Contents

Preface ix
Introduction xix
1 A Garden of Integers 1
1.1 Figurate numbers 1
1.2 Sums of squares, triangular numbers, and cubes 6
1.3 There are infinitely many primes 9
1.4 Fibonacci numbers 12
1.5 Fermat's theorem 15
1.6 Wilson's theorem 16
1.7 Perfect numbers 16
1.8 Challenges 17
2 Distinguished Numbers 19
2.1 The irrationality of $\sqrt{2}$ 20
2.2 The irrationality of \sqrt{k} for non-square k 21
2.3 The golden ratio 22
2.4π and the circle 25
2.5 The irrationality of π 27
2.6 The Comte de Buffon and his needle 28
$2.7 e$ as a limit 29
2.8 An infinite series for e 32
2.9 The irrationality of e 32
2.10 Steiner's problem on the number e 33
2.11 The Euler-Mascheroni constant 34
2.12 Exponents, rational and irrational 35
2.13 Challenges 36
3 Points in the Plane 39
3.1 Pick's theorem 39
3.2 Circles and sums of two squares 41
3.3 The Sylvester-Gallai theorem 43
3.4 Bisecting a set of 100,000 points 44
3.5 Pigeons and pigeonholes 45
3.6 Assigning numbers to points in the plane 47
3.7 Challenges 48
4 The Polygonal Playground 51
4.1 Polygonal combinatorics 51
4.2 Drawing an n-gon with given side lengths 54
4.3 The theorems of Maekawa and Kawasaki 55
4.4 Squaring polygons 58
4.5 The stars of the polygonal playground 59
4.6 Guards in art galleries 62
4.7 Triangulation of convex polygons 63
4.8 Cycloids, cyclogons, and polygonal cycloids 66
4.9 Challenges 69
5 A Treasury of Triangle Theorems 71
5.1 The Pythagorean theorem 71
5.2 Pythagorean relatives 73
5.3 The inradius of a right triangle 75
5.4 Pappus' generalization of the Pythagorean theorem 77
5.5 The incircle and Heron's formula 78
5.6 The circumcircle and Euler's triangle inequality 80
5.7 The orthic triangle 81
5.8 The Erdős-Mordell inequality 82
5.9 The Steiner-Lehmus theorem 84
5.10 The medians of a triangle 85
5.11 Are most triangles obtuse? 87
5.12 Challenges 88
6 The Enchantment of the Equilateral Triangle 91
6.1 Pythagorean-like theorems 91
6.2 The Fermat point of a triangle 94
6.3 Viviani's theorem 96
6.4 A triangular tiling of the plane and Weitzenböck's inequality 96
6.5 Napoleon's theorem 99
6.6 Morley's miracle 100
6.7 Van Schooten's theorem 102
6.8 The equilateral triangle and the golden ratio 103
6.9 Challenges 104
7 The Quadrilaterals' Corner 107
7.1 Midpoints in quadrilaterals 107
7.2 Cyclic quadrilaterals 109
7.3 Quadrilateral equalities and inequalities 111
7.4 Tangential and bicentric quadrilaterals 115
7.5 Anne's and Newton's theorems 116
7.6 Pythagoras with a parallelogram and equilateral triangles 118
7.7 Challenges 119
8 Squares Everywhere 121
8.1 One-square theorems 121
8.2 Two-square theorems 123
8.3 Three-square theorems 128
8.4 Four and more squares 131
8.5 Squares in recreational mathematics 133
8.6 Challenges 135
9 Curves Ahead 137
9.1 Squarable lunes 137
9.2 The amazing Archimedean spiral 144
9.3 The quadratrix of Hippias 146
9.4 The shoemaker's knife and the salt cellar 147
9.5 The Quetelet and Dandelin approach to conics 149
9.6 Archimedes triangles 151
9.7 Helices 154
9.8 Challenges 156
10 Adventures in Tiling and Coloring 159
10.1 Plane tilings and tessellations 160
10.2 Tiling with triangles and quadrilaterals 164
10.3 Infinitely many proofs of the Pythagorean theorem 167
10.4 The leaping frog 170
10.5 The seven friezes 172
10.6 Colorful proofs 175
10.7 Dodecahedra and Hamiltonian circuits 185
10.8 Challenges 186
11 Geometry in Three Dimensions 191
11.1 The Pythagorean theorem in three dimensions 192
11.2 Partitioning space with planes 193
11.3 Corresponding triangles on three lines 195
11.4 An angle-trisecting cone 196
11.5 The intersection of three spheres 197
11.6 The fourth circle 199
11.7 The area of a spherical triangle 199
11.8 Euler's polyhedral formula 200
11.9 Faces and vertices in convex polyhedra 202
11.10 Why some types of faces repeat in polyhedra 204
11.11 Euler and Descartes à la Pólya 205
11.12 Squaring squares and cubing cubes 206
11.13 Challenges 208
12 Additional Theorems, Problems, and Proofs 209
12.1 Denumerable and nondenumerble sets 209
12.2 The Cantor-Schröder-Bernstein theorem 211
12.3 The Cauchy-Schwarz inequality 212
12.4 The arithmetic mean-geometric mean inequality 214
12.5 Two pearls of origami 216
12.6 How to draw a straight line 218
12.7 Some gems in functional equations 220
12.8 Functional inequalities 227
12.9 Euler's series for $\pi^{2} / 6$ 230
12.10 The Wallis product 233
12.11 Stirling's approximation of n ! 234
12.12 Challenges 236
Solutions to the Challenges 239
Chapter 1 239
Chapter 2 241
Chapter 3 245
Chapter 4 247
Chapter 5 250
Chapter 6 255
Chapter 7 258
Chapter 8 261
Chapter 9 263
Chapter 10 265
Chapter 11 270
Chapter 12 272
References 275
Index 289
About the Authors 295

