Contents

Preface ix
Listings xiii
Notation and Acronyms xV
1 Introduction and preliminaries 1
1.1 Matrix equations 2
1.2 Algebraic Riccati equations 3
1.2.1 Nonsymmetric equations 3
1.2.2 Equations associated with M-matrices 3
1.2.3 Continuous-time equations 5
1.2.4 Discrete-time equations 6
1.3 Unilateral quadratic matrix equations 8
1.4 Useful concepts and definitions 9
1.4.1 Invariant and deflating subspaces 9
1.4.2 Some definitions from control theory 11
1.4.3 Matrix polynomials 12
1.4.4 Eigenvalue transformations 14
1.4.5 Splitting properties 20
1.5 Hamiltonian and symplectic matrices 22
1.6 Algorithmic issues 26
1.6.1 Convergence speed 26
1.6.2 Cost of elementary matrix operations 28
1.6.3 Conditioning and numerical stability 29
1.7 Available software 30
1.8 Additional notes and further reading 31
2 Theoretical analysis 33
2.1 Invariant subspaces and algebraic Riccati equations 33
2.1.1 Nonsymmetric equations 33
2.1.2 Equations associated with M-matrices 37
2.1.3 Continuous-time equations 39
2.1.4 Discrete-time equations 40
2.2 Extremal solutions 41
2.2.1 Equations associated with M-matrices 42
2.2.2 Continuous-time equations 46
2.2.3 Discrete-time equations 49
2.3 Critical solutions 50
2.4 Shift techniques 52
2.4.1 Equations associated with M-matrices 54
2.4.2 Continuous-time equations 57
2.5 Transformations between discrete- and continuous-time 61
2.6 Unilateral quadratic matrix equations 62
2.7 Transforming an algebraic Riccati equation to a UQME 67
2.7.1 Simple transformation 68
2.7.2 UL-based transformation 70
2.7.3 Reduction to a UQME of lower size 73
2.8 Perturbation results 75
2.8.1 Algebraic Riccati equations 76
2.8.2 UQMEs 80
2.9 Additional notes and further reading 81
3 Classical algorithms 83
3.1 Linear matrix equations 83
3.1.1 Sylvester, Lyapunov, and Stein equations 83
3.1.2 Generalized equations 87
3.2 Invariant subspaces methods 87
3.2.1 Balancing technique 92
3.3 Newton's method 92
3.3.1 Continuous-time equations 93
3.3.2 Equations associated with M-matrices 98
3.3.3 Other algebraic Riccati equations 101
3.3.4 Iterative refinement and defect correction 102
3.4 Functional iterations 103
3.5 Matrix sign function method 105
3.5.1 Continuous-time equations 105
3.5.2 Computing the matrix sign function 107
3.5.3 Other algebraic Riccati equations 109
3.6 Numerical experiments 111
3.6.1 Continuous-time equations 111
3.6.2 Equations associated with M-matrices 114
3.7 Additional notes and further reading 118
4 Structured invariant subspace methods 121
4.1 Elementary matrices 122
4.2 Hamiltonian condensed and special forms 125
4.2.1 The PVL form 126
4.2.2 URV Decomposition 128
4.2.3 Other condensed forms 131
4.3 Hamiltonian QR algorithm 131
4.3.1 The Hamiltonian/symplectic QR step 133
4.4 Computation of the eigenvalues of a Hamiltonian matrix 135
4.5 The URV algorithms 136
4.6 The multishift algorithm 140
4.7 Additional notes and further reading 142
5 Doubling algorithms 145
5.1 Structured doubling algorithm 146
5.1.1 SDA-I 147
5.1.2 SDA-II 151
5.1.3 QR-based doubling algorithm 153
5.2 Cyclic reduction 155
5.2.1 Convergence properties 158
5.2.2 Applicability 161
5.2.3 Interplay with SDAs 167
5.3 Solving algebraic Riccati equations 168
5.3.1 Equations associated with M-matrices 168
5.3.2 Continuous-time equations 179
5.3.3 Discrete-time equations 184
5.4 Acceleration techniques 188
5.5 Numerical experiments 190
5.5.1 Continuous-time equations 190
5.5.2 Equations associated with M-matrices 191
5.6 Additional notes and further reading 192
6 Algorithms for large-scale problems 195
6.1 Linear matrix equations with large and sparse coefficients 196
6.1.1 The ADI iteration 196
6.1.2 Cholesky factor ADI 198
6.1.3 Krylov subspace methods 201
6.2 Continuous- and discrete-time Riccati equations 204
6.3 Additional notes and further reading 206
A Basic properties 209
A. 1 Norms and spectral radius 209
A. 2 Matrix factorizations and decompositions 211
A. 3 Krylov subspaces 213
A. 4 Properties of Kronecker product 214
A. 5 Nonnegative matrices and M-matrices 215
A. 6 Matrix functions and Laurent power series 216
A. 7 Fréchet derivative and its properties 217
A. 8 Elementary matrices 218
Bibliography 221
Index 245

