Inhaltsverzeichnis

Einführung	19
Über dieses Buch	20
Konventionen in diesem Buch	20
Törichte Annahmen über den Leser	21
Wie dieses Buch aufgebaut ist	21
Teil I: Kräfte und Substanzen	22
Teil II: Reinstoffe und Mischungen	22
Teil III: Reaktionskinetik	22
Teil IV: Thermodynamik	23
Teil V: Wechselwirkungen	23
Teil VI: Der Top-Ten-Teil	23
Teil VII Anhänge	23
Symbole, die in diesem Buch verwendet werden	24
Wie es weitergeht	24
Teil I	
Kräfte und Substanzen	25
Kapitel 1	
Gase unter Druck: Die Gasgesetze	27
Physik plus Chemie gleich Physikalische Chemie?	27
Das ideale Gas	27
Druck	28
Temperatur	28
Das Boyle-Mariottesche Gesetz	29
Das Gay-Lussacsche Gesetz	31
Die allgemeine Gasgleichung	32
Das reale Gas	33
Kapitel 2	
Zerreißprobe für Feststoffe – Verformung	37
Dehnung und Stauchung	37
Das Hookesche Gesetz	39
Elastisch, plastisch, bis es zerreißt	40
Kapitel 3	
Die Sache kommt in Fluss – Viskosität	43
Zähe Sache, die idealviskosen Flüssigkeiten	43
Moleküle im laminaren Gleichschritt	44
Das Newtonsche Gesetz	45

——— Physikalische Chemie für Dummies —————	
Nicht alles ist ideal: strukturviskos bis thixotrop	48
Pseudoplastisch und dilatant durch dick und dünn	48
Plastische Strukturverluste mit Thixotropie	52
Messmethoden und praktische Anwendungen	54
Das Stokessche Gesetz	54
Das Kugelfallviskosimeter nach Höppler	57
Das Hagen-Poiseuillesche Gesetz Das Kapillarviskosimeter nach Ostwald	58 59
Das Rotationsviskosimeter	61
Das Rolationsviskosimeter	01
Kapitel 4	
Übungen	63
Berechnung des Sprühdrucks einer Sprayflasche	63
Bestimmung der Molmasse eines löslichen Polymers	64
Vorsicht! Logarithmus! Bestimmung des Fließverhaltens	
einer strukturviskosen Flüssigkeit	66
Teil II	
Reinstoffe und Mischungen	69
Kapitel 5	
Zustandsdiagramme (Phasendiagramme)	71
·	
Die Zustände fest, flüssig und gasförmig Zustandsdiagramme	71 72
Verwirrende Zustände – Tripelpunkt und überkritisches Gas	73
Anomalie des Wassers	75
Gibbssche Phasenregel	76
Modifikation und Allotropie	77
Eiskalt weggedampft und lyophil nach der Gefriertrocknung	79
Ohne Energie läuft nichts!	80
Kapitel 6	
Lösungen und Mischungen	83
•	
Das ist die ideale Lösung	83
Dampfdruck einer reinen Flüssigkeit Dampfdruckdiagramm einer idealen Mischung	84 86
Einfaches Rechnen mit Molen	87
Kolligative Eigenschaften	88
Dampfdruck	88
Siedepunkt	89
Gefrierpunkt	90
Osmotischer Druck	93
Nichts wie weg! Diffusion, Auflösung und Verteilung	97
Die Fickschen Diffusionsgesetze	98

Inhaltsverzeichnis =	
Die Neuer Whitman Chrishung	00
Die Noyes-Whitney-Gleichung Der Nernstsche Verteilungskoeffizient	99 100
Zwei Stoffe schmelzen dahin bis zum eutektischen Tiefpunkt	100
Darf es etwas mehr sein? – Dreikomponentendiagramme	104
Dari es etwas mem sem: – Dierkomponemendagramme	104
Kapitel 7	
Oberflächlich betrachtet: Grenzflächenphänomene	107
Moleküle im Spannungsfeld an der Grenze	107
Die »schwimmende« Büroklammer	107
Die Oberflächenspannung als Kraft pro Länge	108
Die Oberflächenspannung als Energie pro Fläche	108
Ringmethode, Tropfmethode und Blasendruckmethode	110
Ringmethode	110
Tropfmethode	110
Blasendruckmethode	112
Tenside: Und die Spannung ist weg	113
Hydrophilie und Lipophilie	113
Gespaltene Persönlichkeit: das Tensidmolekül	113
Gemeinsam sind wir stark: die Mizelle	115
Tenside als Emulgatoren	116
Tenside als Reinigungsmittel	117
Saugen ohne Unterdruck: die Kapillarität	117
Flach bis kugelrund: der Benetzungswinkel	11'
Es wird eng: Depression und Aszension in Kapillaren	117
Es geht aufwärts: die Steighöhenmethode	120
Adsorptionsisotherme: die freundliche Art zu klammern	12
Hin und weg bis zum Adsorptionsgleichgewicht	122
Die Adsorptionsisotherme nach Freundlich	122
Bei Langmuir wird der Platz knapp	124
Es geht doch was nach BET	12
Kapitel 8	
Übungen	12
Isotonisierung einer Arzneistofflösung	12
Nochmal Vorsicht! Logarithmische Auswertung eines Adsorptionsversuchs	12
Experimentelle Erstellung eines Dreiecksdiagramms	13
Night so sinfach wie as schoint! Ausschütteln mit Ether	12

Physikalische Chemie für Dummies	
Teil III	
Reaktionskinetik	133
Kapitel 9	
Lassen Sie es krachen: Die chemische Reaktion	135
Wer mit wem und wohin: Edukte und Produkte	135
Die zwei Akteure prallen aufeinander	136
Trefferquote	136
Zurück mit Zins: Aktivierungsenergie und Energiebilanz In der Kürze liegt die Würze	137 139
·	133
Kapitel 10	1/1
Wer mit wem – die Reaktionsordnung	141
Einer für Alle	141
Reaktionen erster und pseudoerster Ordnung	142
Von der Reaktionsgleichung zur Halbwertszeit Strahlend: Der radioaktive Zerfall	143 145
Zersetzende Flüssigkeit: Die Hydrolyse	143
Der Logarithmus hilft beim Geradebiegen	148
Reaktionen nullter Ordnung	149
Ab durch das Nadelöhr	150
Reaktionen zweiter Ordnung	151
Etwas durcheinander: Die Michaelis-Menten-Kinetik	153
Es geht auch noch schneller: Die Arrhenius-Gleichung	156
Kapitel 11	
Übungen	159
Hydrolyse eines Esters in wässriger Lösung	159
Stresstest und Arrhenius-Plot	162
Teil IV	
Thermodynamik	165
·	
Kapitel 12 Zustands- und Prozessgrößen – die Bausteine der Thermodynamik	167
Der Ort des Geschehens – das thermodynamische System	167
Zustand oder Prozess?	170
Zustands- und Prozessgrößen	170
Zustandsgleichungen	172
Thermodynamische Prozesse	172

_	Inh.	alted	orz <i>oic</i>	hnis	
┙.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	uildvi	EIZEIL	unis	

Kapitel 13 Mayer und der 1. Hauptsatz der Thermodynamik –	
ein Arzt und die Energieerhaltung	175
Der erste Hauptsatz der Thermodynamik Energetische Zustandsgrößen Innere Energie U und Enthalpie H Wärmekapazität	175 176 178
Kapitel 14 Alles in Unordnung – Der 2. Hauptsatz der Thermodynamik	181
Der zweite Hauptsatz und seine Bedeutung Grafische Darstellung von Bilanzen Die Entropieänderungen – Vorsicht Mathematik Entropieänderung bei Zustandsänderungen ohne Phasenänderung Entropieänderung bei Zustandsänderungen mit Phasenänderung Das T-s-Diagramm Über die Qualität von Energieformen Der Carnot-Prozess	181 184 185 185 189 192 193
Kapitel 15 Zustände und Zustandsänderungen	199
Grundlagen Zustandsänderungen idealer Gase Isochore Zustandsänderung Isobare Zustandsänderung Isotherme Zustandsänderung Isentrope Zustandsänderung Polytrope Zustandsänderung Zustandsgrößen und Zustandsänderungen grafisch darstellen	199 199 199 201 201 202 203 204
Kapitel 16 Gas-Dampf-Gemische – Alles feuchte Luft?	207
Absolute und relative Feuchte Das Mollier-Diagramm Zustandsänderungen feuchter Luft Erwärmung Abkühlung Mischung Befeuchtung und Trocknung	207 210 213 213 213 213 216

Kapitel 17	219
Jetzt wird es brenzlig – Verbrennung	. •
Alles bekannt? – Ablauf der Verbrennung	219
Brennstoffe Voraussetzungen für eine Verbrennung	219 221
Zündung	222
Stöchiometrische Verbrennungsrechnung	222
Berechnung des Luftbedarfs für feste und flüssige Brennstoffe	223
Berechnung der Rauchgasmenge	225
Verbrennungsrechnung mit Brennstoffkenngrößen	226
Verbrennungstemperatur und Taupunkt des Rauchgases	228
Kapitel 18	
Links oder rechts – die Kreisprozesse	231
Rechtskreisprozesse	231
Grundprinzip	231
Der Clausius-Rankine-Prozess	233
Der Joule-Prozess Der Otto-Prozess	235 238
Der Otto-1 rozess Der Diesel-Prozess	240
Der Linkskreisprozess oder wie funktioniert der Kühlschrank	241
Allgemeine Bemerkungen zum Linkskreisprozess	242
Der Wärmepumpenprozess	244
Teil V	
Wechselwirkungen	245
Kapitel 19	
Spektroskopie	247
Das elektromagnetische Spektrum	247
Kleine Energie, große Wirkung – Radiowellen	249
Feinstrukturen durch Verschiebung und Kopplung erkennen	251
Hier wird es heiß – Mikrowellen	253
Bindungen im Tanzfieber – Infrarotspektroskopie	254
Schauen wir mal – UV/Vis-Spektroskopie	256
Jetzt wird es kristallklar – Röntgenstrukturanalyse Röntgendiagnose	260 260
Röntgenstukturanalyse	261
Kapitel 20	
Molecular Modeling	263
Vom Aussehen eines Moleküls	263
Molekülmechanik: Kraftfeldmethoden	266

Physikalische Chemie für Dummies

Inhaltsverzeichnis	
Die Energiegleichungen eines Kraftfelds	266
Zusammenfassen und Zeit sparen	268
Vom Berg ins Tal mit geschlossenen Augen	269
Mit Dynamik die Moleküle bewegen	269
Quantenchemie mit der unlösbaren Schrödinger-Gleichung	271
Semi-empirisch mit MNDO und Co.	272
Von Anfang an: Ab-initio-Berechnungen	273
Teil VI	
Der Top-Ten-Teil	275
Kapitel 21	
Zehn (Groß-)Väter der Physikalischen Chemie	277
Wilhelm Ostwald	277
Svante Arrhenius	278
Jacobus Henricus van't Hoff	278
Walther Nernst	279
Josiah Willard Gibbs	279
Johannes Diderik van der Waals	280
Jean Louis Marie Poiseuille	280
Irving Langmuir	281
Julius Robert von Mayer	281
Nicolas Léonard Sadi Carnot	282
Kapitel 22	
Zehn Tipps für Studierende	283
Nur scheinbar kompliziert – keine Angst vor mathematischen Formeln	283
Diagramme verstehen – nicht auswendig lernen	284
Was du heute kannst besorgen	284
Vorlesungen sind besser als Bücher	285
Übungen und Seminare sind noch besser als Vorlesungen	286
Praktika: sauber arbeiten, denken und dokumentieren	286
Wie Fehler entstehen und wie Sie diese vermeiden	287
Kommilitonen sind Mitstreiter, keine Konkurrenten	288

Alte Klausuren sind die halbe Miete

Das Internet ist nicht nur zum Chatten zu gebrauchen

289

289

———— Physikalische Chemie für Dummies ————————————————————————————————————	
Teil VII Anhänge	291
Lösungen der Übungsaufgaben aus Kapitel 4	293
So berechnen Sie den Druck in der Sprayflasche Das ist die Molmasse des Polymers Logarithmische Auswertung eines Rheogramms	293 294 295
Lösungen der Übungsaufgaben aus Kapitel 8	297
Berechnung eines Isotonisierungszusatzes Auswertung einer Adsorptionsisotherme nach Freundlich Die Binodallinie im Dreiecksdiagramm Den Extraktgehalt nach dem Ausschütteln berechnen	297 298 300 301
Lösungen der Übungsaufgaben aus Kapitel 11	305
Die Hydrolysekinetik graphisch darstellen und auswerten Mit Arrhenius im Schnellgang die Haltbarkeit vorhersagen	305 307
Stichwortverzeichnis	311