Contents

Preface

Acknowledgments

Notation

1
adius of a Matrix . 1
8
39
$phs \ldots 46$
61
66
81
91
91
104
108
119
Graph Operations 119
es 126
nd Greater than One 136
ı 151

	4.6	Graphs with Distinct Integer Spectra	163	
5	The 5.1 5.2 5.3 5.4 5.5 5.6	Algebraic ConnectivityIntroduction to the Algebraic Connectivity of GraphsThe Algebraic Connectivity as a Function of Edge WeightThe Algebraic Connectivity with Regard to Distances and DiametersThe Algebraic Connectivity in Terms of Edge Density and the Isoperi-metric NumberThe Algebraic Connectivity of Planar GraphsThe Algebraic Connectivity as a Function Genus k Where $k \geq 1$	192 197	
6	The 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Fiedler Vector and Bottleneck Matrices for Trees The Characteristic Valuation of Vertices Bottleneck Matrices for Trees Bottleneck Matrices for Trees Excursion: Nonisomorphic Branches in Type I Trees Perturbation Results Applied to Extremizing the Algebraic Connectivity of Trees Application: Joining Two Trees by an Edge of Infinite Weight The Characteristic Elements of a Tree The Spectral Radius of Submatrices of Laplacian Matrices for Trees	211 211 219 235 239 256 263 273	
7	Bot 7.1 7.2 7.3 7.4 7.5 7.6	tleneck Matrices for Graphs Constructing Bottleneck Matrices for Graphs Perron Components of Graphs Minimizing the Algebraic Connectivity of Graphs with Fixed Girth Maximizing the Algebraic Connectivity of Unicyclic Graphs with Fixed Girth Application: The Algebraic Connectivity and the Number of Cut Vertices The Spectral Radius of Submatrices of Laplacian Matrices for Graphs		
8		Group Inverse of the Laplacian Matrix	361	
	8.1 8.2	Constructing the Group Inverse for a Laplacian Matrix of a Weighted Tree		
	8.3	The Case of the Zenger Equalling the Algebraic Connectivity in Trees	378	
	8.4	Application: The Second Derivative of the Algebraic Connectivity as a Function of Edge Weight		
Bi	Bibliography 398			

Index