Contents

Int	roduction	1
1	Experiments and Simple Models	7
1.1	Experimental Detection of Deterministic Chaos	7
1.2	The Periodically Kicked Rotator	12
	Logistic Map	13
	Hénon Map	13
	Chirikov Map	14
2	Piecewise Linear Maps and Deterministic Chaos	15
2.1	The Bernoulli Shift	15
2.2	Characterization of Chaotic Motion	18
	Liapunov Exponent	18
	Invariant Measure	22
	Correlation Function	24
2.3	Deterministic Diffusion	26
3	Universal Behavior of Quadratic Maps	31
3.1	Parameter Dependence of the Iterates	33
3.2	Pitchfork Bifurcations and the Doubling Transformation	35
	Pitchfork Bifurcations	36
	Supercycles	38
	Doubling Transformation and α	40
	Linearized Doubling Transformation and o	41
3.3	Self-Similarity, Universal Power Spectrum and the Influence	10
	OI External Noise	40
	Hausdorff Dimension	40
	Power Spectrum	50
	Influence of External Noise	53
	Behavior of the Logistic Map for $r_{\infty} < r$	56

3.4	Parallels between Period Doubling and Phase Transitions	59
3.5	Experimental Support for the Bifurcation Route	62
4	The Intermittency Route to Chaos	67
4.1	Mechanisms for Intermittency	67
	Type-I Intermittency	68
	Length of the Laminar Region	71
4.2	Renormalization-Group Treatment of Intermittency	74
4.3	Intermittency and 1/f-Noise	79
4.4	Experimental Observation of the Intermittency Route	86
	Distribution of Laminar Lengths	87
	Type-I Intermittency	88
	Type-III Intermittency	89
5	Strange Attractors in Dissipative Dynamical Systems	9 1
5.1	Introduction and Definition of Strange Attractors	91
	Baker's Transformation	95
	Dissipative Hénon Map	96
5.2	The Kolmogorov Entropy	9 8
	Definition of K	99
	Connection of K to the Liapunov Exponents	101
	Average Time over which the State of a Chaotic System	4.00
	Can Be Predicted	102
5.3	Characterization of the Attractor by a Measured Signal	103
	Dimensions of a Strange Attractor	104
	Correlation integral	105
	Embedding Dimension	100
	Seperation of Deterministic Chaos and External White Noise	100
	Lower Bound for the Kolmogorov Entrony	109
	Kaplan-Yorke Conjecture	111
5.4	Strange Attractors and the Onset of Turbulence	112
	Hopf Bifurcation	112
	Landau's Route to Turbulence	114
	Ruelle-Takens-Newhouse Route to Chaos	114
	Bénard Instability	115
	Taylor Instability	117
5.5	Universal Properties of the Transition from Quasiperiodicity to Chaos	118
5.6	Routes to Chaos	126
	Possibility of Three-Frequency Quasiperiodic Orbits	127

Frequency Locking	130		
	131		
3.7 Pictures of Strange Attractors and Fractal Boundaries	132		
6 Regular and Irregular Motion in Conservative Systems	137		
6.1 Coexistence of Regular and Irregular Motion	139		
Integrable Systems	139		
Pertubation Theory and Vanishing Denominators	141		
Stable Tori and KAM Theorem	143		
Homoclinic Points and Chaos	144		
Arnold Diffusion	147		
Examples of Classical Chaos	149		
6.3 Strongly Irregular Motion and Freedicity	151		
Cat Man	152		
Hierarchy of Classical Chaos	154		
Three Classical K Systems	158		
7 Chaos in Quantum Systems?	161		
7.1 The Quantum Cat Map	163		
7.2 A Quantum Particle in a Stadium	164		
7.3 The Kicked Quantum Rotator	166		
Outlock			
Outlook 1			
Appendix			
A Derivation of the Lorenz Model	175		
B Stability Analysis and the Onset of Convection and Turbulence	177		
III IIIe Lorenz Model	179		
D Renormalization of the One-Dimensional Ising Model	180		
E Decimation and Path Integrals for External Noise	183		
F Shannon's Measure of Information	187		
Information Capacity of a Store	187		
Information Gain	188		
G Period Doubling for the Conservative Hénon Map	190		
Remarks and References			
Subject Index			