Contents

Pro	Preface			
Int	introduction			
1	A Garden of Integers	1		
	1.1 Figurate numbers	1		
	1.2 Sums of squares, triangular numbers, and cubes	6		
	1.3 There are infinitely many primes	9		
	1.4 Fibonacci numbers	12		
	1.5 Fermat's theorem	15		
	1.6 Wilson's theorem	16		
	1.7 Perfect numbers	16		
	1.8 Challenges	17		
2	Distinguished Numbers	19		
	2.1 The irrationality of $\sqrt{2}$	20		
	2.2 The irrationality of \sqrt{k} for non-square k	21		
	2.3 The golden ratio	22		
	2.4 π and the circle	25		
	2.5 The irrationality of π	27		
	2.6 The Comte de Buffon and his needle	28		
	2.7 <i>e</i> as a limit	29		
	2.8 An infinite series for e	32		
	2.9 The irrationality of e	32		
	2.10 Steiner's problem on the number e	33		
	2.11 The Euler-Mascheroni constant	34		
	2.12 Exponents, rational and irrational	35		
	2.13 Challenges	36		
3	Points in the Plane			
	3.1 Pick's theorem	39		
	3.2 Circles and sums of two squares	41		
	3.3 The Sylvester-Gallai theorem	43		

xiii

	3.4	Bisecting a set of 100,000 points	44
	3.5	Pigeons and pigeonholes	45
	3.6	Assigning numbers to points in the plane	47
	3.7	Challenges	48
4	The	Polygonal Playground	51
	4.1	Polygonal combinatorics	51
	4.2	Drawing an <i>n</i> -gon with given side lengths	54
	4.3	The theorems of Maekawa and Kawasaki	55
	4.4	Squaring polygons	58
	4.5	The stars of the polygonal playground	59
	4.6	Guards in art galleries	62
	4.7	Triangulation of convex polygons	63
	4.8	Cycloids, cyclogons, and polygonal cycloids	66
	4.9	Challenges	69
5	A Tı	reasury of Triangle Theorems	71
	5.1	The Pythagorean theorem	71
	5.2	Pythagorean relatives	73
	5.3	The inradius of a right triangle	75
	5.4	Pappus' generalization of the Pythagorean theorem	77
	5.5	The incircle and Heron's formula	78
	5.6	The circumcircle and Euler's triangle inequality	80
	5.7	The orthic triangle	81
	5.8	The Erdős-Mordell inequality	82
	5.9	The Steiner-Lehmus theorem	84
	5.10	The medians of a triangle	85
		Are most triangles obtuse?	87
		Challenges	88
6	The	Enchantment of the Equilateral Triangle	91
	6.1	Pythagorean-like theorems	91
	6.2	The Fermat point of a triangle	94
	6.3	Viviani's theorem	96
	6.4	A triangular tiling of the plane and Weitzenböck's inequality	96
	6.5	Napoleon's theorem	99
	6.6	Morley's miracle	100
	6.7	Van Schooten's theorem	102
	6.8	The equilateral triangle and the golden ratio	103
	6.9	Challenges	104

7	The	Quadrilaterals' Corner	107
	7.1	Midpoints in quadrilaterals	107
	7.2	Cyclic quadrilaterals	109
	7.3	Quadrilateral equalities and inequalities	111
	7.4	Tangential and bicentric quadrilaterals	115
	7.5	Anne's and Newton's theorems	116
	7.6	Pythagoras with a parallelogram and equilateral triangles	118
	7.7	Challenges	119
8	Squ	ares Everywhere	121
	8.1	One-square theorems	121
	8.2	Two-square theorems	123
	8.3	Three-square theorems	128
	8.4	Four and more squares	131
	8.5	Squares in recreational mathematics	133
	8.6	Challenges	135
9	Cur	ves Ahead	137
	9.1	Squarable lunes	137
	9.2	The amazing Archimedean spiral	144
	9.3	The quadratrix of Hippias	146
	9.4	The shoemaker's knife and the salt cellar	147
	9.5	The Quetelet and Dandelin approach to conics	149
	9.6	Archimedes triangles	151
	9.7	Helices	154
	9.8	Challenges	156
10	Adv	entures in Tiling and Coloring	159
	10.1	Plane tilings and tessellations	160
	10.2	Tiling with triangles and quadrilaterals	164
	10.3	Infinitely many proofs of the Pythagorean theorem	167
	10.4	The leaping frog	170
	10.5	The seven friezes	172
	10.6	Colorful proofs	175
	10.7	Dodecahedra and Hamiltonian circuits	185
	10.8	Challenges	186
11	Geo	metry in Three Dimensions	191
	11.1	The Pythagorean theorem in three dimensions	192
	11.2	Partitioning space with planes	193

-3

	11.3	Corresponding triangles on three lines	195
	11.4	An angle-trisecting cone	196
	11.5	The intersection of three spheres	197
	11.6	The fourth circle	199
	11.7	The area of a spherical triangle	199
	11.8	Euler's polyhedral formula	200
	11.9	Faces and vertices in convex polyhedra	202
	11.10	Why some types of faces repeat in polyhedra	204
		Euler and Descartes à la Pólya	205
	11.12	Squaring squares and cubing cubes	206
	11.13	Challenges	208
12	Addi	tional Theorems, Problems, and Proofs	209
	12.1	Denumerable and nondenumerble sets	209
	12.2	The Cantor-Schröder-Bernstein theorem	211
	12.3	The Cauchy-Schwarz inequality	212
	12.4	The arithmetic mean-geometric mean inequality	
	12.5	Two pearls of origami	216
	12.6	How to draw a straight line	218
	12.7	Some gems in functional equations	220
	12.8	Functional inequalities	227
	12.9	Euler's series for $\pi^2/6$	230
		The Wallis product	
		Stirling's approximation of $n!$	
	12.12	Challenges	236
Sol	lutions	s to the Challenges	239
	Chap	ter 1	239
	Chap	ter 2	241
	Chap	ter 3	245
	Chap	ter 4	247
	Chap	ter 5	250
		ter 6	
	Chap	ter 7	258
	~	ter 8	
	-	ter 9	
	Chap	ter 10	265

Chapter 11					
Chapter 12	272				
References	275				
Index	289				
About the Authors					