Contents

1	Mat	hematical Reasoning, Proof Principles, and Logic	1
	1.1	Introduction	1
	1.2	Inference Rules, Deductions, Proof Systems $\mathcal{N}_m^{\Rightarrow}$ and $\mathcal{NG}_m^{\Rightarrow}$	2
	1.3	Adding \land , \lor , \bot ; The Proof Systems $\mathscr{N}_c^{\Rightarrow,\land,\lor,\bot}$ and $\mathscr{N}\mathscr{G}_c^{\Rightarrow,\land,\lor,\bot}$	19
	1.4	Clearing Up Differences Among Rules Involving $\perp \dots \dots$	28
	1.5	De Morgan Laws and Other Rules of Classical Logic	32
	1.6	Formal Versus Informal Proofs; Some Examples	34
	1.7	Truth Values Semantics for Classical Logic	40
	1.8	Kripke Models for Intuitionistic Logic	43
	1.9	Adding Quantifiers; The Proof Systems $\mathcal{N}_c^{\Rightarrow,\wedge,\vee,\forall,\exists,\perp}$,	
		$\mathscr{NG}_{c}^{\Rightarrow,\wedge,\vee,\forall,\exists,\perp}$	45
	1.10	First-Order Theories	58
	1.11	Decision Procedures, Proof Normalization, Counterexamples	64
	1.12	Basics Concepts of Set Theory	70
	1.13	Summary	79
	Prob	lems	82
	Refe	rences	100
2	Dolo	tions Functions Portial Functions	101
4		What is a Eurotion?	101
	2.1	Ordered Deire Cartesian Products Polations ate	101
	2.2	Induction Dringinles on \mathbb{N}	104
	2.5	Composition of Polations and Functions	109
	2.4	Composition of Relations and Functions	117
	2.5	Inverses of Eurotions and Palations	110
	2.0	Inverses of Functions and Relations	121
	2.1	Directions, Surjections, Dijections, Fermulations	124
	2.8	Direct image and inverse image	128
	2.9	Equinumerosity; Pigeonnoie Principie; Schroder–Bernstein	129
	2.10	An Amazing Surjection: Hilbert's Space-Filling Curve	141
	2.11	Strings, Multisets, Indexed Families	143
	2.12	Summary	147

digitalisiert durch: IDS Basel Bern

xi

	Prob	lems	149	
-	Ruit		165	
3	Gra	phs, Part I: Basic Notions	105	
	3.1	Why Graphs? Some Motivations	165	
	3.2	Directed Graphs	16/	
	3.3	Path in Digraphs; Strongly Connected Components	171	
	3.4	Undirected Graphs, Chains, Cycles, Connectivity	182	
	3.5	Trees and Arborescences	189	
	3.6	Minimum (or Maximum) Weight Spanning Trees	194	
	3.7	Summary	200	
	Prob	lems	201	
	Refe	rences	203	
4	Some Counting Problems; Multinomial Coefficients			
	4.1	Counting Permutations and Functions	205	
	4.2	Counting Subsets of Size k; Multinomial Coefficients	208	
	4.3	Some Properties of the Binomial Coefficients	217	
	4.4	The Principle of Inclusion–Exclusion	229	
	4.5	Summary		
	Prob	lems		
	Refe	erences		
5	Part	tial Orders, GCDs, RSA, Lattices	257	
	5.1	Partial Orders	257	
	5.2	Lattices and Tarski's Fixed-Point Theorem	263	
	5.3	Well-Founded Orderings and Complete Induction	269	
	5.4	Unique Prime Factorization in \mathbb{Z} and GCDs	278	
	5.5	Dirichlet's Diophantine Approximation Theorem	288	
	5.6	Equivalence Relations and Partitions		
	5.7	Transitive Closure. Reflexive and Transitive Closure		
	5.8	Fibonacci and Lucas Numbers: Mersenne Primes		
	5.9	Public Key Cryptography: The RSA System	309	
	5.10	Correctness of The RSA System	314	
	511	Algorithms for Computing Powers and Inverses Modulo m	318	
	5.12	Finding Large Primes: Signatures: Safety of RSA	322	
	5 13	Distributive Lattices Boolean Algebras Heyting Algebras	327	
	5.15	Summary	337	
	Droh	Jems	240	
	Dafe			
	Refe	aences	302	
6	Graphs, Part II: More Advanced Notions			
	6.1	Γ -Cycles, Cocycles, Cotrees, Flows, and Tensions	365	
	6.2	Incidence and Adjacency Matrices of a Graph	381	
	6.3	Eulerian and Hamiltonian Cycles	386	
	6.4	Network Flow Problems; The Max-Flow Min-Cut Theorem	391	

6.5	Matchings, Coverings, Bipartite Graphs
6.6	Planar Graphs
6.7	Summary
Pro	blems
Re	ferences
Symbol	Index
Index .	