Contents

1.	The	nature of things	1
	1.1	Nature does not conform to our expectations	3
	1.2	Explanation versus description	5
	1.3	Physicists keep trying to explain	
		the "unexplained"	6
		Notes	7
2.	Mat	ter and motion in space and time	11
	2.1	Bernhard Riemann speculates on the empirical nature	
		of geometry	11
	2.2	The work of physics	13
	2.3	Newton's unvisualizable description	
		of Nature's action	17
	2.4	Maxwell adds <i>fields</i> to the list of things that are	19
	2.5	Maxwell's impact (1): the invariant speed of light	21
	2.6	Einstein exposes prejudices about space and time	23
	2.7	A digression on $E = mc^2$	25
	2.8	Minkowski stretches a new canvas for the depiction	
		of Nature	27
	2.9	The evolving universe as a tapestry of world-lines in	
		space-time	29
	2.10	Einstein says the laws of motion must not depend upon	
		ourselves	31
	2.11	A new way of thinking about the laws of motion	33
	2.12	An "explanation" for gravity	34
	2.13	Weyl's attempt to explain electromagnetism	37
	2.14	Reflections on Riemann's idea of geometry	
		as physics	40
		Notes	41

3.	Real	ity large and small	52
	3.1	Digression on the quality of knowledge in	
		a universe of atoms	52
	3.2	Maxwell's impact (2): the mismatch between particles	
		and fields	56
	3.3	Planck postulates a relation between energy	
		and frequency	57
	3.4	The matter wave of de Broglie and Schrödinger	62
	3.5	Meanwhile, back in Copenhagen	63
	3.6	Max Born's statistical interpretation	64
	3.7	The quantum microscopic world	
		view: Step 1	67
	3.8	Schrödinger's cat	70
	3.9	Waves versus particles	74
	3.10	About waves	75
	3.11	The "uncertainty principle"	79
	3.12	Amplitudes and phases	82
	3.13	Quantum phase as a new "dimension"	
		of Nature, and Weyl's triumph	85
	3.14	Electromagnetism "explained"	89
		Notes	91
4.	The	language of Nature	102
	4.1	Mathematical things	102
	4.2	Schrödinger's wave as a set of vector components	108
	4.3	The quantum state vector is not of this world	112
	4.4	A new perspective on uncertainty and complementarity	114
	4.5	More structure for Schrödinger's wave:	
		"Intrinsic spin"	117
	4.6	Spin is not enough	121
	4.7	The positron intrudes	122
	4.8	Anti-matter	124
		Notes	126

Alle,

5.	More is different	132
	5.1 The quantum microscopic world view: Step 2	132
	5.2 Systems with multiple excitations	133
	5.3 Quantum field theory	135
	5.4 Guessing equations of motion	137
	5.5 "Statistics"	139
	5.6 About detectors	143
	5.7 The disturbing argument of Einstein, Podolsky,	
	and Rosen (EPR)	144
	5.8 Bell's inequality	148
	5.9 The entangled universe	151
	Notes	152
6.	The machinery of particle discovery	157
	6.1 Maxwell's impact (3): atomism undermined	158
	6.2 Particle spectroscopy	161
	6.3 The big machines	163
	6.4 Neutrons and neutrinos	165
	6.5 More internal "dimensions"? Isospin	166
	6.6 Mesons and the range of forces	169
	6.7 If isospin were "real"	171
	6.8 Symmetries (1): conservation laws	174
	6.9 Symmetries (2): groups	177
	6.10 Symmetries (3): group representations	181
	6.11 The game of particle discovery	183
	6.12 Unitarity and renormalization	184
	6.13 Spontaneous symmetry breaking	187
	Notes	190
7.	The Standard Model	197
	7.1 Leptons	200
	7.2 Quarks	203
	7.3 Forces	209
	7.4 Electromagnetism and QED	210
	7.5 The strong force and QCD	214

7	7.6 The weak force (but no QWD)	221
7	7.7 Electro-weak unification	224
7	7.8 Parity violation	226
7	7.9 CP violation	227
7.	10 The problem of mass	229
7.	11 A digression on superconductivity	229
7.	12 The Higgs mechanism	231
7.	13 The Higgs boson(s)	234
	Notes	236
8. Tł	ne proliferation of matter	248
8	8.1 An abbreviated history of creation	248
8	3.2 Nucleons and nuclei	252
8	8.3 The periodic table of elements	255
	Notes	259
Ep	oilogue: Beneath reality	262
A	ppendix: How quantum mechanics	
is	used	266
	Notes	273
Re	eferences	275
In	dex	282