Contents

Preface xxi

2

PART I Introduction

1 Introduction 3

1.1	MATHEMATICS IN ECONOMIC THEORY 3
1.2	MODELS OF CONSUMER CHOICE 5
	Two-Dimensional Model of Consumer Choice 5
	Multidimensional Model of Consumer Choice 9
One	-Variable Calculus: Foundations 10
2.1	FUNCTIONS ON R¹ 10
	Vocabulary of Functions 10
	Polynomials 11
	Graphs 12
	Increasing and Decreasing Functions 12 Domain 14
	Interval Notation 15
2.2	
2.2	
	The Slope of a Line in the Plane 16 The Equation of a Line 19
	Polynomials of Degree One Have Linear Graphs 19
	Interpreting the Slope of a Linear Function 20
2.3	· - ·
2.4	COMPUTING DERIVATIVES 25
	Rules for Computing Derivatives 27

Simon, Carl P. Mathematics for economists [2010] ٧

	2.5	DIFFERENTIABILITY AND CONTINUITY29A Nondifferentiable Function30Continuous Functions31Continuously Differentiable Functions32
	2.6	HIGHER-ORDER DERIVATIVES 33
	2.7	APPROXIMATION BY DIFFERENTIALS 34
3	One	-Variable Calculus: Applications 39
	3.1	USING THE FIRST DERIVATIVE FOR GRAPHING 39 Positive Derivative Implies Increasing Function 39 Using First Derivatives to Sketch Graphs 41
	3.2	SECOND DERIVATIVES AND CONVEXITY 43
	3.3	GRAPHING RATIONAL FUNCTIONS 47 Hints for Graphing 48
	3.4	TAILS AND HORIZONTAL ASYMPTOTES48Tails of Polynomials48Horizontal Asymptotes of Rational Functions49
	3.5	 MAXIMA AND MINIMA 51 Local Maxima and Minima on the Boundary and in the Interior 51 Second Order Conditions 53 Global Maxima and Minima 55 Functions with Only One Critical Point 55 Functions with Nowhere-Zero Second Derivatives 56 Functions Whose Domains Are Closed Finite Intervals 56
	3.6	APPLICATIONS TO ECONOMICS58Production Functions58Cost Functions59Revenue and Profit Functions62Demand Functions and Elasticity64
4	One	-Variable Calculus: Chain Rule 70
	4.1	COMPOSITE FUNCTIONS AND THE CHAIN RULE70Composite Functions70Differentiating Composite Functions: The Chain Rule72
	4.2	INVERSE FUNCTIONS AND THEIR DERIVATIVES75Definition and Examples of the Inverse of a Function75The Derivative of the Inverse Function79The Derivative of $x^{m/n}$ 80

5	Exp	onents and Logarithms 82
	5.1	EXPONENTIAL FUNCTIONS 82
	5.2	THE NUMBER e 85
	5.3	LOGARITHMS 88 Base 10 Logarithms 88 Base e Logarithms 90
	5.4	PROPERTIES OF EXP AND LOG 91
	5.5	DERIVATIVES OF EXP AND LOG 93
	5.6	APPLICATIONS97Present Value97Annuities98Optimal Holding Time99Logarithmic Derivative100

PART II Linear Algebra

6 Introduction to Linear Algebra 107 6.1 LINEAR SYSTEMS 107 6.2 EXAMPLES OF LINEAR MODELS 108 Example 1: Tax Benefits of Charitable Contributions 108 **Example 2: Linear Models of Production** 110 Example 3: Markov Models of Employment 113 Example 4: IS-LM Analysis 115 Example 5: Investment and Arbitrage 117 7 Systems of Linear Equations 122 7.1 GAUSSIAN AND GAUSS-JORDAN ELIMINATION 122 Substitution 123 Elimination of Variables 125 7.2 ELEMENTARY ROW OPERATIONS 129 7.3 SYSTEMS WITH MANY OR NO SOLUTIONS 134 7.4 **RANK**—THE FUNDAMENTAL CRITERION 142 Application to Portfolio Theory 147 7.5 THE LINEAR IMPLICIT FUNCTION THEOREM 150

9

10

8 Matrix Algebra 153

8.1	MATRIX ALGEBRA153Addition153Subtraction154Scalar Multiplication155Matrix Multiplication155Laws of Matrix Algebra156Transpose157Systems of Equations in Matrix Form158
8.2	SPECIAL KINDS OF MATRICES 160
8.3	ELEMENTARY MATRICES 162
8.4	ALGEBRA OF SQUARE MATRICES 165
8.5	INPUT-OUTPUT MATRICES 174 Proof of Theorem 8.13 178
8.6	PARTITIONED MATRICES (optional) 180
8.7	DECOMPOSING MATRICES (optional) 183 Mathematical Induction 185 Including Row Interchanges 185
Dete	erminants: An Overview 188
9.1	THE DETERMINANT OF A MATRIX189Defining the Determinant189Computing the Determinant191Main Property of the Determinant192
9.2	USES OF THE DETERMINANT 194
9.3	IS-LM ANALYSIS VIA CRAMER'S RULE 197
Eucl	idean Spaces 199
10.1	POINTS AND VECTORS IN EUCLIDEAN SPACE199The Real Line199The Plane199Three Dimensions and More201
10.2	VECTORS 202
10.3	THE ALGEBRA OF VECTORS 205 Addition and Subtraction 205 Scalar Multiplication 207
10.4	LENGTH AND INNER PRODUCT IN Rⁿ 209 Length and Distance 209

The Inner Product 213

- 10.5 LINES 222
- 10.6PLANES226Parametric Equations226Nonparametric Equations228Hyperplanes230
- 10.7 ECONOMIC APPLICATIONS 232 Budget Sets in Commodity Space 232 Input Space 233 Probability Simplex 233 The Investment Model 234 IS-LM Analysis 234
- 11 Linear Independence 237
 - 11.1 LINEAR INDEPENDENCE 237 Definition 238 Checking Linear Independence 241
 - 11.2 SPANNING SETS 244
 - 11.3 BASIS AND DIMENSION IN **R**ⁿ 247 Dimension 249
 - 11.4 EPILOGUE 249

PART III Calculus of Several Variables

12	Limit	ts and Open Sets 253	
	12.1	SEQUENCES OF REAL NUMBERSDefinition253Limit of a Sequence254Algebraic Properties of Limits256	253
	12.2	SEQUENCES IN R^m 260	
	12.3	OPEN SETS 264 Interior of a Set 267	
	12.4	CLOSED SETS267Closure of a Set268Boundary of a Set269	
	12.5	COMPACT SETS 270	
	12.6	EPILOGUE 272	

13	Funct	tions of Several Variables 273
	13.1	FUNCTIONS BETWEEN EUCLIDEAN SPACES273Functions from \mathbf{R}^n to \mathbf{R} 274Functions from \mathbf{R}^k to \mathbf{R}^m 275
	13.2	GEOMETRIC REPRESENTATION OF FUNCTIONS277Graphs of Functions of Two Variables277Level Curves280Drawing Graphs from Level Sets281Planar Level Sets in Economics282Representing Functions from \mathbf{R}^k to \mathbf{R}^1 for $k > 2$ 283Images of Functions from \mathbf{R}^1 to \mathbf{R}^m 285
	13.3	SPECIAL KINDS OF FUNCTIONS287Linear Functions on \mathbb{R}^k 287Quadratic Forms289Matrix Representation of Quadratic Forms290Polynomials291
	13.4	CONTINUOUS FUNCTIONS 293
	13.5	VOCABULARY OF FUNCTIONS295Onto Functions and One-to-One Functions297Inverse Functions297Composition of Functions298
14	Calcu	llus of Several Variables 300
	14.1	DEFINITIONS AND EXAMPLES 300
	14.2	ECONOMIC INTERPRETATION 302 Marginal Products 302 Elasticity 304
	14.3	GEOMETRIC INTERPRETATION 305
	14.4	THE TOTAL DERIVATIVE307Geometric Interpretation308Linear Approximation310Functions of More than Two Variables311
	14.5	THE CHAIN RULE313Curves313Tangent Vector to a Curve314Differentiating along a Curve: The Chain Rule316
	14.6	DIRECTIONAL DERIVATIVES AND GRADIENTS 319 Directional Derivatives 319 The Gradient Vector 320

	14.7	EXPLICIT FUNCTIONS FROM Rn TO Rm323Approximation by Differentials324The Chain Rule326
	14.8	HIGHER-ORDER DERIVATIVES328Continuously Differentiable Functions328Second Order Derivatives and Hessians329Young's Theorem330Higher-Order Derivatives331An Economic Application331
	14.9	Epilogue 333
5	Impli	cit Functions and Their Derivatives 334
	15.1	IMPLICIT FUNCTIONS334Examples334The Implicit Function Theorem for \mathbf{R}^2 337Several Exogenous Variables in an ImplicitFunctionFunction341
	15.2	LEVEL CURVES AND THEIR TANGENTS 342 Geometric Interpretation of the Implicit Function Theorem 342 Proof Sketch 344 Relationship to the Gradient 345 Tangent to the Level Set Using Differentials 347 Level Sets of Functions of Several Variables 348
	15.3	SYSTEMS OF IMPLICIT FUNCTIONS350Linear Systems351Nonlinear Systems353
	15.4	APPLICATION: COMPARATIVE STATICS 360
	15.5	THE INVERSE FUNCTION THEOREM (optional) 364
	15.6	APPLICATION: SIMPSON'S PARADOX 368

1

PART IV Optimization

16	Quadratic Forms a	nd Definite Matrices	375
----	-------------------	----------------------	-----

- 16.1 QUADRATIC FORMS 375
- 16.2 DEFINITENESS OF QUADRATIC FORMS 376 Definite Symmetric Matrices 379

Application: Second Order Conditions and
Convexity 379Application: Conic Sections 380Principal Minors of a Matrix 381The Definiteness of Diagonal Matrices 383The Definiteness of 2 × 2 Matrices 384

- 16.3 LINEAR CONSTRAINTS AND BORDERED MATRICES 386
 Definiteness and Optimality 386
 One Constraint 390
 Other Approaches 391
- 16.4 APPENDIX 393

17 Unconstrained Optimization 396

- 17.1 DEFINITIONS 396
- 17.2 FIRST ORDER CONDITIONS 397
- 17.3SECOND ORDER CONDITIONS398Sufficient Conditions398Necessary Conditions401
- 17.4 GLOBAL MAXIMA AND MINIMA 402 Global Maxima of Concave Functions 403
- 17.5 ECONOMIC APPLICATIONS 404
 Profit-Maximizing Firm 405
 Discriminating Monopolist 405
 Least Squares Analysis 407

18 Constrained Optimization I: First Order Conditions 411

- 18.1 EXAMPLES 412
- 18.2 EQUALITY CONSTRAINTS 413
 Two Variables and One Equality Constraint 413
 Several Equality Constraints 420
- 18.3 INEQUALITY CONSTRAINTS 424
 One Inequality Constraint 424
 Several Inequality Constraints 430
- 18.4 MIXED CONSTRAINTS 434
- 18.5 CONSTRAINED MINIMIZATION PROBLEMS 436
- 18.6 KUHN-TUCKER FORMULATION 439

	18.7	EXAMPLES AND APPLICATIONS442Application: A Sales-Maximizing Firm with Advertising442Application: The Averch-Johnson Effect443One More Worked Example445
19	Cons	trained Optimization II 448
	19.1	THE MEANING OF THE MULTIPLIER448One Equality Constraint449Several Equality Constraints450Inequality Constraints451Interpreting the Multiplier452
	19.2	ENVELOPE THEOREMS453Unconstrained Problems453Constrained Problems455
	19.3	SECOND ORDER CONDITIONS457Constrained Maximization Problems459Minimization Problems463Inequality Constraints466Alternative Approaches to the Bordered Hessian Condition467
		Necessary Second Order Conditions 468
	19.4	SMOOTH DEPENDENCE ON THE PARAMETERS 469
	19.5	CONSTRAINT QUALIFICATIONS 472
	19.6	PROOFS OF FIRST ORDER CONDITIONS478Proof of Theorems 18.1 and 18.2: Equality Constraints478Proof of Theorems 18.3 and 18.4: Inequality Constraints480
20	Home	ogeneous and Homothetic Functions 483
	20.1	HOMOGENEOUS FUNCTIONS483Definition and Examples483Homogeneous Functions in Economics485Properties of Homogeneous Functions487A Calculus Criterion for Homogeneity491Economic Applications of Euler's Theorem492
	20.2	HOMOGENIZING A FUNCTION493Economic Applications of Homogenization495
	20.3	CARDINAL VERSUS ORDINAL UTILITY 496

	20.4	HOMOTHETIC FUNCTIONS 500 Motivation and Definition 500 Characterizing Homothetic Functions 501
21	Conc	ave and Quasiconcave Functions 505
	21.1	CONCAVE AND CONVEX FUNCTIONS 505 Calculus Criteria for Concavity 509
	21.2	PROPERTIES OF CONCAVE FUNCTIONS 517 Concave Functions in Economics 521
	21.3	QUASICONCAVE AND QUASICONVEX FUNCTIONS 522 Calculus Criteria 525
	21.4	PSEUDOCONCAVE FUNCTIONS 527
	21.5	CONCAVE PROGRAMMING532Unconstrained Problems532Constrained Problems532Saddle Point Approach534
	21.6	APPENDIX537Proof of the Sufficiency Test of Theorem 21.14537Proof of Theorem 21.15538Proof of Theorem 21.17540Proof of Theorem 21.20541
22	Econ	omic Applications 544
	22.1	UTILITY AND DEMAND 544 Utility Maximization 544 The Demand Function 547 The Indirect Utility Function 551 The Expenditure and Compensated Demand Functions 552 The Slutsky Equation 555
	22.2	ECONOMIC APPLICATION: PROFIT AND COST557The Profit-Maximizing Firm557The Cost Function560
	22.3	PARETO OPTIMA565Necessary Conditions for a Pareto Optimum566Sufficient Conditions for a Pareto Optimum567
	22.4	THE FUNDAMENTAL WELFARE THEOREMS569Competitive Equilibrium572Fundamental Theorems of Welfare Economics573
		A MAXIMUM ANOTOMIS OF WORLD'S LAURONINGS J/J

PART V Eigenvalues and Dynamics

23	Eigen	values and Eigenvectors 579
	23.1	DEFINITIONS AND EXAMPLES 579
	23.2	SOLVING LINEAR DIFFERENCE EQUATIONS585One-Dimensional Equations585Two-Dimensional Systems: An Example586Conic Sections587The Leslie Population Model588Abstract Two-Dimensional Systems590k-Dimensional Systems591An Alternative Approach: The Powers of a Matrix594Stability of Equilibria596
	23.3	PROPERTIES OF EIGENVALUES 597 Trace as Sum of the Eigenvalues 599
	23.4	REPEATED EIGENVALUES6012 × 2 Nondiagonalizable Matrices6013 × 3 Nondiagonalizable Matrices604Solving Nondiagonalizable Difference Equations606
	23.5	COMPLEX EIGENVALUES AND EIGENVECTORS609Diagonalizing Matrices with Complex Eigenvalues609Linear Difference Equations with Complex609Eigenvalues611Higher Dimensions614
	23.6	MARKOV PROCESSES 615
	23.7	SYMMETRIC MATRICES 620
	23.8	DEFINITENESS OF QUADRATIC FORMS 626
	23.9	APPENDIX629Proof of Theorem 23.5629Proof of Theorem 23.9630
24	Ordin	ary Differential Equations: Scalar Equations 633
	24.1	DEFINITION AND EXAMPLES 633
	24.2	EXPLICIT SOLUTIONS 639 Linear First Order Equations 639 Separable Equations 641
	24.3	LINEAR SECOND ORDER EQUATIONS 647 Introduction 647

τ.

		Equation 648
		Real and Equal Roots of the Characteristic Equation 650 Complex Roots of the Characteristic Equation 651 The Motion of a Spring 653 Nonhomogeneous Second Order Equations 654
	24.4	EXISTENCE OF SOLUTIONS 657 The Fundamental Existence and Uniqueness Theorem 657 Direction Fields 659
	24.5	PHASE PORTRAITS AND EQUILIBRIA ON R¹ 666 Drawing Phase Portraits 666 Stability of Equilibria on the Line 668
	24.6	APPENDIX: APPLICATIONS670Indirect Money Metric Utility Functions671Converse of Euler's Theorem672
25	Ordin	ary Differential Equations: Systems of
	Equa	
	25.1	PLANAR SYSTEMS: AN INTRODUCTION674Coupled Systems of Differential Equations674Vocabulary676Existence and Uniqueness677
	25.2	LINEAR SYSTEMS VIA EIGENVALUES 678 Distinct Real Eigenvalues 678 Complex Eigenvalues 680 Multiple Real Eigenvalues 681
	25.3	SOLVING LINEAR SYSTEMS BY SUBSTITUTION 682
	25.4	STEADY STATES AND THEIR STABILITY684Stability of Linear Systems via Eigenvalues686Stability of Nonlinear Systems687
	25.5	PHASE PORTRAITS OF PLANAR SYSTEMS689Vector Fields689Phase Portraits: Linear Systems692Phase Portraits: Nonlinear Systems694
	25.6	FIRST INTEGRALS 703 The Predator-Prey System 705 Conservative Mechanical Systems 707
	25.7	LIAPUNOV FUNCTIONS 711
	25.8	APPENDIX: LINEARIZATION 715

PART VI Advanced Linear Algebra

26	Determinants: The Details 719				
	26.1	DEFINITIONS OF THE DETERMINANT 719			
	26.2	PROPERTIES OF THE DETERMINANT 726			
	26.3	USING DETERMINANTS 735 The Adjoint Matrix 736			
	26.4	ECONOMIC APPLICATIONS 739 Supply and Demand 739			
	26.5	APPENDIX743Proof of Theorem 26.1743Proof of Theorem 26.9746Other Approaches to the Determinant747			
27	Subspaces Attached to a Matrix 750				
	27.1	VECTOR SPACES AND SUBSPACES 750 Rⁿ as a Vector Space 750 Subspaces of Rⁿ 751			
	27.2	BASIS AND DIMENSION OF A PROPER SUBSPACE 755			
	27.3	ROW SPACE 757			
	27.4	COLUMN SPACE760Dimension of the Column Space of A760The Role of the Column Space763			
	27.5	NULLSPACE 765 Affine Subspaces 765 Fundamental Theorem of Linear Algebra 767 Conclusion 770			
	27.6	ABSTRACT VECTOR SPACES 771			
	27.7	APPENDIX774Proof of Theorem 27.5774Proof of Theorem 27.10775			
28	Applications of Linear Independence 779				
	28.1	GEOMETRY OF SYSTEMS OF EQUATIONS 779 Two Equations in Two Unknowns 779 Two Equations in Three Unknowns 780 Three Equations in Three Unknowns 782			

28.2	PORTFOLIO ANALYSIS 783
28.3	VOTING PARADOXES 784
	Three Alternatives 785
	Four Alternatives 788
	Consequences of the Existence of Cycles 789
	Other Voting Paradoxes 790
	Rankings of the Quality of Firms 790
28.4	ACTIVITY ANALYSIS: FEASIBILITY 791 Activity Analysis 791
	Simple Linear Models and Productive Matrices 793
28.5	ACTIVITY ANALYSIS: EFFICIENCY 796 Leontief Models 796

PART VII Advanced Analysis

29	Limits and Compact Sets 803				
	29.1	CAUCHY SEQUENCES 803			
	29.2	COMPACT SETS 807			
	29.3	CONNECTED SETS 809			
	29.4	ALTERNATIVE NORMS811Three Norms on R ⁿ 811Equivalent Norms813Norms on Function Spaces815			
	29.5	APPENDIX816Finite Covering Property816Heine-Borel Theorem817Summary820			
30	Calculus of Several Variables II 822				
	30.1	WEIERSTRASS'S AND MEAN VALUE THEOREMS Existence of Global Maxima on Compact Sets 822 Rolle's Theorem and the Mean Value Theorem 824	822		
	30.2	TAYLOR POLYNOMIALS ON R1827Functions of One Variable827			
	30.3	TAYLOR POLYNOMIALS IN Rⁿ 832			
	30.4	SECOND ORDER OPTIMIZATION CONDITIONS Second Order Sufficient Conditions for Optimization 836 Indefinite Hessian 839	836		

Second Order Necessary Conditions for Optimization 840

30.5 CONSTRAINED OPTIMIZATION 841

PART VIII Appendices

A1 Sets, Numbers, and Proofs 847 A1.1 SETS 847

1.1 SETS 847 Vocabulary of Sets 847 Operations with Sets 847

- A1.2 NUMBERS 848 Vocabulary 848 Properties of Addition and Multiplication 849 Least Upper Bound Property 850
- A1.3 PROOFS 851 Direct Proofs 851 Converse and Contrapositive 853 Indirect Proofs 854 Mathematical Induction 855
- A2 Trigonometric Functions 859
 - A2.1 DEFINITIONS OF THE TRIG FUNCTIONS 859
 - A2.2 GRAPHING TRIG FUNCTIONS 863
 - A2.3 THE PYTHAGOREAN THEOREM 865
 - A2.4 EVALUATING TRIGONOMETRIC FUNCTIONS 866
 - A2.5 MULTIANGLE FORMULAS 868
 - A2.6 FUNCTIONS OF REAL NUMBERS 868
 - A2.7 CALCULUS WITH TRIG FUNCTIONS 870
 - A2.8 TAYLOR SERIES 872
 - A2.9 PROOF OF THEOREM A2.3 873
- A3 Complex Numbers 876
 - A3.1 BACKGROUND 876 Definitions 877 Arithmetic Operations 877
 - A3.2 SOLUTIONS OF POLYNOMIAL EQUATIONS 878

- A3.3 GEOMETRIC REPRESENTATION 879
- A3.4 COMPLEX NUMBERS AS EXPONENTS 882
- A3.5 DIFFERENCE EQUATIONS 884

A4 Integral Calculus 887

- A4.1 ANTIDERIVATIVES 887 Integration by Parts 888
- A4.2 THE FUNDAMENTAL THEOREM OF CALCULUS 889
- A4.3 APPLICATIONS 890 Area under a Graph 890 Consumer Surplus 891 Present Value of a Flow 892

A5 Introduction to Probability 894

- A5.1 PROBABILITY OF AN EVENT 894
- A5.2 EXPECTATION AND VARIANCE 895
- A5.3 CONTINUOUS RANDOM VARIABLES 896

A6 Selected Answers 899

Index 921