Contents

Preface	X
PART Foundations	3
1 Introduction	4
1.1 From Darwin to Development	4
1.2 Development; and Evolutionary Changes in Development	9
1.3 Development and the Realm of Multicellularity	11
2 What is Evo-Devo?	15
2.1 Forerunners of Evo-Devo	15
2.2 Nineteenth-Century Comparative Embryology	16
2.3 Diverse Antecedents—1900–1980	19
2.4 Conclusions from History; Messages for the Present	24
2.5 The Advent of Evo-Devo in the 1980s	25
2.6 Broad and Narrow Views of Evo-Devo	27
2.7 Too Few Laws, Too Many Facts?	28
3 Development, Cells and Molecules	34
3.1 Analysing the Developing Organism	34
3.2 Cells and Development: The Basics	37
3.3 Genes: Structure, Expression and Developmental Function	40
3.4 Signalling Pathways Within and Between Cells	45
3.5 Signalling: From Cell to Embryo	48
3.6 Long-Range Signalling and Developmental Processes	51
4 Natural Populations	54
4.1 The Ecological Theatre and the Evolutionary Play	54
4.2 Types of Creature; Types of Population	55
4.3 Spatial Structure	60
4.4 Age Structure	64
4.5 Genetic Structure	65
4.6 Natural Selection	67

PΑ	ART II	Developmental Repatterning	75
5	Mut	ation and Developmental Repatterning	77
	5.1	Mutation in Terms of Altered DNA Sequence	77
	5.2	Mutation in Terms of Proximate Functional Consequences	80
	5.3	Developmental Repatterning at Molecular and Higher Levels	82
	5.4	Developmental Repatterning at the Level of the	
		Whole Organism	88
	5.5	Developmental Repatterning and Fitness	89
6	Hete	erochrony	93
		What is Heterochrony?	93
		Types and Levels of Heterochrony	94
	6.3	Heterochrony at the Organismic Level	95
	6.4	Heterochrony at the Molecular Level	99
	6.5	Heterochrony and Fitness	102
7	Hete	erotopy	106
		What is Heterotopy?	106
		Heterotopic Processes Involving Left-Right Asymmetry	107
	7.3	Heterotopic Processes Involving the A-P and	
		D-V Axes	112
	7.4	Other Types of Heterotopy	116
	7.5	Concluding Remarks	119
8	Hete	erometry	121
	8.1	What is Heterometry?	121
	8.2	Increasing Relative Size	122
	8.3	Decreasing Relative Size	124
	8.4	Bi-directional Heterometry	128
	8.5	Heterometric Compensation	132
9	Hete	erotypy	135
	9.1	What is Heterotypy?	135
	9.2	Altered Products of Developmental Genes	137
	9.3	Altered Pigmentation	139
		Altered Morphology and the Origin of Novelty	140
	9.5	The Origin of New Cell Types	144
10		Integrative Nature of Repatterning	148
		Repatterning is a Complex Process	148
		Different Kinds of Repatterning can Produce a Similar Result	
		Compound Repatterning at a Single Level of Organisation	151
	10.4	The Kind of Repatterning can Change Between Levels of	
		Organisation	155

	10.5 Categories and Subcategories of Repatterning	157
	10.6 The Causes of Repatterning	159
11	Mapping Repatterning to Trees	161
	11.1 Pattern, Process, Homology and Trees	161
	11.2 The Origin(s) of Animal Segmentation	163
	11.3 The Vertebrate Fin-to-Limb Transition	169
	11.4 The Origin of Flowers	176
	11.5 General Conclusions on Repatterning and Selection	179
РД	RT III The Direction of Evolution	183
12	Adaptation, Coadaptation and Exaptation	185
	12.1 Natural Selection on a Continuously Variable Character	185
	12.2 Natural Selection on Two Characters; and the Idea of an	
	Adaptive Landscape	190
	12.3 Developmental and Functional Coadaptation	191
	12.4 Morphological Geometry and Selection	194
	12.5 Long-term Evolution and Exaptation	196
13	Developmental Bias and Constraint	200
	13.1 A Key Question about Evolution's Direction	200
	13.2 Making Sure the Question is about Processes, not Terminology	204
	13.3 Dependence versus Independence of Different Characters	208
	13.4 Evo-Devo Meets Quantitative Genetics	209
	13.5 Developmental Bias and 'Routine' Evolution	211
	13.6 Developmental Bias and the Origin of Evolutionary Novelties	216
14	Developmental Genes and Evolution	218
	14.1 The Direction of Evolution at the Developmental/Genetic Level	218
	14.2 Developmental Genes: An Overview	219
	14.3 Developmental Genes: Examples	223
	14.4 The Hox Genes	225
	14.5 Gene-Level Forms of Developmental Bias and Coadaptation	230
	14.6 Changes in Regulatory versus Coding Regions of Genes	23]
15	Gene Co-option as an Evolutionary Mechanism	234
	15.1 What is Gene Co-option?	234
	15.2 Co-option in the Evolution of Segments and Eyes	237
	15.3 Appendage Evolution and Gene Co-option	241
	15.4 Co-option in the Evolution of Zygomorphic Flowers	244
	15.5 Evolution of the 'Genetic Toolkit'	245
	15.6 Co-option, Exaptation and Developmental Bias	249
16	Developmental Plasticity and Evolution	252
	16.1 Types of Developmental Plasticity	252
	16.2 Discrete Variants: Winged and Wingless Forms of Insects	254

16.3 Meristic Variation: the Number of Segments in Centipedes	257	
16.4 Continuous Variation: Plant Growth	259	
16.5 Plasticity and Developmental Genes	260	
16.6 The Evolution of Patterns of Plasticity	261	
17 The Origin of Species, Novelties and Body Plans	272	
17.1 Is Evolution Scale-dependent?	272	
17.2 Speciation	273	
17.3 The Origin of Novelties	281	
17.4 Body Plans I: Overview	284	
17.5 Body Plans II: the Origin of the Vertebrates	285	
17.6 Body Plans III: the 'Cambrian Explosion'	286	
18 The Evolution of Complexity	291	
18.1 Defining Complexity	291	
18.2 The Lack of a 'Law of Increasing Complexity'	293	
18.3 Increases in the Complexity of Adults	299	
18.4 Changes in the Complexity of Life-histories	302	
18.5 Complexity at the Molecular Level	306	
PART IV Conclusions		
19 Key Concepts and Connections	312	
19.1 Introduction: From Original Idea to Mature		
Scientific Discipline	312	
19.2 A List of The Book's Main Points, and the Emergence		
of Key Concepts	314	
19.3 How do They Inter-Connect?	319	
20 Prospects	327	
20.1 Introduction: From the Present into the Future	327	
20.2 Molecular Evo-Devo	327	
20.3 Integrative Evo-Devo and General Evolutionary Theory	332	
20.4 Wider Challenges	334	
Glossary	336	
Appendix 1: A Little Bit of History	355	
Appendix 2: Naming of Genes and Proteins	359	
Appendix 3: Geological Time		
Appendix 4: Inferring Evolutionary Trees from Comparative Data	366	
References	370	
Index	383	

This book has a companion website: www.wiley.com/go/arthur/evolution