Contents

Preface	 •••	 •••		•••			•	•••	 . xi
List of Figures	 •••	 	••••	•••	•••			•••	 . xxiii
List of Photographs	 	 		•••		• • •		••	 . xxv

Part I

Simple Things:

How Structures of Human Cognition Reveal Themselves in Mathematics

1	A Tas	te of Things to Come	3
	1.1	Simplest possible example	3
	1.2	Switches and flows: some questions for cognitive	
		psychologists	6
	1.3	Choiceless computation	7
		1.3.1 Polynomial time complexity	7
		1.3.2 Choiceless algorithms	9
	1.4	Analytic functions and the inevitability of choice.	10
	1.5	You name it—we have it	12
	1.6	Why are certain repetitive activities more	
		pleasurable than others?	15
	1.7	What lies ahead?	18
2	What	You See Is What You Get	23
	2.1	The starting point: mirrors and reflections	23
	2.2	Image processing in humans	25
	2.3	A small triumph of visualization: Coxeter's proof	
		of Euler's Theorem	28
	2.4	Mathematics: interiorization and reproduction	30
	2.5	How to draw an icosahedron on a blackboard	33
	2.6	Self-explanatory diagrams	38
	-		30

3	The	Wing of the Hummingbird 43
	3.1	Parsing
	3.2	Number sense and grammar 46
	3.3	What about music?
	3.4	Palindromes and mirrors 49
	3.5	Parsing, continued: do brackets matter? 52
	3.6	The mathematics of bracketing and Catalan
		numbers
	3.7	The mystery of Hipparchus 57
4	Sim	ole Things
	4.1	Parables and fables
	4.2	Cryptomorphism
		4.2.1 Israel Gelfand on languages and
		1
		4.2.2 Isadore Singer on the compression of
		4.2.3 Cognitive nature of cryptomorphism 69
	4.3	Some mathlets: order, numerals, symmetry 70
		4.3.1 Order and numerals
		4.3.2 Ordered/unordered pairs
		4.3.3 Processes, sequences, time
		4.3.4 Symmetry 74
	4.4	The line of sight and convexity
	4.5	Convexity and the sensorimotor intuition
	4.6	Mental arithmetic and the method of Radzivilovsky 81
	4.7	Not-so-simple arithmetic: "named" numbers 82
5	Infin	ity and Beyond
	5.1	Some visual images of infinity
	5.2	From here to infinity
	5.3	The Sand Reckoner and potential infinity 97
	5.4	Achilles and the Tortoise 100
	5.5	The vanishing point 103
	5.6	How humans manage to lose to insects in mind
		games 106
	5.7	The nightmare of infinitely many (or just many)
		dimensions 109
6	Enca	psulation of Actual Infinity 117
	6.1	Reification and encapsulation 117
	6.2	From potential to actual infinity
	~. m	6.2.1 Balls, bins, and the Axiom of
		Extensionality
		6.2.2 Following Cantor's footsteps
		62.3 The art of encapsulation 123
		6.2.4 Can one live without actual infinity?

	6.3	6.2.5 Finite differences and asymptotic at zero . Proofs by handwaving	125 126				
Pa Ma	rt II athema	atical Reasoning					
7	Wha	t Is It That Makes a Mathematician?	135				
	7.1	Flies and elephants	135				
	7.2	The inner dog	138				
	7.3	Reification on purpose	140				
	7.4	Plato vs. Sfard	143				
	7.5	Multiple representation and de-encapsulation	143				
		7.5.1 Rearrangement of brackets	147				
	7.6	The Economy Principle	148				
	7.7	Hidden symmetries	151				
	7.8	The game without rules	153				
	7.9	Winning ways	155				
	7.10	A dozen problems	160				
		7.10.1 Caveats	160				
		7.10.2 Problems	161				
		7.10.3 Comments	163				
8	"Kol	mogorov's Logic" and Heuristic Reasoning	169				
	8.1	Hedy Lamarr: a legend from the golden era of					
		moving pictures	169				
	8.2	Mathematics of frequency hopping	171				
	8.3	"Kolmogorov's Logic" and heuristic reasoning	173				
	8.4	The triumph of the heuristic approach:					
		Kolmogorov's "5/3" law	178				
	8.5	Morals drawn from the three stories	181				
	8.6	Women in mathematics	181				
9	Reco	overy vs. Discovery	187				
	9.1	Memorize or rederive?	187				
	9.2	Heron's formula	189				
	9.3	Limitations of recovery procedures	190				
	9.4	Metatheory	192				
10	The Line of Sight						
	10.1	The Post Office Conjecture	197				
	10.2	Solutions	202				
	10.3	Some philosophy	205				
	10.4	But is the Post Office Conjecture true?	207				
	10.5	Keystones, arches, and cupolas	209				
	10.6	Military applications	212				

Part III History and Philosophy

11	The U	Ultimate Replicating Machines	217
	11.1	Mathematics: reproduction, transmission, error	
		correction	219
	11.2	The Babel of mathematics	220
	11.3	The nature and role of mathematical memes	222
	11.4	Mathematics and Origami	228
	11.5	Copying by squares	231
	11.6	Some stumbling blocks	235
		11.6.1 Natural language and music	235
		11.6.2 Mathematics and the natural sciences	235
		11.6.3 Genotype and phenotype	236
		11.6.4 Algorithms of the brain	236
		11.6.5 Evolution of mathematics	237
	11.7	Mathematics as a proselytizing cult	238
	11.8	Fancy being Euclid?	240
			-
12	The V	Vivisection of the Cheshire Cat	247
	12.1	A few words on philosophy	247
	12.2	The little green men from Mars	251
	12.3	Better Than Life	252
	12.4	The vivisection of the Cheshire Cat	253
	12.5	A million dollar question	256
	12.6	The boring, boring theory of snooks	260
		12.6.1 Why are some mathematical objects more	000
		important than others?	260
		12.6.2 Are there many finite snooks around?	262
		12.6.3 Snooks, snowflakes, Kepler, and Palty	204
		12.6.4 Hopf algebras	207
		12.6.5 Back to ontological commitment	270
	12.7	Zilber's Field	271
	12.8	Explication of (in)explicitness	213
	12.9	Testing times	270
Ref	ferenc	es	281
Ind	lex		307