Contents

Preface to the fourth edition
Preface from the original edition

1 History of ideas
1.1 The nature of light
1.2 Speed of light
1.3 The nature of light waves: Transverse or longitudinal?
1.4 Quantum theory
1.5 Optical instruments
1.6 Coherence, holography and aperture synthesis
1.7 Lasers
References

2 Waves
2.1 The non-dispersive wave equation in one dimension
2.2 Dispersive waves in a linear medium: The dispersion equation
2.3 Complex wavenumber, frequency and velocity
2.4 Group velocity
2.5 Waves in three dimensions
2.6 Waves in inhomogeneous media
2.7 Advanced topic: Propagation and distortion of a wave-group in a dispersive medium
2.8 Advanced topic: Gravitational lenses
Chapter summary
Problems
References

3 Geometrical optics
3.1 The basic structure of optical imaging systems
3.2 Imaging by a single thin lens in air
3.3 Ray-tracing through simple systems
3.4 The matrix formalism of the Gaussian optics of axially symmetric refractive systems 63
3.5 Image formation 66
3.6 The cardinal points and planes 68
3.7 Aberrations 75
3.8 Advanced topic: The aplanatic objective 82
3.9 Advanced topic: Optical cavity resonators 85
Chapter summary 88
Problems 89
References 92

4 Fourier theory 93
4.1 Analysis of periodic functions 94
4.2 Fourier analysis 96
4.3 Non-periodic functions 100
4.4 The Dirac δ-function 104
4.5 Transforms of complex functions 108
4.6 The Fourier inversion theorem 110
4.7 Convolution 112
4.8 Fourier transform of two- and three-dimensional lattices 117
4.9 Correlation functions 119
4.10 Advanced topic: Self-Fourier functions 121
Chapter summary 123
Appendix: Formal derivation of the reciprocal lattice in three dimensions 124
Problems 126
References 128

5 Electromagnetic waves 129
5.1 Maxwell’s equations and their development 130
5.2 Plane wave solutions of the wave equation 132
5.3 Radiation 133
5.4 Reflection and refraction at an abrupt interface between two media 136
5.5 Incidence in the denser medium 140
5.6 Electromagnetic waves incident on a conductor 145
5.7 Reciprocity and time reversal: The Stokes relationships 148
5.8 Momentum of an electromagnetic wave: Radiation pressure 150
5.9 Advanced topic: Angular momentum of a spiral wave 153
5.10 Advanced topic: Left-handed, or negative refractive index materials 154
Chapter summary 158
Problems 158
References 160

6 Polarization and anisotropic media 161
6.1 Polarized light in isotropic media 162
6.2 Production of polarized light 166
6.3 Wave propagation in anisotropic media: A generalized approach 168
6.4 Electromagnetic waves in an anisotropic medium 170
6.5 Crystal optics 172
6.6 Uniaxial crystals 179
6.7 Interference figures: Picturing the anisotropic properties of a crystal 182
6.8 Applications of propagation in anisotropic media 185
6.9 Induced anisotropic behaviour 188
6.10 Advanced topic: Hyperbolic propagation in meta-materials 192
Chapter summary 194
Problems 195
References 197

7 The scalar theory of diffraction 198
7.1 The scalar-wave theory of diffraction 199
7.2 Fresnel diffraction 205
7.3 Propagation of a Gaussian light beam 210
7.4 Fresnel diffraction by linear systems 215
7.5 Advanced topic: X-ray microscopy 218
Chapter summary 221
Appendix: The Huygens–Kirchhoff diffraction integral 222
Problems 225
References 226

8 Fraunhofer diffraction and interference 227
8.1 Fraunhofer diffraction in optics 228
8.2 Fraunhofer diffraction and Fourier transforms 230
8.3 Examples of Fraunhofer diffraction by one- and two-dimensional apertures 233
8.4 Some general diffraction principles 239
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Interference</td>
<td>242</td>
</tr>
<tr>
<td>8.6</td>
<td>Three-dimensional interference</td>
<td>252</td>
</tr>
<tr>
<td>8.7</td>
<td>Inelastic scattering: The acousto-optic effect</td>
<td>258</td>
</tr>
<tr>
<td>8.8</td>
<td>Advanced topic: Phase retrieval in crystallography</td>
<td>261</td>
</tr>
<tr>
<td>8.9</td>
<td>Advanced topic: Phase retrieval in an optical system – the Hubble Space Telescope and COSTAR</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Chapter summary</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>275</td>
</tr>
</tbody>
</table>

9 Interferometry

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Interference between coherent waves</td>
<td>278</td>
</tr>
<tr>
<td>9.2</td>
<td>Diffraction gratings</td>
<td>282</td>
</tr>
<tr>
<td>9.3</td>
<td>Two-beam interferometry</td>
<td>290</td>
</tr>
<tr>
<td>9.4</td>
<td>Common-path interferometers</td>
<td>300</td>
</tr>
<tr>
<td>9.5</td>
<td>Interference by multiple reflections</td>
<td>303</td>
</tr>
<tr>
<td>9.6</td>
<td>Advanced topic: Berry’s geometrical phase in interferometry</td>
<td>312</td>
</tr>
<tr>
<td>9.7</td>
<td>Advanced topic: The gravitational-wave detector LIGO</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>Chapter summary</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>322</td>
</tr>
</tbody>
</table>

10 Optical waveguides and modulated media

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Optical waveguides</td>
<td>324</td>
</tr>
<tr>
<td>10.2</td>
<td>Optical fibres</td>
<td>332</td>
</tr>
<tr>
<td>10.3</td>
<td>Propagation of waves in a modulated medium</td>
<td>339</td>
</tr>
<tr>
<td>10.4</td>
<td>Advanced topic: An omnidirectional reflector</td>
<td>349</td>
</tr>
<tr>
<td>10.5</td>
<td>Advanced topic: Photonic crystals</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>Chapter summary</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>359</td>
</tr>
</tbody>
</table>

11 Coherence

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Coherence of waves in space and time</td>
<td>361</td>
</tr>
<tr>
<td>11.2</td>
<td>Physical origin of linewidths</td>
<td>367</td>
</tr>
<tr>
<td>11.3</td>
<td>Quantification of the concept of coherence</td>
<td>369</td>
</tr>
<tr>
<td>11.4</td>
<td>Temporal coherence</td>
<td>373</td>
</tr>
<tr>
<td>11.5</td>
<td>Fourier transform spectroscopy</td>
<td>374</td>
</tr>
<tr>
<td>11.6</td>
<td>Spatial coherence</td>
<td>379</td>
</tr>
</tbody>
</table>
11.7 Fluctuations in light beams, classical photon statistics and their relationship to coherence 384
11.8 The application of coherence theory to astronomy: Aperture synthesis 388
Chapter summary 399
Problems 399
References 402

12 Image formation 404
12.1 The diffraction theory of image formation 405
12.2 The resolution limit of optical instruments 413
12.3 The optical transfer function: A quantitative measure of the quality of an imaging system 420
12.4 Applications of the Abbe theory: Spatial filtering 425
12.5 Holography 438
12.6 Advanced topic: Surpassing the Abbe resolution limit – super-resolution 445
12.7 Advanced topic: Astronomical imaging by speckle interferometry 459
Chapter summary 463
Problems 464
References 467

13 The classical theory of dispersion 469
13.1 Classical dispersion theory 470
13.2 Rayleigh scattering 471
13.3 Coherent scattering and dispersion 474
13.4 Dispersion relations 481
13.5 Group velocity in dispersive media: Superluminal velocities and slow light 484
13.6 Advanced topic: Non-linear optics 488
13.7 Advanced topic: Surface plasmons 495
Chapter summary 501
Problems 502
References 503

14 Quantum optics and lasers 504
14.1 Quantization of the electromagnetic field 505
14.2 Plane wave modes in a linear cavity 510
14.3 Are photons real? 515
14.4 Interaction of light with matter 521
14.5 Lasers 526
14.6 Laser hardware 532
14.7 Laser light 535
14.8 Advanced topic: Resonant fluorescence and Rabi oscillations 537
14.9 Advanced topic: Electromagnetically induced transparency 540
Chapter summary 542
Problems 542
References 545

Appendix A Bessel functions in wave optics 546
Appendix B Lecture demonstrations in Fourier optics 552
Index 562