Inhalt

Vorwort	•••••	11
1	Biophysik im Umfeld von Physik, Chemie,	
	Biochemie, Biologie und Medizin	14
1.1	Die Wurzeln der Biophysik	14
1.2	Was ist Biophysik?	15
1.3	Biophysik und Strukturbiologie	17
1.4	Längenskalen der Biophysik	17
1.5	Zeitskalen der Biophysik	18
1.6	Energieskalen der Biophysik	20
1.7	Kräftebereiche bei Biopolymeren	22
1.8	Wunsch und Wirklichkeit bei der molekularen	
	Biophysik	22
1.9	Komplementäre Methoden ergeben eine	
	Gesamtsicht	
1.10	Einzelne Moleküle oder Ensembles?	26
_	m' 1	
2	Bindungen, Wechselwirkungen und Kräfte	07
2.1	bei Molekülen	
2.1	Bildung von Molekülorbitalen	
2.2	Elektronenaffinität und chemische Bindung	
2.4	Bindungstypen	
2.5	Kräfte und Wechselwirkungen	
2.6	Typische Bindungsenergien und Bindungsabstände	
2.0	Kräfte, Wechselwirkungen und Kraftfelder	35
3	Aufbau von Proteinen	38
3.1	Proteine als Alleskönner	
3.2	Aminosäuren als Bausteine für Proteine	
3.3	Stereoisomere von Aminosäuren	41
3.4	Aminosäuren verknüpfen durch Peptidbindungen	42
3.5	Struktur der Peptidbindung	

3.6	Räumliche Anordnung von Peptidgruppen	
		44
3.7		46
3.8	Hierarchie der Wechselwirkungen in Proteinen	47
3.9		48
3.10		51
3.11		51
3.12	Ionisationsgleichgewichte von Aminosäuren	-
		52
3.13		54
5.15	Education von repetiten und Proteinen	J
4	Lipide als Bausteine biologischer Membranen	56
4.1	Phospholipide	57
4.2	Konformation von Lipiden und Phasenübergänge	
		59
4.3	Dynamik von Lipidmolekülen in der Membran	
4.4	Lipidvesikel als Transportmittel für Medikamente	
	Explanes and Transportanteer for Medikamente	07
5	Strukturen und Eigenschaften biologischer	
		66
5.1		67
5.2	Außenmembranen und Zelloberflächen	68
5.3	Charakterisierung von Lipideigenschaften	69
5.4	Künstliche Membransysteme für die Untersuchung	
		71
5.5	"Black-Lipid-Filme" zur Untersuchung	
		73
	1	
6	Elektrische Eigenschaften von Lipidmembranen	75
6.1	Leitfähigkeit und Kapazität der Membran	75
6.2		78
6.3		80
6.4		82
6.5		83
0.0	mampatation for Benefit in elektribenen Feldern	00
7	Transport durch Membranen	85
7.1		86
7.2		88
7.3		92
7.4		95
,.ı	Trotolicited in del Melibran	,,
8	Ionendiffusion, Diffusionspotenziale und Grenzflächen-	
		98
8.1	Diffusionspotenzial	98
8.2	Potenzial- und Konzentrationsverlauf	
	an einer Membran	03

9	Biologische Energieformen und	
	Energietransformationen	107
9.1	Energieformen	107
9.2	Thermodynamische Größen zur Beschreibung	
	von biologischen Energietransformationen	108
9.3	Kopplung von Transportprozessen an die	
	chemischen Potenziale von Spaltungsreaktionen	110
9.4	Chemiosmotische Hypothese	113
9.5	Klassifizierung von ATPasen	114
9.6	Photosynthese	118
9.7	Strahlungsloser Energietransfer zwischen	
	Pigmentensembles	122
9.8	Elektronentransfer in photosynthetischen	
	Reaktionszentren	123
9.9	Oxygene Photosynthese bei Pflanzen und	
	Blaualgen (Cyanobakterien)	126
10	Chemische und biochemische Reaktionen	129
10.1	Grundlagen	129
10.2	Standardzustände	130
10.3	Geschwindigkeit chemischer Reaktionen	134
10.4	Enzymreaktionen und Enzymkinetik	140
,	· · · · · · · · · · · · · · · · · · ·	
11	Strukturanalyse I:	
	Hochauflösende Strukturuntersuchungen	144
11.1	Grundlagen	144
11.2	Röntgenbeugung und Proteinkristallografie	145
11.3	Zweidimensionale NMR-Spektroskopie	150
11.4	Besetzungsgleichgewichte	152
11.5	Von der 1-D-NMR-Spektroskopie zur	
	2-D-NMR-Spektroskopie	153
11.6	Festkörper-NMR	154
11.7	"Magic-Angle-Spinning"-NMR-Spektroskopie	156
12	Strukturanalyse II:	
	Mikroskopie, Elektronenmikroskopie,	
	Elektronenbeugung und Neutronenbeugung	159
12.1	Grundlagen	159
12.2	Elektronenmikroskopie	162
12.3	Rasterelektronenmikroskopie	165
12.4	Elektronenmikroskopie zur hoch auflösenden	
	Strukturbestimmung	166
12.5	Zusammenspiel von Auflösung, Kontrast und	
	Strahlenschäden in der Elektronenmikroskopie	
12.6	Neutronenbeugung	170

13	Optische spektroskopische Methoden I:	
	Absorptionsmethoden	173
13.1	Spektralbereiche elektromagnetischer Strahlung	173
13.2	Übersicht über die optischen spektroskopische	
	Methoden	175
13.3	Beschreibung der elektromagnetischen Welle	177
13.4	Energieniveaus von Molekülen	180
13.5	Banden statt Linienspektren	187
	1	
14	Optische spektroskopische Methoden II:	
	Absorptionsmessungen	189
14.1	Quantitative Spektroskopie: Lambert-Beer-Gesetz	189
14.2	Typische Fehler bei der Absorptionsspektroskopie	191
14.3	Spektrometer	193
14.4	UV-Absorption von Biopolymeren	199
14.5	Absorption von chromophoren Gruppen im	-//
11.0	sichtbaren Spektralbereich	202
	sichtbaten opektraibereich	202
15	Optische spektroskopische Methoden III:	
13	Fluoreszenzspektroskopie	205
15.1	Grundlagen	
15.1	Fluoreszenzspektrometer	
15.2	Emissions- und Anregungsspektren	
15.3 15.4	Fluoreszenzlöschung	
15.4		
	Förster-Resonanz-Energietransfer (FRET)	210
15.6	Natürliche und künstliche Fluorophore und	015
	Fluoreszenzsonden	215
16	Optische spektroskopische Methoden IV:	
10	Infrarotspektroskopie	218
16.1	Grundlagen	
16.1	Techniken in der Infrarotspektroskopie	
16.3		
16.4	Probenherstellung	220
10.4	Infrarotspektroskopie mit evaneszenten Wellen:	220
16 5	ATR-Spektroskopie	
16.5	Zuordnung von Schwingungsspektren	
16.6	Absorption der Peptidbindung	
16.7	Absorption von Aminosäureseitenketten	236
16.8	Differenzspektren: Die Detektion einzelner	
	Bindungen	237
16.9	Infrarotspektroskopie mit multivariaten und	
	chemometrischen Methoden	240
17	Optische Spektroskopie V:	
454	Spezielle Techniken	
17.1	Lichtstreumethoden	
17.2	Näherungsmethoden für Lichtstreumessungen	244

17.3	Photoakustische Spektroskopie	249
17.4	Lochbrennspektroskopie	252
17.5	Spektroskopie mit linear polarisiertem Licht	253
17.6	Spektroskopie mit zirkular polarisiertem Licht	255
18	Rastersondentechniken	257
18.1	Grundlagen	
18.2	Rastertechniken	
18.3	Messung magnetischer und elektrischer Kräfte	230
10.3	mit dem Rastersondenmikroskop	266
18.4	Das Rastersondenmikroskop als Nano-Manipulator	267
18.5	Rastersondentechniken für optische Messungen	207
10.5	im Nahfeld	267
	iii Naineiu	207
19	Sedimentations- und Zentrifugationstechniken	269
19.1	Grundlagen	269
19.2	Zentrifugation	271
19.3	Analytische Ultrazentrifugation zur Größenanalyse	
	bei Biopolymeren und Nanopartikeln	274
20	Strahlen- und Umweltbiophysik	278
20.1	Dosisbegriffe	281
20.2	Grenzwerte für den Strahlenschutz	284
20.3	Dosisdefinition bei nichtionisierender Strahlung	284
20.4	Wechselwirkung ionisierender Strahlung	
	mit Materie	285
20.5	Radioaktive Strahlung und radioaktive Präparate	
20.6	Dosimetrie	294
20.7	Abschirm- und Schutzmaßnahmen für Röntgen-,	
	Gamma- und Teilchenstrahlung	297
20.8	Strahlenbelastung der Bevölkerung in Deutschland	
20.9	Physikalische, chemische und biologische	_,,
_0.,	Strahlenwirkung	302
20.10	Nichtionisierende Strahlung und EMF-Belastung	
	comment of the same same same same same same same sam	
	verzeichnis	
Register		312