Contents

	Pre	face		xix	
	Pre	Preface to the First Edition			
1	Pre	Preliminaries			
	1.1	Probability and Bayes' Theorem			
		1.1.1	Notation	1	
		1.1.2	Axioms for probability	2	
		1.1.3	'Unconditional' probability	2 5	
		1.1.4	Odds	6	
		1.1.5	Independence	7	
		1.1.6	Some simple consequences of the axioms; Bayes'		
			Theorem	7	
	1.2	Exam	ples on Bayes' Theorem	9	
		1.2.1	The Biology of Twins	9	
		1.2.2	A political example	10	
		1.2.3	A warning	10	
	1.3	Rando	om variables	12	
		1.3.1	Discrete random variables	12	
		1.3.2	The binomial distribution	13	
		1.3.3	Continuous random variables	14	
		1.3.4	The normal distribution	16	
			Mixed random variables	17	
	1.4	Severa	al random variables	17	
			Two discrete random variables	17	
			Two continuous random variables	18	
		1.4.3	Bayes' Theorem for random variables	20	
		1.4.4	Example	21	
		1.4.5	One discrete variable and one continuous variable	21	
		1.4.6	Independent random variables	22	
	1.5	Means	s and variances	23	
		1.5.1	Expectations	23	
		1.5.2	The expectation of a sum and of a product	24	
		1.5.3	Variance, precision and standard deviation	25	

Lee, Peter M. Bayesian statistics 2012

viii	CC	ONTENTS	
		1.5.4 Examples	25
		1.5.5 Variance of a sum; covariance and correlation	27
		1.5.6 Approximations to the mean and variance of a function of	
		a random variable	28
		1.5.7 Conditional expectations and variances	29
		1.5.8 Medians and modes	31
	1.6	Exercises on Chapter 1	31
2	Baye	sian inference for the normal distribution	36
	2.1	Nature of Bayesian inference	36
		2.1.1 Preliminary remarks	36
		2.1.2 Post is prior times likelihood	36
		2.1.3 Likelihood can be multiplied by any constant	38
		2.1.4 Sequential use of Bayes' Theorem	38
		2.1.5 The predictive distribution	39
		2.1.6 A warning	39
	2.2	Normal prior and likelihood	40
		2.2.1 Posterior from a normal prior and likelihood	40
		2.2.2 Example	42
		2.2.3 Predictive distribution	43
		2.2.4 The nature of the assumptions made	44
	2.3	Several normal observations with a normal prior	44
		2.3.1 Posterior distribution	44
		2.3.2 Example	46
		2.3.3 Predictive distribution	47
		2.3.4 Robustness	47
	2.4	Dominant likelihoods	48
		2.4.1 Improper priors	48
		2.4.2 Approximation of proper priors by improper priors	49
	2.5	Locally uniform priors	50
		2.5.1 Bayes' postulate	50
		2.5.2 Data translated likelihoods	52
		2.5.3 Transformation of unknown parameters	52
	2.6	Highest density regions	54
		2.6.1 Need for summaries of posterior information	54
		2.6.2 Relation to classical statistics	55
	2.7		55
		2.7.1 A suitable prior for the normal variance	55
		2.7.2 Reference prior for the normal variance	58
	2.8	HDRs for the normal variance	59
		2.8.1 What distribution should we be considering?	59
		2.8.2 Example	59
	2.9	and the of sufficiency	60
		2.9.1 Definition of sufficiency	60
		2.9.2 Neyman's factorization theorem	6

			CONTENTS	ix
		2.9.3	Sufficiency principle	63
		2.9.4	Examples	63
		2.9.5	Order statistics and minimal sufficient statistics	65
		2.9.6	Examples on minimal sufficiency	66
	2.10) Conjug	gate prior distributions	67
		2.10.1	Definition and difficulties	67
		2.10.2	Examples	68
		2.10.3	Mixtures of conjugate densities	69
		2.10.4	Is your prior really conjugate?	71
	2.11		ponential family	71
		2.11.1	Definition	71
		2.11.2	Examples	72
			Conjugate densities	72
			Two-parameter exponential family	73
	2.12		l mean and variance both unknown	73
			Formulation of the problem	73
			Marginal distribution of the mean	75
		2.12.3	Example of the posterior density for the mean	76
			Marginal distribution of the variance	77
			Example of the posterior density of the variance	77
		2.12.6	Conditional density of the mean for given	
			variance	77
	2.13		gate joint prior for the normal distribution	78
			The form of the conjugate prior	78
		2.13.2	Derivation of the posterior	80
			Example	81
			Concluding remarks	82
	2.14	Exercis	ses on Chapter 2	82
3	Som	e other	common distributions	85
	3.1	The bir	nomial distribution	85
		3.1.1	Conjugate prior	85
		3.1.2	Odds and log-odds	88
		3.1.3	Highest density regions	90
			Example	91
			Predictive distribution	92
	3.2		nce prior for the binomial likelihood	92
		3.2.1	Bayes' postulate	92
		3.2.2		93
		3.2.3	The arc-sine distribution	94
		3.2.4	Conclusion	95
	3.3	Jeffreys		96
		3.3.1	Fisher's information	96
		3.3.2	The information from several observations	97
		3.3.3	Jeffreys' prior	98

Х

3.3.4 Examples 3.3.5 Warning

CONTENTS

3.3.6 Several unknown parameters

3.3.7 Example 3.4 The Poisson distribution 3.4.1 Conjugate prior

3.4.2 Reference prior 3.4.3 Example

3.4.4 Predictive distribution The uniform distribution 3.5 3.5.1 Preliminary definitions

3.5.2 Uniform distribution with a fixed lower endpoint

3.5.3 The general uniform distribution 3.5.4 Examples Reference prior for the uniform distribution 3.6

3.6.1 Lower limit of the interval fixed 3.6.2 Example 3.6.3 Both limits unknown

3.7 The tramcar problem 3.7.1 The discrete uniform distribution The first digit problem; invariant priors 3.8 3.8.1 A prior in search of an explanation

3.8.2 The problem 3.8.3 A solution 3.8.4 Haar priors 39

The circular normal distribution 3.9.1 Distributions on the circle 3.9.2 Example 3.9.3 Construction of an HDR by numerical integration 3.9.4 Remarks

3.10.2

3.10.4

3.10.6

3.11.1 3.11.2

3.11.3

3.11.4

3.12 Exercises on Chapter 3

3.10 Approximations based on the likelihood 3.10.1 Maximum likelihood Iterative methods

Examples

Example

3.11 Reference posterior distributions

3.11.5 Technical complications

The information provided by an experiment

Reference priors under asymptotic normality

Uniform distribution of unit length

Normal mean and variance

3.10.3 Approximation to the posterior density

3.10.5 Extension to more than one parameter

124

126

132

134

134

98

100

100

101

102

102

103

104

104

106

106

107 108

110 110

110

111

111

113

113

114

114

114 115

117

117

117

119

120 122

122

122 123

123

			CONTENTS	X			
4	Ну	Hypothesis testing					
	4.1	Hypoth	nesis testing	138 138			
		4.1.1	Introduction	138			
		4.1.2	Classical hypothesis testing	138			
		4.1.3	Difficulties with the classical approach	139			
			The Bayesian approach	140			
		4.1.5	Example	142			
		4.1.6	Comment	143			
	4.2	One-sie	ded hypothesis tests	143			
		4.2.1	Definition	143			
		4.2.2	P-values	144			
	4.3	Lindley	y's method	145			
		4.3.1	A compromise with classical statistics	145			
		4.3.2	Example	145			
		4.3.3	Discussion	146			
	4.4	Point (or sharp) null hypotheses with prior information	146			
		4.4.1	. I	146			
		4.4.2	•	147			
		4.4.3	The Bayesian method for point null hypotheses	148			
		4.4.4		149			
	4.5		ull hypotheses for the normal distribution	150			
			Calculation of the Bayes' factor	150			
		4.5.2	•	151			
			Lindley's paradox	152			
		4.5.4	1				
			distribution	154			
		4.5.5		155			
	4.6		oogian philosophy	157			
		4.6.1		157			
		4.6.2	4	157			
	4.7	Exercis	ses on Chapter 4	158			
5	Two	Two-sample problems					
	5.1	Two-sa	mple problems – both variances unknown	162			
		5.1.1	The problem of two normal samples	162			
		5.1.2		162			
		5.1.3		163			
		5.1.4		163			
		5.1.5	Example	164			
		5.1.6	Non-trivial prior information	165			
	5.2		es unknown but equal	165			
		5.2.1	Solution using reference priors	165			
		5.2.2	Example	167			
		5.2.3	Non-trivial prior information	167			

CONTENTS

	7.5	Dovecia	n decision theory	234
	1.5	7 5 1	The elements of game theory	234
		7.5.1	Point estimators resulting from quadratic loss	236
		7.5.2	Particular cases of quadratic loss	237
			Weighted quadratic loss	238
			Absolute error loss	238
		7.5.6	_	239
			General discussion of point estimation	240
	7.6		inear methods	240
	7.0	-	Methodology	240
			Some simple examples	241
			Extensions	243
	7.7		on theory and hypothesis testing	243
	,.,	7.7.1		
		,.,.	hypothesis testing	243
		7.7.2	• •	245
	7.8		cal Bayes methods	245
	7.0		Von Mises' example	245
		7.8.2	The Poisson case	246
	7.9		ses on Chapter 7	247
8	Hie	rarchica	l models	253
	8.1	The ide	ea of a hierarchical model	253
		8.1.1	Definition	253
		8.1.2	Examples	254
		8.1.3	Objectives of a hierarchical analysis	257
		8.1.4	More on empirical Bayes methods	257
	8.2	The hi	erarchical normal model	258
		8.2.1	The model	258
		8.2.2	The Bayesian analysis for known overall mean	259
			The empirical Bayes approach	261
	8.3	The ba	seball example	262
	8.4	The St	ein estimator	264
		8.4.1	- monitor of the risk of the bannes Stom Comment	267
	8.5	Bayesi	ian analysis for an unknown overall mean	268
		8.5.1		270
	8.6	The ge	eneral linear model revisited	272
		8.6.1	An informative prior for the general linear model	272
		8.6.2		274
		8.6.3	A further stage to the general linear model	275
		8.6.4		276
		8.6.5	- colored variances of the estimators	277
	8.7	Exerc	ises on Chapter 8	277

				CONTENTS	χv
9	The	Gibbs s	ampler and other numerical methods		281
-	9.1		ction to numerical methods		281
		9.1.1	Monte Carlo methods		281
		9.1.2	Markov chains		282
	9.2	The EM	1 algorithm		283
		9.2.1	The idea of the EM algorithm		283
		9.2.2	Why the EM algorithm works		285
		9.2.3	Semi-conjugate prior with a normal likelihoo	od	287
		9.2.4	The EM algorithm for the hierarchical norma	al model	288
		9.2.5	A particular case of the hierarchical normal	model	290
	9.3	Data au	gmentation by Monte Carlo		291
		9.3.1	The genetic linkage example revisited		291
		9.3.2	Use of R		291
		9.3.3	The genetic linkage example in R		292
		9.3.4	Other possible uses for data augmentation		293
	9.4	The Gil	bbs sampler		294
		9.4.1	Chained data augmentation		294
		9.4.2			296
		9.4.3	More on the semi-conjugate prior with a nor	mal	
			likelihood		299
		9.4.4	The Gibbs sampler as an extension of chaine	d data	
			augmentation		301
		9.4.5	An application to change-point analysis		302
		9.4.6	Other uses of the Gibbs sampler		306
		9.4.7	More about convergence		309
	9.5		on sampling		311
			Description		311
		9.5.2	Example		311
		9.5.3	Rejection sampling for log-concave distribut	ions	311
		9.5.4	A practical example		313
	9.6		etropolis-Hastings algorithm		317
		9.6.1	Finding an invariant distribution		317
		9.6.2			318
		9.6.3	•		320
			Example		321
			More realistic examples		322
		9.6.6	Gibbs as a special case of Metropolis-Hastir	igs	322
		9.6.7	Metropolis within Gibbs		323
	9.7		ction to WinBUGS and OpenBUGS	20	323
		9.7.1	Information about WinBUGS and OpenBUG	19	323
		9.7.2			324
		9.7.3	A simple example using WinBUGS		324
		9.7.4	The pump failure example revisited		327
		9.7.5	DoodleBUGS		327

/i	CONTENTS					
		9.7.6	coda	329		
		9.7.7		329		
	9.8		ized linear models	332		
	7.0		Logistic regression	332		
		9.8.2		334		
	9.9		es on Chapter 9	335		
0			ximate methods	340		
	10.1		in importance sampling	340		
			Importance sampling to find HDRs	343		
			Sampling importance re-sampling	344		
			Multidimensional applications	344		
	10.2		onal Bayesian methods: simple case	345		
			Independent parameters	347		
			Application to the normal distribution	349		
			Updating the mean	350		
			Updating the variance	351		
			Iteration	352		
			Numerical example	352		
	10.3		onal Bayesian methods: general case	353		
		10.3.1	A mixture of multivariate normals	353		
	10.4		Approximate Bayesian Computation	356		
			The ABC rejection algorithm	356		
			The genetic linkage example	358		
			The ABC Markov Chain Monte Carlo algorithm	360		
			The ABC Sequential Monte Carlo algorithm	362		
		10.4.5	e e	365		
	4.0	10.4.6	Other variants of ABC	366		
	10.		ible jump Markov chain Monte Carlo	367		
		10.5.1	RJMCMC algorithm	367		
	10.	b Exercis	ses on Chapter 10	369		
A	ppend	ix A C	ommon statistical distributions	373		
•	A.J		nal distribution	374		
	A.2		quared distribution	375		
	A.3		al approximation to chi-squared	376		
	A.4		na distribution	376		
	A.5		se chi-squared distribution	377		
	Α.6		se chi distribution	378		
	Α.		chi-squared distribution	379		
	A.8	_	ent's t distribution	380		
	A.9		nal/chi-squared distribution	381		
	Α.		distribution	382		
	Α.		mial distribution	383		
	Α.		on distribution	384		
			: -			

	A.13	Negative binomial distribution	385
	A.14	Hypergeometric distribution	386
	A.15	Uniform distribution	387
	A.16	Pareto distribution	388
	A.17	Circular normal distribution	389
	A.18	Behrens' distribution	391
	A.19	Snedecor's F distribution	393
	A.20	Fisher's z distribution	393
	A.21	Cauchy distribution	394
4	A.22	The probability that one beta variable is greater than another	395
	A.23	Bivariate normal distribution	395
	A.24	Multivariate normal distribution	396
	A.25	Distribution of the correlation coefficient	397
Appe	ndix	B Tables	399
1	B.1	Percentage points of the Behrens-Fisher distribution	399
]	B.2	Highest density regions for the chi-squared distribution	402
1	B.3	HDRs for the inverse chi-squared distribution	404
1	B.4	Chi-squared corresponding to HDRs for log chi-squared	406
1	B.5	Values of F corresponding to HDRs for log F	408
Appe	ndix	C R programs	430
Appe	ndix	D Further reading	436
1	D.1	Robustness	436
1	D.2	Nonparametric methods	436
I	D.3	Multivariate estimation	436
I	D.4	Time series and forecasting	437
I	D.5	Sequential methods	437
I	D.6	Numerical methods	437
I	D.7	Bayesian networks	437
I	D.8	General reading	438
1	Refer	ences	439
I	ndex		455

CONTENTS

xvii

Note: The tables in the Appendix are intended for use in conjunction with a standard set of statistical tables, for example, Lindley and Scott (1995) or Neave (1978). They extend the coverage of these tables so that they are roughly comparable with those of Isaacs et al. (1974) or with the tables in Appendix A of Novick and Jackson (1974). However, tables of values easily computed with a pocket calculator have been omitted. The tables have been computed using NAG routines and algorithms described in Patil (1965) and Jackson (1974).