Contents

1	Introduction				
	1.1	Aims a	and Concepts	1	
	1.2	Outlin	e of the Book and a Lot of References	2	
	1.3	Some	Personal Thoughts	4	
	1.4	Proble	ms	5	
	Refe	rences		6	
2	Maxwell's Equations, Photons and the Density of States				
	2.1	Maxwell's Equations 1			
	2.2	Electromagnetic Radiation in Vacuum 1			
	2.3	Electro	omagnetic Radiation in Matter; Linear Optics	18	
	2.4	Transv	erse, Longitudinal and Surface Waves	22	
	2.5	Photon	is and Some Aspects of Quantum Mechanics		
		and of	Dispersion Relations	23	
	2.6	Density of States and Occupation Probabilities			
	2.7	Problems			
	Refe	rences		36	
3	Inter	Interaction of Light with Matter			
	3.1	Macro	scopic Aspects for Solids	39	
		3.1.1	Boundary Conditions	39	
		3.1.2	Laws of Reflection and Refraction	42	
		. 3.1.3	Noether's Theorem and Some Aspects of		
			Conservation Laws	44	
		3.1.4	Reflection and Transmission at an Interface		
			and Fresnel's Formulae	45	
		3.1.5	Extinction and Absorption of Light	50	
		3.1.6	Transmission Through a Slab of Matter and		
			Fabry Perot Modes	51	
		3.1.7	Birefringence and Dichroism	54	
		3.1.8	Optical Activity	63	

xxi

c

	3.2	Micros	copic Aspects	64
		3.2.1	Absorption, Stimulated and Spontaneous	61
			Emission, Virtual Excitation	04
		3.2.2	Perturbative Treatment of the Linear	(0
			Interaction of Light with Matter	68
	3.3	Probler	ns	73
	Refer	ences		74
4	Ense	mble of 1	Uncoupled Oscillators	77
	4.1	Equation	ons of Motion and the Dielectric Function	78
	4.2	Correct	tions Due to Ouantum Mechanics and Local Fields	81
	4.3	Spectra	of the Dielectric Function and of the Complex	
		Index of	of Refraction	83
	4.4	The Sp	ectra of Reflection and Transmission	89
	4 5	Interac	tion of Close Lying Resonances	93
	4.6	Problet	ms	94
	Refer	ences		95
	Refer	enees		
5	The (Concept	of Polaritons	97
	5.1	Polarite	ons as New Quasiparticles	98
	5.2	Dispers	sion Relation of Polaritons	100
	5.3	Polarite	ons in Solids, Liquids and Gases and From the	
		IR to th	ne X-ray Region	105
		5.3.1	Common Optical Properties of Polaritons	105
		5.3.2	How the <i>k</i> -vector Develops	109
	5.4	Couple	ed Oscillators and Polaritons with Spatial Dispersion	113
		5.4.1	Dielectric Function and the Polariton States	
			with Spatial Dispersion	115
		5.4.2	Reflection and Transmission and Additional	
			Boundary Conditions	118
	5.5	Real ar	nd Imaginary Parts of Wave Vector and Frequency	122
	5.6	Surface	e Polaritons	123
	5.7	Proble	ms	125
	Refer	rences		126
6	Krar	nore Kr	conig Palations	129
U	K a	Genera	al Concents	129
	6.2	Droble	m	133
	0.2 Dofo	ranges		134
	Refer	lences		154
7	Crys	tals, Lat	ttices, Lattice Vibrations and Phonons	135
	7.1	Adiaba	atic Approximation	135
	7.2	Lattice	es and Crystal Structures in Real and Reciprocal Space	137
	7.3	Vibrati	ions of a String	142
	7.4	Linear	Chains	144
	7.5	Three-	Dimensional Crystals	150

	7.6	Quantization of Lattice Vibrations:	
		Phonons and the Concept of Quasiparticles	151
	7.7	The Density of States and Phonon Statistics	155
	7.8	Phonons in Alloys	158
	7.9	Defects and Localized Phonon Modes	159
	7.10	Phonons in Superlattices and in Other Structures	
		of Reduced Dimensionality	161
	7.11	Problems	165
	Refer	ences	165
8	Elect	rons in a Periodic Crystal	167
•	8.1	Bloch's Theorem	168
	8.2	Metals, Semiconductors, Insulators	171
	8.3	An Overview of Semiconducting Materials	174
	8.4	Electrons and Holes in Crystals as New Quasiparticles	178
	8.5	The Effective-Mass Concept	180
	8.6	The Polaron Concept and Other Electron–Phonon	
		Interaction Processes	184
	8.7	Some Basic Approaches to Band Structure Calculations	187
	8.8	Bandstructures of Real Semiconductors	196
	8.9	Density of States, Occupation Probability and Critical Points	203
	8.10	Electrons and Holes in Quantum Wells and Superlattices	207
	8.11	Growth of Quantum Wells and of Superlattices	217
	8.12	Quantum Wires	222
	8.13	Quantum Dots	224
	8.14	Defects, Defect States and Doping	228
	8.15	Disordered Systems and Localization	233
	8.16	Problems	243
	Refer	ences	244
9	Excit	ons, Biexcitons and Trions	249
	9.1	Wannier and Frenkel Excitons	250
	9.2	Corrections to the Simple Exciton Model	255
	9.3	The Influence of Dimensionality	258
	9.4	Biexcitons and Trions	263
	9.5	Bound Exciton Complexes	264
	9.6	Excitons in Disordered Systems	265
	9.7	Problems	268
	Refer	ences	269
10	Plasn	nons, Magnons and Some Further Elementary Excitations	273
	10.1	Plasmons, Pair Excitations and Plasmon-Phonon	
		Mixed States	273
	10.2	Magnons and Magnetic Polarons	279
	10.3	Problems	280
	Refer	ences	281

11	Optic	al Prope	rties of Phonons	283
	11.1	Phonon	s in Bulk Semiconductors	283
		11.1.1	Reflection Spectra	283
		11.1.2	Raman Scattering	285
		11.1.3	Phonon Polaritons	288
		11.1.4	Brillouin Scattering	290
		11.1.5	Surface Phonon Polaritons	290
		11.1.6	Phonons in Alloys	292
		11.1.7	Defects and Localized Phonon Modes	293
	11.2	Phonon	s in Superlattices	293
		11.2.1	Backfolded Acoustic Phonons	294
		11.2.2	Confined Optic Phonons	294
		11.2.3	Interface Phonons	295
	11.3	Phonon	s in Quantum Dots	297
	11.4	Phonon	Dynamics	297
	11.5	Problem	ns	298
	Refer	ences		299
12	Onfic	al Pron	arties of Plasmons, Plasmon-Phonon Mixed	
14	State	s and of	Magnons	301
	12.1	Surface	Plasmons	301
	12.1	Plasmo	n-Phonon Mixed States	303
	12.2	Plasmo	ns in Systems of Reduced Dimensionality	304
	12.5	Ontical	Properties of Magnons	306
	12.4	Probler	ns	307
	Refer	ences		307
				200
13	Optio	cal Prop	erties of Intrinsic Excitons in Bulk Semiconductors	309
	13.1	Excitor	is with Strong Oscillator Strength	309
		13.1.1	Exciton–Photon Coupling	310
		13.1.2	Consequences of Spatial Dispersion	313
		13.1.3	Spectra of Reflection, Transmission and	714
				314
		13.1.4	Spectroscopy in Momentum Space	331
		13.1.5	Surface-Exciton Polaritons	330
		13.1.6	Excitons in Organic Semiconductors and in Insulators	339
		13.1.7	Optical Transitions Above the Fundamental	240
			Gap and Core Excitons	342
	13.2	Forbide	den Exciton Transitions	340
		13.2.1	Direct Gap Semiconductors	347
		13.2.2	Indirect Gap Semiconductors	351
	13.3	Intraex	citonic Transitions	355
	13.4	Proble	ms	357
	Refe	rences		- 338

•

14	Optic of De	al Properties of Bound and Localized Excitons and fect States	363			
	14.1	Bound-Exciton and Multi-exciton Complexes	363			
	14.2	Donor-Acceptor Pairs and Related Transitions	371			
	14.3	Internal Transitions and Deep Centers	373			
	14.4	Excitons in Disordered Systems	375			
	14.5	Problems	380			
	Refer	ences	380			
15	Optic	al Properties of Excitons in Structures of Reduced				
	Dime	nsionality	383			
	15.1	Qantum Wells	383			
	15.2	Coupled Quantum Wells and Superlattices	393			
	15.3	Quantum Wires	400			
	15.4	Quantum Dots	403			
	15.5	Problems	415			
	Refer	ences	416			
16	Excit	Excitons Under the Influence of External Fields				
	16.1	Magnetic Fields	424			
		16.1.1 Nonmagnetic Bulk Semiconductors	426			
		16.1.2 Diluted Magnetic Bulk Semiconductors	432			
		16.1.3 Semiconductor Structures of Reduced Dimensionality	434			
		16.1.4 Spin Injection	437			
	16.2	Electric Fields	439			
		16.2.1 Bulk Semiconductors	439			
		16.2.2 Semiconductor Structures of Reduced Dimensionality	441			
	16.3	Strain Fields	445			
		16.3.1 Bulk Semiconductors	445			
		16.3.2 Structures of Reduced Dimensionality	448			
	16.4	Problems	450			
	Refer	ences	450			
17	From	Cavity Polaritons to Photonic Crystals	457			
	17.1	Cavity Polaritons	457			
		17.1.1 The Empty Resonator	457			
		17.1.2 Cavity Polaritons	460			
	17.2	Photonic Crystals and Photonic Band Gap Structures	464			
		17.2.1 Introduction to the Basic Concepts	465			
		17.2.2 Realization of Photonic Crystals and Applications	469			
	17.3	Photonic Atoms, Molecules and Crystals				
	17.4	Present and Further Developments of Photonic Crystals				
	17.5	A Few Words about Metamaterials				
	17.6	Problems	479			
	Refer	ences	480			

18	Revie 18.1 18.2 Refere	ew of the Linear Optical Properties 4 Review of the Linear Optical Properties 4 Problem 4 rences 4		
19	High 19.1 19.2 19.3 19.4 Refere	Excitation Effects and Nonlinear Optics Introduction and Definition General Scenario for High Excitation Effects Beyond the $\chi^{(n)}$ Approximations Problems ences	491 491 500 503 504 505	
20	The I 20.1 20.2 20.3 20.4 20.5 20.6 20.7 Refer	ntermediate Density Regime Two-Photon Absorption by Excitons Elastic and Inelastic Scattering Processes Biexcitons and Trions 20.3.1 Bulk Semiconductors 20.3.2 Structures of Reduced Dimensionality Optical or ac Stark Effect Excitonic Bose–Einstein Condensation 20.5.1 Basic Properties 20.5.2 Attempts to Find BEC in Bulk Semiconductors 20.5.3 Structures of Reduced Dimensionality 20.5.4 Driven Excitonic Bose–Einstein Condensations and Some Further Systems Photo-thermal Optical Nonlinearities Problems	507 508 513 513 522 528 531 532 534 539 547 549 550 551	
21	The H 21.1 21.2 21.3 21.4 21.5 21.6 Refer	Electron-Hole Plasma The Mott Density Band Gap Renormalization and Phase Diagram Electron-Hole Plasmas in Bulk Semiconductors 21.3.1 Indirect Gap Materials 21.3.2 Electron-Hole Plasmas in Direct-Gap Semiconductors Electron-Hole Plasma in Structures of Reduced Dimensionality Inter-subband Transitions in Unipolar and Bipolar Plasmas 21.5.1 Bulk Semiconductors 21.5.2 Structures of Reduced Dimensionality Problems ences	561 567 574 574 577 587 590 591 592 592 592 593	
22	Stime 22.1 22.2 22.3	alated Emission and Laser Processes Excitonic Processes Electron–Hole Plasmas Cavity Lasing	599 600 608 611	

	22.4	Random	1 Lasing	611
	22.5	Basic C	oncepts of Laser Diodes and Present	
		Researc	h Trends	612
	22.6	Problem	1S	617
	Refer	ences		617
23	Time	Resolved	d Spectroscopy	623
	23.1	The Bas	sic Time Constants	624
	23.2	Decoher	rence and Phase Relaxation	630
		23.2.1	Determination of the Phase Relaxation Times	630
		23.2.2	Quantum Coherence, Coherent Control	
			and Non-Markovian Decay	663
	23.3	Intra-Su	bband and Inter-Subband Relaxation	672
		23.3.1	Formation Times of Various Collective Excitations	672
		23.3.2	Intraband and Inter-Subband Relaxation	674
		23.3.3	Transport Properties	679
	23.4	Interbar	nd Recombination	680
	23.5	Problem	18	691
	Refer	ences		691
24	0-4	al Distak	vility Optical Computing Spintropics	
24	opuc	ai Distat	Computing	701
	24 1	Ontical	Ristability	701
	24.1	24 1 1	Basic Concepts and Mechanisms	702
		24.1.1	Dispersive Optical Bistability	702
		24.1.2	Optical Bistability Due to Bleaching	706
		24.1.3	Induced Absorptive Bistability	700
		24.1.4	Electro-Ontic Ristability	711
		24.1.5	Nonlinear Dynamics	713
	24.2	Device	Ideas Digital Optical Computing	/15
	24.2	and Wh	v It Failed	720
	24.2	Spintro		720
	24.5	Ouentu	m Computing	724
	24.4	Droblen	ne Computing	726
	24.J Dofor	ances		726
	Refer	cnees		720
25	Expe	rimental	Methods	731
	25.1	Linear (Optical Spectroscopy	732
		25.1.1	Equipment for Linear Spectroscopy	733
		25.1.2	Techniques and Results	735
	25.2	Nonline	ear Optical Spectroscopy	740
		25.2.1	Equipment for Nonlinear Optics	741
		25.2.2	Experimental Techniques and Results	744
	25.3	Time-R	esolved Spectroscopy	753
		25.3.1	Equipment for Time-Resolved Spectroscopy	753
		25.3.2	Experimental Techniques and Results	757

			٠
XX	٧I	1	1
		-	-

	25.4	Spatiall	y Resolved Spectroscopy	762
		25.4.1	Equipment for Spatially Resolved Spectroscopy	762
		25.4.2	Experimental Techniques and Results	765
	25.5	Spectro	scopy Under the Influence of External Fields	767
		25.5.1	Equipment for Spectroscopy Under the	
			Influence of External Fields	768
		25.5.2	Experimental Techniques and Results	769
	25.6	Problem	ns	771
	Refer	ences		772
26	Grou	p Theor	v in Semiconductor Optics	779
	26.1	Introdu	ctory Remarks	779
	26.2	Some A	Aspects of Abstract Group Theory for Crystals	780
		26.2.1	Some Abstract Definitions	781
		26.2.2	Classification of the Group Elements	781
		26.2.3	Isomorphism and Homomorphism of Groups	782
		26.2.4	Some Examples of Groups	782
	26.3	Theory	of Representations and of Characters	787
	26.4	Hamilto	on Operator and Group Theory	792
	26.5	Applica	ations to Semiconductors Optics	794
	26.6	Some S	elected Group Tables	804
	26.7	Probler	ns	809
	Refer	ences		812
27	Semio	conducto	or Bloch Equations	813
	27.1	Dynam	ics of a Two-Level System	814
		27.1.1	Wave-Function Description	815
		27.1.2	Polarization and Inversion as State Variables	817
		27.1.3	Pseudo-spin Formulation	818
		27.1.4	Linear Response of a Two Level System	820
	27.2	Optical	Bloch Equations	821
		27.2.1	Interband Susceptibility	822
	27.3	Semico	nductor Bloch Equations	823
		27.3.1	Excitons	824
	27.4	Some S	elected Coherent Processes	826
		27.4.1	Pump-Probe	827
		27.4.2	Four-Wave Mixing	828
		27.4.3	Photon Echo	828
	27.5	Probler	ns	832
	Refer	ences		833
-				0.2.5
The	Final	Problen	a	835
Ind	ov			827
mu	сл	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	031