Contents

Abbreviations

				л
Chapter 1	Theory of Optical Spectroscopy			1 1
	1.1 Electronic Absorption Spectroscopy			
		1.1.1	Exciton Coupling Theory	6
	1.2	CD S	pectroscopy	11
		1.2.1	Units used for CD Spectroscopy	14
		1.2.2	Analysis of CD Spectra	17
	1.3	MCD	Spectroscopy	21
		1.3.1	Zeeman Splitting of States	23
		1.3.2	MCD Intensity Mechanism, Sign Conventions and Intensity Units	26
		1.3.3	Ouantitative Analysis of Groundstate and	
			Excited State Magnetic Dipole Moments	31
		1.3.4	MCD Spectroscopy of Transition Metal	
			Complexes	34
		1.3.5	Qualitative Analysis of MCD Spectra	39
	Refe	erences		40
Chapter 2	Empirical Rules in CD Spectra and Absolute Configuration			47
	UI IV.	Iolecule	3	42
	2.1	The C	Octant Rule	42
	2.2	Benze	ne Sector and Benzene Chirality Rules	47
		2.2.1	Benzene Sector Rule	47
		2.2.2	Benzene Chirality Rule	50
	Refe	erences		52

Circular Dichroism and Magnetic Circular Dichroism Spectroscopy for Organic Chemists By Nagao Kobayashi, Atsuya Muranaka and John Mack

© Royal Society of Chemistry 2012

Published by the Royal Society of Chemistry, www.rsc.org

vν

Chapter 3	Representative Systems Analysed by the Exciton Coupling Method			53
	31	Excito	n Coupling among Fewer than Four	
	5.1	Identic	ral Chromophores	54
		311	Spectra of 5%-Cholestane-28 38- and	54
		5.1.1	36 6B-diol <i>Bis(n</i> -dimethylamino-benzoate)	54
		312	Spectra of $(6R \ 15R)$ -(+)-6 15-Dihydro-	54
		5.1.2	6 15-ethanonaphthol ² .3-clpentaphene	55
		3.1.3	Additivity Relationship in the Amplitudes of	00
		01110	Exciton-Split CD Curves of Sugar Benzoates	57
		3.1.4	Determination of the Absolute Configuration	
			of Oligonaphthalenes	62
		3.1.5	Determination of the Absolute Configuration	
			of a Natural Catechol Product, Haematoxylin,	
			using the Phthalocyanine Chromophore	65
		3.1.6	Supramolecular Chirality in a Bisporphyrin	
			System Axially Coordinated by a Chiral Guest	69
		3.1.7	A Chiral Biscyanine Dye exhibiting an Exciton	
			Couplet with Well-resolved Absorption Bands	72
		3.1.8	CD and Absolute Configuration of C_3	
			Symmetry Chiral Cyclotriveratrylenes	75
	3.2	Polym	er Systems (Systems Consisting of more than	
		Four (Chromophores)	78
		3.2.1	Helical Structures of N-Alkylated	
			Poly(p-benzamide)s	78
		3.2.2	Conformation of Helical	
			Poly(2,3-quinoxaline)s	83
	3.3	Excito	on Coupling between Non-Identical	
		Chron	nophores	83
		3.3.1	Determination of the Absolute Configuration	
			of Allylic Alcohols: Systems Containing a	
			C=C Double Bond and a Benzoate	86
		3.3.2	Application of the Exciton Chirality Method	
	D 0		to Conjugated Enones, Esters and Lactones	88
	Refe	erences		91
~	~			
Chapter 4	Cyclodextrin Inclusion Compounds			93
	4.1	Induc	ed Circular Dichroism of CyDs	94
		4.1.1	Inclusion of Pyrene in β -CyD at Room	
			Temperature and in γ -CyD at 70°	95
		4.1.2	Inclusion of 2,3-Diaminonaphthalene and	
			1,8-Diaminonaphthalene in β -CyD	96

Content

Contents		xi
	4.1.3 Lid-type Inclusion of Pyrene-1,3,6,8- tetrasulphonate Anion by β-CyD	97
	4.1.4 Inclusion of 4,4'-Substituted Biphenyls by	00
	4.1.5 Inclusion of Binyridyls by B-CyD	90
	4.1.6 Disposition of Ferrocene in B ₂ or y ₂ CyD	00
	4.1.7 Chirality of Two Pyrene Molecules in y-CyD	102
	References	102
Chapter 5	Metal Complexes	104
	5.1 Systems which can be Analysed by Excition	
	Coupling Theory: Absolute Configurations of	
	Metal Complexes Containing <i>o</i> -Phenanthroline,	
	2,2'-Bipyridyl or Acetylacetonate	104
	5.2 CD spectra in the $d \rightarrow d$ Transition Region	110
	5.2.1 $[Co(en)_3]^2$ and $[Cr(en)_3]$ 5.2.2 Near IB Absorption and CD Speatra of	110
	5.2.2 Real-IR Absolption and CD Spectra of Ferrocyctochrome $c: d \rightarrow d$ Transitions	112
	References	115
Chanter 6	Circular Dichroism Induced by Ontically Active Binanhthyl	116
Chapter 0	Circular Diemoiste induced by Optically Active Dinapitulyi	110
	6.1 Chiral Binaphthyl-Induced CD in	
	Phthalocyanines	116
	References	128
Chapter 7	Analysis of Chiral Systems by Theoretical Calculations	130

7.1	Semi-e	empirical Calculations	131
	7.1.1	Absolute Stereochemistry of (+)-1,8a-Dihydro-	
		3,8-Dimethylazulene	131
	7.1.2	Analysis of Naphthalene-diene Derivatives	132
7.2	TD-D	FT Calculations	133
	7.2.1	Correlation between CD Sign and	
		Conformation in Optically Active	
		Oxo(phthalocyaninato)vanadium(IV)	133
	7.2.2	Optically Active Porphyrin Dimers	135
	7.2.3	Absolute Configuration and Chiroptical	
		Properties of Three-layered	
		[3,3]Paracyclophane	137
Refe	erences		141

Contents

142

	8.1	Protein Chromophores and Electronic Absorption	
		Spectroscopy	143
	8.2	CD Spectroscopy of Peptides	147
		8.2.1 α-Helix CD	147
		8.2.2 β -Sheet and random coil CD	148
		8.2.3 β -Turn CD	149
	Refer	rences	149
Chapter 9	Analy	ysis of MCD Spectra	150
	9.1	Examples of the Analysis of Faraday \mathcal{A}_1 Terms	150
		9.1.1 Cyclononatetraenide Anion	151
		9.1.2 Cycloheptatrienyl (Tropylium) Cation	152
		9.1.3 C ₆₀ Fullerene	152
		9.1.4 Identification of the Electronic Origin of the S1 State of Zinc	
		Tetraphenyltetraacenaphthoporphyrin	153
	9.2	Examples of the Analysis of Faraday \mathcal{B}_0 Terms	155
		9.2.1 Analysis of the Symmetry-split Excited States	
		of Azaporphyrins	155
		9.2.2 Analysis of Data Recorded at Cryogenic	
		Temperature: Phthalocyanine Anion Radicals	157
	9.3	Examples of Analysis of Faraday C ₀ MCD Terms	161
		9.3.1 The "Fingerprint" Approach	161
		9.3.2 Analysis of Data Recorded at Cryogenic	
		Temperatures	163
		9.3.3 The Quantitative Analysis of Magnetisation	
		Curves	167
	9.4	Analysis of MCD Spectra based on Molecular	
	-	Orbital Calculations	168
	Refe	rences	169
Chapter 10) Mich	l's Perimeter Model in MCD Spectroscopy	172
	10.1	Michl's 4N+2-Perimeter Model for Aromatic	
		π -Systems	175
	10.2	Michl's 4N-Perimeter Model for Antiaromatic	
		π -Systems	179
	10.3	Applications of Michl's Perimeter Model	180
		10.3.1 Negative Faraday \mathcal{A}_1 MCD Term in a	
		Cyclobutadiene Dianion	180

Contents

10.3.2	The Effect of Ligand Non-planarity on the Alignment of the Excited State Magnetic Moments of Zinc	
	Tetraphenyltetraacenaphthoporphyrin	182
10.3.3	The Application of the 4N and $4N+2$	
	Perimeter Model to the Spectra of	
	Hexaphyrin(1.1.1.1.1)s	183
10.3.4	Using Michl's Perimeter Model to	
	Conceptualise the Optical Properties of Low	
	Symmetry Aromatic π -Systems	185
10.3.5	Analysis of the MCD Spectra of Benzofuran	
	Derivatives Substituted with Group 16	
	Heteroatoms	187
References		190

Subject Index

192