Contents

Preface						
1.	Introduction					
	1.1	Hedging in complete markets	2			
		1.1.1 Black & Scholes analysis and its limitations	2			
		1.1.2 Complete markets	4			
	1.2	Hedging in incomplete markets	4			
		1.2.1 Sources of incompleteness	4			
		1.2.2 Calibration	5			
		1.2.3 Mean-variance hedging	6			
		1.2.4 Utility indifference pricing and hedging	7			
		1.2.5 Exotic options	8			
		1.2.6 Optimal martingale measures	9			
	1.3	Notes and further reading	9			
2.	Stoc	hastic Calculus	11			
	2.1	Filtrations and martingales	11			
	2.2	Semi-martingales and stochastic integrals				
	2.3	Kunita-Watanabe decomposition				
	2.4	Change of measure				
	2.5	Stochastic exponentials				
	2.6	Notes and further reading	34			
3.	Arbi	trage and Completeness	35			
	3.1	Strategies and arbitrage	35			
	3.2	Complete markets	39			

and the

	3.3	Hidden arbitrage and local times	41		
	3.4	Immediate arbitrage	46		
	3.5	Super-hedging and the optional decomposition theorem .	47		
	3.6	Arbitrage via a non-equivalent measure change	51		
	3.7	Notes and further reading	55		
4.	Asse	set Price Models			
	4.1	Exponential Lévy processes	57		
		4.1.1 A Lévy process primer	57		
		4.1.2 Examples of Lévy processes	63		
		4.1.3 Construction of Lévy processes by subordination .	65		
		4.1.4 Risk-neutral Lévy modelling	67		
		4.1.5 Weak representation property and measure changes	69		
	4.2	Stochastic volatility models	70		
		4.2.1 Examples	71		
		4.2.2 Stochastic differential equations and time change	72		
		4.2.3 Construction of a solution via coupling	73		
		4.2.4 Convexity of option prices	75		
		4.2.5 Market completion by trading in options	76		
		4.2.6 Bubbles and strict local martingales	78		
		4.2.7 Stochastic exponentials	82		
	4.3	Notes and further reading	83		
5.	Stati	c Hedging	85		
	5.1	Static hedging of European claims			
	5.2	Duality principle in option pricing	87		
		5.2.1 Dynamics of the dual process	87		
		5.2.2 Duality relations	89		
	5.3	Symmetry and self-dual processes	92		
		5.3.1 Definitions and general properties	92		
		5.3.2 Semi-static hedging of barrier options	94		
		5.3.3 Self-dual exponential Lévy processes	95		
		5.3.4 Self-dual stochastic volatility models	97		
	5.4	Notes and further reading	101		
6.	Mean-Variance Hedging 10				
	6.1	Concept of mean-variance hedging	103		
	6.2	Valuation and hedging by the Laplace method	105		

		6.2.1 Bilateral Laplace transforms	105			
		6.2.2 Valuation and hedging using Laplace transforms .	106			
	6.3	Valuation and hedging via integro-differential equations .	115			
		6.3.1 Feynman-Kac formula for the value function	115			
		6.3.2 Computation of the optimal hedging strategy	117			
	6.4	Mean-variance hedging of defaultable assets	118			
		6.4.1 Intensity-based approach	118			
		6.4.2 Martingale representation	120			
		6.4.3 Hedging of insurance claims with longevity bonds	122			
	6.5	Quadratic risk-minimisation for payment streams	128			
	6.6	Notes and further reading 1				
7.	Entro	opic Valuation and Hedging	133			
	7.1	Exponential utility indiffence pricing	133			
	7.2	The minimal entropy martingale measure 13				
	7.3	Duality results				
	7.4	Properties of the utility indifference price	149			
	7.5	Entropic hedging	154			
	7.6	Notes and further reading	159			
8.	Hedging Constraints					
	8.1	Framework and preliminaries	161			
	8.2	Dynamic utility indifference pricing	164			
	8.3	Martingale optimality principle	165			
	8.4	Utility indifference hedging and pricing using BSDEs				
		8.4.1 Backward stochastic differential equations	169			
		8.4.2 Maximising utility from terminal wealth under				
		$trading \ constraints \ \ldots \ $	171			
	8.5	Examples in Brownian markets	176			
		8.5.1 Complete markets	177			
		8.5.2 Basis risk	180			
	8.6	Connection to the minimal entropy measure in the				
		unconstrained case	184			
	8.7	Notes and further reading 19				
9.	Optimal Martingale Measures 1					
	9.1	Esscher measure	195			
		9.1.1 Geometric case	195			

•

Hedging Derivatives

	9.1.2	Linear case	197					
9.2	Minima	al entropy martingale measure	200					
	9.2.1	Optimal martingale measure equation	200					
	9.2.2	Exponential Lévy case	204					
	9.2.3	Orthogonal volatility case	205					
	9.2.4	Continuous SV models	207					
9.3	Varian	ce-optimal martingale measure	210					
9.4	nal martingale measure	212						
9.5	Minimal martingale measure							
9.6	Notes a	and further reading	218					
Appendix A Notation and Conventions								
Bibliography								
Index								