
Table of Contents 

Préface xxiii 

1. Getting Started 1 
Your Haskell Environment 1 
Getting Started with ghci, the Interpreter 2 
Basic Interaction: Using ghci as a Calculator 3 

Simple Arithmetic 3 
An Arithmetic Quirk: Writing Negative Numbers 4 
Boolean Logic, Operators, and Value Comparisons 5 
Operator Precedence and Associativity 7 
Undefined Values, and Introducing Variables 8 
Dealing with Precedence and Associativity Rules 8 

Command-Line Editing in ghci 9 
Lists 9 

Operators on Lists 11 
Strings and Characters 11 
First Steps with Types 12 
A Simple Program 15 

2. Typesand Functions 17 
Why Care About Types? 17 
Haskell's Type System 18 

Strong Types 18 
Static Types 19 
Type Inference 20 

What to Expect from the Type System 20 
Some Common Basic Types 21 
Function Application 22 
Useful Composite Data Types: Lists and Tuples 23 
Functions over Lists and Tuples 25 

Passing an Expression to a Function 26 
Function Types and Purity 27 

vu 

O'Sullivan, Bryan
Real World Haskell
2009

digitalisiert durch:
IDS Basel Bern



Haskell Source Files, and Writing Simple Functions 
Just What Is a Variable, Anyway? 
Conditional Evaluation 

Understanding Evaluation by Example 
Lazy Evaluation 
A More Involved Example 
Recursion 
Ending the Recursion 
Returning from the Recursion 
What Hâve We Learned? 

Polymorphism in Haskell 
Reasoning About Polymorphie Functions 
Further Reading 

The Type of a Function of More Than One Argument 
Why the Fuss over Purity? 
Conclusion 

Defining a New Data Type 
Naming Types and Values 

Type Synonyms 
Algebraic Data Types 

Tuples, Algebraic Data Types, and When to Use Each 
Analogues to Algebraic Data Types in Other Languages 

Pattern Matching 
Construction and Deconstruction 
Further Adventures 
Variable Naming in Patterns 
The Wild Card Pattern 
Exhaustive Patterns and Wild Cards 

Record Syntax 
Parameterized Types 
Recursive Types 
Reporting Errors 

A More Controlled Approach 
Introducing Local Variables 

Shadowing 
The where Clause 
Local Functions, Global Variables 

The Offside Rule and Whitespace in an Expression 
A Note About Tabs Versus Spaces 
The Offside Rule Is Not Mandatory 

The case Expression 

27 
28 
29 
32 
32 
33 
34 
35 
35 
36 
36 
38 
38 
38 
39 
40 

41 
41 
43 
43 
44 
45 
47 
50 
51 
52 
53 
53 
54 
55 
57 
58 
60 
61 
61 
62 
63 
63 
64 
66 
66 
66 

Table of Contents 



Common Beginner Mistakes with Patterns 67 
Incorrectly Matching Against a Variable 67 
Incorrectly Trying to Compare for Equality 68 

Conditional Evaluation with Guards 68 

Functional Programming 71 
Thinking in Haskell 71 
A Simple Command-Line Framework 71 
Warming Up: Portably Splitting Lines of Text 72 

A Line-Ending Conversion Program 75 
Infix Functions 76 
Working with Lists 77 

Basic List Manipulation 78 
Safely and Sanely Working with Crashy Functions 79 
Partial and Total Functions 79 
More Simple List Manipulations 80 
Working with Sublists 81 
Searching Lists 82 
Working with Several Lists at Once 83 
Special String-Handling Functions 84 

How to Think About Loops 84 
Explicit Recursion 85 
Transforming Every Pièce of Input 87 
Mapping over a List 88 
Selecting Pièces of Input 90 
Computing One Answer over a Collection 90 
The Left Fold 92 
Why Use Folds, Maps, and Filters? 93 
Folding from the Right 94 
Left Folds, Laziness, and Space Leaks 96 
Further Reading 99 

Anonymous (lambda) Functions 99 
Partial Function Application and Currying 100 

Sections 102 
As-patterns 103 
Code Reuse Through Composition 104 

Use Your Head Wisely 107 
Tips for Writing Readable Code 107 
Space Leaks and Strict Evaluation 108 

Avoiding Space Leaks with seq 108 
Learning to Use seq 109 

Table of Contents | ix 



Writing a Library: Working with JSON Data 111 
A Whirlwind Tour of JSON ! 11 
Representing JSON Data in Haskell 111 
The Anatomy of a Haskell Module 113 
Compiling Haskell Source 114 
Generating a Haskell Program and Importing Modules 114 
Printing JSON Data 1 1 5 

Type Inference Is a Double-Edged Sword 117 
A More General Look at Rendering 118 
Developing Haskell Code Without Going Nuts 119 
Pretty Printing a String 12,0 
Arrays and Objects, and the Module Header 122 
Writing a Module Header 123 
Fieshing Out the Pretty-Printing Library 124 

Compact Rendering 127 
True Pretty Printing 12° 
Following the Pretty Printer 129 

Creating a Package 131 
Writing a Package Description 131 
GHC's Package Manager 133 
Setting Up, Building, and Installing 133 

Practical Pointers and Further Reading 134 

Using Typeclasses 135 
The Need for Typeclasses 135 
What Are Typeclasses? 136 
Declaring Typeclass Instances 139 
Important Built-in Typeclasses 139 

Show 139 
Read H l 
Serialization with read and show 143 
Numeric Types 144 
Equality, Ordering, and Comparisons 148 

Automatic Derivation 148 
Typeclasses at Work: Making JSON Easier to Use 149 

More Helpful Errors 151 
Making an Instance with a Type Synonym 151 

Living in an Open World 152 
When Do Overlapping Instances Cause Problems? 153 
Relaxing Some Restrictions on Typeclasses 154 
How Does Show Work for Strings? 155 

How to Give a Type a New Identity 155 
Différences Between Data and Newtype Déclarations 157 

x I Table of Contents 



Summary: The Three Ways of Naming Types 158 
JSON Typeclasses Without Overlapping Instances 159 
The Dreaded Monomorphism Restriction 162 
Conclusion 163 

I/O 165 
Classic I/O in Haskell 165 

Pure Versus I/O 168 
Why Purity Matters 169 

Working with Files and Handies 169 
More on openFile 171 
Closing Handies 172 
Seek and Tell 172 
Standard Input, Output, and Error 173 
Deleting and Renaming Files 174 
Temporary Files 174 

Extended Example: Functional I/O and Temporary Files 175 
Lazy I/O 178 

hGetContents 178 
readFile and writeFile 180 
A Word on Lazy Output 181 
interact 181 

The IO Monad 183 
Actions 183 
Sequencing 186 
The True Nature of Return 187 

Is Haskell Really Imperative? 188 
Side Effects with Lazy I/O 188 
Buffering 189 

Buffering Modes 189 
Flushing The Buffer 190 

Reading Command-Line Arguments 190 
Environment Variables 191 

Efficient File Processing, Regulär Expressions, and Filename Matching 193 
Efficient File Processing 193 

Binary I/O and Qualified Imports 194 
Text I/O 195 

Filename Matching 197 
Regulär Expressions in Haskell 198 

The Many Types of Resuit 198 
More About Regulär Expressions 200 

Mixing and Matching String Types 200 

Table of Contents | xi 



Other Things You Should Know 201 
Translating a glob Pattern into a Regulär Expression 202 
An important Aside: Writing Lazy Functions 205 
Making Use of Our Pattern Matcher 206 
Handling Errors Through API Design 210 
Putting Our Code to Work 211 

9. 1/0 Case Study: A Library for Searching the Filesystem 213 
The find Command 213 
Starting Simple: Recursively Listing a Directory 213 

Revisiting Anonymous and Named Functions 214 
Why Provide Both mapM and forM? 215 

A Naive Finding Function 215 
Predicates: From Poverty to Riches, While Remaining Pure 217 
Sizing a File Safely 219 

The Acquire-Use-Release Cycle 221 
A Domain-Specific Language for Predicates 221 

Avoiding Boilerplate with Lifting 223 
Gluing Predicates Together 224 
Defining and Using New Operators 225 

Controlling Traversai 226 
Density, Readability, and the Learning Process 228 
Another Way of Looking at Traversai 229 
Useful Coding Guidelines 232 

Common Layout Styles 233 

10. Code Case Study: Parsing a Binary Data Format 235 
Grayscale Files 235 
Parsing a Raw PGM File 236 
Getting Rid of Boilerplate Code 238 
Implicit State 239 

The Identity Parser 240 
Record Syntax, Updates, and Pattern Matching 241 
A More Interesting Parser 242 
Obtaining and Modifying the Parse State 242 
Reporting Parse Errors 243 
Chaining Parsers Together 243 

Introducing Functors 244 
Constraints on Type Définitions Are Bad 247 
Infix Use of fmap 248 
Flexible Instances 248 
Thinking More About Functors 249 

Writing a Functor Instance for Parse 250 

xii I Table of Contents 



Using Functors for Parsing 251 
Rewriting Our PGM Parser 252 
Future Directions 254 

11. Testing and Quality Assurance 255 
QuickCheck: Type-Based Testing 256 

Testing for Properties 257 
Testing Against a Model 259 

Testing Case Study: Specifying a Pretty Printer 259 
Generating Test Data 259 
Testing Document Construction 262 
Using Lists as a Model 263 
Putting It All Together 264 

Measuring Test Coverage with HPC 265 

12. Barcode Récognition 269 
A Little Bit About Barcodes 269 

EAN-13 Encoding 270 
Introducing Arrays 270 

Arrays and Laziness 273 
Folding over Arrays 273 
Modifying Array Elements 274 

Encoding an EAN-13 Barcode 275 
Constraints on Our Decoder 275 
Divide and Conquer 276 
Turning a Color Image into Something Tractable 278 

Parsing a Color Image 278 
Grayscale Conversion 279 
Grayscale to Binary and Type Safety 279 

What Have We Done to Our Image? 280 
Finding Matching Digits 282 

Run Length Encoding 282 
Scaling Run Lengths, and Finding Approximate Matches 283 
List Compréhensions 284 
Remembering a Match's Parity 285 
Chunking a List 287 
Generating a List of Candidate Digits 287 

Life Without Arrays or Hash Tables 288 
A Forest of Solutions 288 
A Brief Introduction to Maps 289 
Further Reading 292 

Turning Digit Soup into an Answer 292 
Solving for Check Digits in Parallel 292 

Table of Contents I xiii 



Completing the Solution Map with the First Digit 294 
Finding the Correct Séquence 295 

Working with Row Data 295 
Pulling It Ail Together 296 
A Few Comments on Development Style 297 

13. Data Structures 299 
Association Lists 299 
Maps 301 
Functions Are Data, Too 303 
Extended Example: /etc/passwd 304 
Extended Example: Numeric Types 307 

First Steps 309 
Completed Code 311 

Taking Advantage of Functions as Data 317 
Turning Différence Lists into a Proper Library 318 
Lists, Différence Lists, and Monoids 320 

General-Purpose Séquences 322 

14. Monads 325 
325 

Revisiting Earlier Code Examples 325 
Maybe Chaining 325 
Implicit State 326 

Looking for Shared Patterns 327 
The Monad Typeclass 329 
And Now, a Jargon Moment 330 
Using a New Monad: Show Your Work! 331 

Information Hiding 331 
Controlled Escape 332 
Leaving a Trace 332 
Using the Logger Monad 333 

Mixing Pure and Monadic Code 334 
Putting a Few Misconceptions to Rest 336 
Building the Logger Monad 336 

Sequential Logging, Not Sequential Evaluation 337 
The Writer Monad 337 

The Maybe Monad 338 
Executing the Maybe Monad 338 
Maybe at Work, and Good API Design 338 

The List Monad 340 
Understanding the List Monad 342 
Putting the List Monad to Work 343 

xiv | Table of Contents 



Desugaring of do Blocks 344 
Monads as a Programmable Semicolon 345 
Why Go Sugar-Free? 346 

The State Monad 346 
Almost a State Monad 347 
Reading and Modifying the State 348 
Will the Real State Monad Please Stand Up? 348 
Using the State Monad: Generating Random Values 349 
A First Attempt at Purity 350 
Random Values in the State Monad 351 
Running the State Monad 352 
What About a Bit More State? 352 

Monads and Functors 354 
Another Way of Looking at Monads 354 

The Monad Laws and Good Coding Style 355 

15. Programming with Monads 359 
Golfing Practice: Association Lists 359 
Generalized Lifting 360 
Looking for Alternatives 362 

The Name mplus Does Not Imply Addition 364 
Rules for Working with MonadPlus 364 
Failing Safely with MonadPlus 364 

Adventures in Hiding the Plumbing 365 
Supplying Random Numbers 368 
Another Round of Golf 369 

Separating Interface from Implementation 369 
Multiparameter Typeclasses 370 
Functional Dependencies 370 
Rounding Out Our Module 371 
Programming to a Monad's Interface 372 

The Reader Monad 373 
A Return to Automated Deriving 374 
Hiding the IO Monad 375 

Using a newtype 376 
Designing for Unexpected Uses 377 
Using Typeclasses 378 
Isolation and Testing 379 
The Writer Monad and Lists 380 
Arbitrary I/O Revisited 381 

16. Using Parsec 383 
First Steps with Parsec: Simple CSV Parsing 383 

Table of Contents I xv 



The sepBy and endBy Combinators 386 
Choices and Errors 387 

Lookahead 3o9 
Error Handling 390 

Extended Example: Füll CSV Parser 391 
Parsec and MonadPlus 393 
Parsing a URL-Encoded Query String 393 
Supplanting Regulär Expressions for Casual Parsing 395 
Parsing Without Variables 395 
Applicative Functors for Parsing 395 
Applicative Parsing by Example 396 
Parsing JSON Data 398 
Parsing a HTTP Request 4 °1 

Backtracking and Its Discontents 402 
Parsing Headers 402 

17. Interfacing with C: The FFI 405 
Foreign Language Bindings: The Basics 406 

Be Careful of Side Effects 407 
AHigh-LevelWrapper 408 

Regulär Expressions for Haskell: A Binding for PCRE 409 
Simple Tasks: Using the C Preprocessor 410 
Binding Haskell to C with hsc2hs 411 
Adding Type Safety to PCRE 411 
Binding to Constants 412 
Automating the Binding 413 

Passing String Data Between Haskell and C 414 
Typed Pointers 416 
Memory Management: Let the Garbage Collector Do the Work 417 
A High-Level Interface: Marshaling Data 418 
Marshaling ByteStrings 419 
Allocating Local C Data: The Storable Class 419 
Putting It Ail Together 420 

Matching on Strings 422 
Extracting Information About the Pattern 423 
Pattern Matching with Substrings 424 
The Real Deal: Compiling and Matching Regulär Expressions 426 

18. Monad Transformers 429 
Motivation: Boilerplate Avoidance 429 
A Simple Monad Transformer Example 430 
Common Patterns in Monads and Monad Transformers 431 
Stacking Multiple Monad Transformers 433 

xvi I Table of Contents 



Hiding Our Work 435 
Moving Down the Stack 436 

When Explicit Lifting Is Necessary 437 
Understanding Monad Transformers by Building One 438 

Creating a Monad Transformer 439 
More Typeclass Instances 440 
Replacing the Parse Type with a Monad Stack 440 

Transformer Stacking Order Is Important 441 
Putting Monads and Monad Transformers into Perspective 443 

Interférence with Pure Code 443 
Overdetermined Ordering 444 
Runtime Overhead 444 
Unwieldy Interfaces 444 
Pulling It All Together 445 

19. Error Handling 447 
Error Handling with Data Types 447 

Use of Maybe 448 
Use of Either 452 

Exceptions 454 
First Steps with Exceptions 454 
Laziness and Exception Handling 455 
Using handle 456 
Sélective Handling of Exceptions 456 
I/O Exceptions 457 
Throwing Exceptions 459 
Dynamic Exceptions 459 

Error Handling in Monads 462 
A Tiny Parsing Framework 463 

20. Systems Programming in Haskell 467 
Running External Programs 467 
Directory and File Information 468 
Program Termination 469 
Dates and Times 470 

ClockTime and CalendarTime 470 
File Modification Times 475 

Extended Example: Piping 476 
Using Pipes for Redirection 477 
Better Piping 483 
Final Words on Pipes 491 

Table of Contents | xvii 



21. Using Databases 493 
OverviewofHDBC 493 
Installing HDBC and Drivers 494 
Connecting to Databases 495 
Transactions 495 
Simple Queries 496 
SqlValue 497 
Query Parameters 497 
Prepared Statements 498 
Reading Results 499 

Reading with Statements 501 
Lazy Reading 501 

Database Metadata 502 
Error Handling 503 

22. Extended Example: Web Client Programming 505 
Basic Types 506 
The Database 506 
The Parser 510 
Downloading 513 
Main Program 515 

23. GUI Programming with gtk2hs 517 
Installing gtk2hs 517 
Overview of the GTK+ Stack 517 
User Interface Design with Glade 518 

Glade Concepts 518 
Event-Driven Programming 519 
Initializing the GUI 520 
The Add Podcast Window 524 
Long-Running Tasks 525 
Using Cabal 528 

24. Concurrent and Multicore Programming 531 
Defining Concurrency and Parallelism 531 
Concurrent Programming with Threads 532 

Threads Are Nondeterministic 532 
Hiding Latency 532 

Simple Communication Between Threads 533 
The Main Thread and Waiting for Other Threads 534 

Safely Modifying an MVar 536 
Safe Resource Management: A Good Idea, and Easy Besides 536 
Finding the Status of a Thread 537 

xviii | Table of Contents 



Writing Tighter Code 
Communicating over Channels 
Useful Things to Know About 

MVar and Chan Are Nonstrict 
Chan Is Unbounded 

Shared-State Concurrency Is Still Hard 
Deadlock 
Starvation 
Is There Any Hope? 

Using Multiple Cores with GHC 
Runtime Options 
Finding the Number of Available Cores from Haskell 
Choosing the Right Runtime 

Parallel Programming in Haskell 
Normal Form and Head Normal Form 
Sequential Sorting 
Transforming Our Code into Parallel Code 
Knowing What to Evaluate in Parallel 
What Promises Does par Make? 
Running Our Code and Measuring Performance 
Tuning for Performance 

Parallel Stratégies and MapReduce 
Separating Algorithm from Evaluation 
Separating Algorithm from Strategy 
Writing a Simple MapReduce Definition 
MapReduce and Stratégies 
Sizing Work Appropriately 
Efficiently Finding Line-Aligned Chunks 
Counting Lines 
Finding the Most Populär URLs 
Conclusions 

25. Profiling and Optimization 
Profiling Haskell Programs 

Collecting Runtime Statistics 
Time Profiling 
Space Profiling 

Controlling Evaluation 
Strictness and Tail Recursion 
Adding Strictness 

Understanding Core 
Advanced Techniques: Fusion 

Tuning the Generated Assembly 

538 
539 
539 
539 
540 
540 
541 
541 
542 
542 
543 
543 
544 
544 
545 
545 
545 
546 
547 
547 
550 
551 
552 
554 
554 
555 
555 
557 
558 
559 
560 

561 
561 
562 
563 
566 
570 
571 
572 
575 
578 
579 

Table of Contents | xix 



Conclusions 580 

26. Advanced Library Design: Building a Bloom Filter 581 
Introducing the Bloom Filter 581 
Use Cases and Package Layout 582 
Basic Design 583 

Unboxing, Lifting, and Bottom 583 
The ST Monad 584 
Designing an API for Qualified Import 585 
Creating a Mutable Bloom Filter 586 
The Immutable API 587 
Creating a Friendly Interface 588 

Re-Exporting Names for Convenience 589 
Hashing Values 589 
Turning Two Hashes into Many 593 
Implementing the Easy Création Function 593 

Creating a Cabal Package 595 
Dealing with Différent Build Setups 596 
Compilation Options and Interfacing to C 598 

Testing with QuickCheck 599 
Polymorphie Testing 600 
Writing Arbitrary Instances for ByteStrings 601 
Are Suggested Sizes Correct? 602 

Performance Analysis and Tuning 604 
Profile-Driven Performance Tuning 605 

27. SocketsandSyslog 611 
Basic Networking 611 
Communicating with UDP 611 

UDP Client Example: syslog 612 
UDP Syslog Server 615 

Communicating with TCP 616 
Handling Multiple TCP Streams 616 
TCP Syslog Server 617 
TCP Syslog Client 619 

28. Software Transactional Memory 623 
The Basics 623 
Some Simple Examples 624 
STM and Safety 626 
Retrying a Transaction 626 

What Happens When We Retry? 628 
Choosing Between Alternatives 628 

xx I Table of Contents 



Using Higher Order Code with Transactions 628 
I/O and STM 629 
Communication Between Threads 630 
A Concurrent Web Link Checker 631 

Checking a Link 633 
Worker Threads 634 
Finding Links 635 
Command-Line Parsing 636 
Pattern Guards 637 

Practical Aspects of STM 638 
Getting Comfortable with Giving Up Control 638 
Using Invariants 639 

A. Installing GHCand Haskell Libraries 641 

B. Characters, Strings, and Escaping Rules 649 

Index 655 

Table of Contents | xxi 


	004767665 [TOC]
	Inhalt
	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15



