	n Zeng, Wenlin Huang, and Kai-tai Yao	
	17.1	Introduction	453
	17.2	Molecular Pathogenesis of NPC	454
		17.2.1 Genetic Factor and NPC Susceptibility	454
		17.2.2 EBV and NPC	457
	17.3	Molecular Diagnosis of NPC	462
		17.3.1 Discovery of Molecular Biomarker of NPC	462
		17.3.2 Application of Molecular Diagnosis in NPC	466
	17.4	Advances in the Treatment of NPC	469
		17.4.1 Clinical Application of Cytotoxic Therapeutics	469
		17.4.2 Targeted Therapy	470
		17.4.3 Immunotherapy	472
		17.4.4 Gene Therapy	474
	17.5	Summary	479
18	Esop	hageal Carcinoma	493
	Oi-m	in Zhan, Lu-hua Wang, Yong-mei Song, Yun-wei Ou, Jing Jiang,	
	Jing	Fan. Jing-bo Wang, and Jie Shen	
	18.1	An Overview of Esophageal Carcinoma	493
		18.1.1 Epidemiology	494
	18.2	The Pathogenesis of Esophageal Carcinoma	496
		18.2.1 The Pathogenesis of Barrett's Esophagus	496
		18.2.2 The Pathogenesis of Esophageal Carcinoma	497
	18.3	The Etiopathogenesis of Esophageal Carcinoma	503
		18.3.1 Diet, Smoking, and Intemperance	503
		18.3.2 Genetics and Genes	503
		18.3.3 Virus and Inflammation	504
	18.4	The Treatment of Esophageal Carcinoma	504
		18.4.1 Anatomy	504
		18.4.2 Histology	504
		18.4.3 Clinical Presentation	505
		18.4.4 Diagnostic Work-Up	505
		18.4.5 Stage	506
		18.4.6 Treatment	507

зi

	18.5	The Pr	evention of Esophageal Carcinomas	521
		18.5.1	Protecting the Esophagus by Changing Poor Diet	
			and Living Habits	521
		18.5.2	Reducing the Intake of Nitrosamines	522
		18.5.3	The Significance of Balanced Nutrition	523
		18.5.4	The Active Treatment of Esophageal Epithelial	
			Hyperplasia and Severe Esophagitis	524
		18.5.5	The Identification of the Genetic Susceptibility to	
			Esophageal Cancer Among Groups or Individuals	524
10	D		Colometal Companyin China	525
19	Kese	arch on	Colorectal Cancer in China	535
	Shu 2	Lneng, Si	u-Zhan Zhang, Kun Chen, Yong-Liang Zhu, ana Qi Dong	575
	19.1	I he Pr	ogress of Epidemiological Study on CRC	535 575
		19.1.1	Introduction	535
		19.1.2	Distribution of CRC	530
		19.1.3	Environmental Influencing Factors	539
		19.1.4	Physical Activity and Obesity	541
		19.1.5	Medical History	541
		19.1.6	Family History of Cancer	542
		19.1.7	Biomarkers	542
		19.1.8	Genome Wide Association Study	545
		19.1.9	Conclusions	546
	19.2	CRC S	creening and Early Detection in China	547
		19.2.1	Introduction	547
		19.2.2	The First Population-Based CRC Screening and	
			Prospective Cohort Study in Haining County	547
		19.2.3	Cluster Randomization Trial of Sequence Mass	
			Screening for CRC in Jiashan County	551
		19.2.4	Validity of Immunochemical Fecal Occult Blood	
			Test and High-Risk Questionnaire in a	
			Population-Based CRC Screening in Hangzhou	554
		19.2.5	Conclusion	555
	19.3	The Cl	ue of Microbe Pathogens and CRC—Study on the	
		Carcin	ogenesis of Microcystin and H. pylori	556
		19.3.1	Introduction	556
		19.3.2	Epidemiology Survey of Microcystin and H. pylori	
			Prevalence	557
		19.3.3	Experimental Study of Molecular Carcinogenesis of	
			Microcystin and H. pylori Molecular Carcinogenesis	
			of Microcystin	558
		19.3.4	Molecular Carcinogenesis of H. pylori	561
		19.3.5	Activation of Erk1/2 Pathway Was Involved in	
			Carcinogenesis	563
		19.3.6	Conclusion	566

	19.4	CRC-Related Gene (SNC6/ST13, SNC19/ST14, SNC73)	567					
		19.4.1 Introduction	567					
		19.4.2 SNC6/ST13	569					
		19.4.3 SNC19/ST14	573					
		19.4.4 SNC73	582					
20	Mole	ular and Cellular Characteristics of Small Cell Lung						
	Canc	r: Implications for Molecular-Targeted Cancer Therapy	597					
	Yu-Ju	an Jin, Chao Zheng, and Hong-Bin Ji						
	20.1	Introduction	597					
	20.2	Clinical Diagnosis and Staging of SCLC	598					
	20.3	The Clinical Management of SCLC	599					
	20.4	Genetic Alteration of SCLC	600					
		20.4.1 Oncogenes	600					
		20.4.2 Allelic Loss of Chromosome in SCLC	601					
		20.4.3 Dys-regulation of Signaling Pathways in SCLC	603					
	20.5	Transition from SCLC to Its Variants and/or NSCLC	606					
	20.6	SCLC Metastasis	607					
	20.7	Drug Resistance of SCLC	608					
	20.8	Perspective	609					
21	Possi	oility to Partly Win the War Against Cancer	617					
	Xin-Y	1-Yuan Liu, Guang-Wen Wei, Dong-Qin Yang, Lun-Xu Liu, Lin Ma,						
	Xiao	Kiao Li, Jian OuYang, Cui-Ping Li, Kang-Jian Zhang, Jian Wang,						
	Liang	Chu, Jin-Fa Gu, Huang-Guang Li, Jian Ding, Na Wei, Ying Cai,						
	Xin-R	XIN-Kan Liu, Xin Cao, Yi Chen, Zhi-Jiang Wu, Miao Ding, and Ming Zuo						
	21.1	21.1 Cancer Targeting Gene-Viro-Therapy with Excellent						
	Antitumor Effects							
		21.1.1 The CTGVT with Potent Antitumor Effect	618					
		21.1.2 Modification of CTGVT by the Use of						
		Two Genes, CTGVT-DG	618					
		21.1.3 Other Modification of CTGVT	621					
	21.2	Super Interferon (sIFN-I) with Super Antitumor Effects on Solid						
		Tumor in Animals and in Patients	622					
		21.2.1 sINF-1 with Super Antitumor Effect on Solid						
		Tumor in Animal Models	624					
		21.2.2 sIFN-I with Super Antitumor Effects on Solid						
		Tumor in Patients	630					
		21.2.3 Mechanism of sIFN-I Action	641					
		21.2.4 Discussion concerning the action of IFN or sIFN-I Briefly	643					
	21.2	21.2.5 Summary of sIFN-1	647					
	21.3	Cytokine-Induced Killer Cell Therapy and its Important	<i></i>					
		viouncation	647					
		21.3.1 Background	647					

	21.3.2	Characteristics of CIK Cells	648
	21.3.3	Clinical Studies of CIK	648
	21.3.4	Modification and Future Prospective of CIK	651
	21.3.5	Summary of CIK Therapy	652
21.4	Antiboo	dy Protein Therapy and Antibody Gene Therapy	
	or Arm	ed Antibody Gene Therapy	652
	21.4.1	Antitumor Protein (mAb) Therapy	652
	21.4.2	Immune Therapy Steps Up the Attack	653
	21.4.3	Antibody Gene Therapy and Armed Antibody Gene	
		Therapy	653
21.5	Cancer	Crusade at 40	654
	21.5.1	Introduction: Celebrating an Anniversary	
		(by Paula Kiberstis and Eliot Marshall)	654
	21.5.2	Cancer Research and the 90 Billion USD Metaphor	
		(by Eliot Marshall)	655
	21.5.3	Combining Target Drug to Stop Resistant Tumors	
		(by Jocelyn Kaiser)	656
	21.5.4	Exploring the Genomes of Cancer Cells: Progress	
		and Promise (by M.R. Stratton)	657
	21.5.5	A Perspective on Cancer Cell Metastasis (by Christine	
		Chaffer and Robert A. Weinberg)	658
	21.5.6	Cancer Immunoediting: Integrating Immunity's	
		Roles in Cancer Suppression and Promotion	
		(by R.D. Schreiber, L.J. Old, and M.J. Smyth)	661
21.6	Conclus	sion	663
About the	Editors		673