Contents

Preface				v
1.	Finite-Horizon Models			1
	1.1	Prelim	inaries	1
	1.2	Model	Description	3
	1.3	Dynan	Dynamic Programming Approach	
	1.4	1.4 Examples		
		1.4.1	Non-transitivity of the correlation	8
		1.4.2	The more frequently used control is not better	9
		1.4.3	Voting	11
		1.4.4	The secretary problem	13
		1.4.5	Constrained optimization	14
		1.4.6	Equivalent Markov selectors in non-atomic MDPs	17
		1.4.7	Strongly equivalent Markov selectors in non-	
			atomic MDPs	20
		1.4.8	Stock exchange	25
		1.4.9	Markov or non-Markov strategy? Randomized or	
			not? When is the Bellman principle violated? \ldots	27
		1.4.10	Uniformly optimal, but not optimal strategy	31
		1.4.11	Martingales and the Bellman principle	32
		1.4.12	Conventions on expectation and infinities	34
		1.4.13	Nowhere-differentiable function $v_t(x)$;	
			discontinuous function $v_t(x)$	38
		1.4.14	The non-measurable Bellman function	43
		1.4.15	No one strategy is uniformly ε -optimal $\ldots \ldots$	44
		1.4.16	Semi-continuous model	46

2.	Hom	ogeneous	s Infinite-Horizon Models: Expected Total Loss	51
	2.1	Homog	geneous Non-discounted Model	51
	2.2	Examp	les	54
		2.2.1	Mixed Strategies	54
		2.2.2	Multiple solutions to the optimality equation	56
		2.2.3	Finite model: multiple solutions to the optimality	
			equation; conserving but not equalizing strategy .	58
		2.2.4	The single conserving strategy is not equalizing	
			and not optimal	58
		2.2.5	When strategy iteration is not successful	61
		2.2.6	When value iteration is not successful	63
		2.2.7	When value iteration is not successful: positive	
			model I	67
		2.2.8	When value iteration is not successful: positive model II	69
		2.2.9	Value iteration and stability in optimal stopping	
			problems	71
		2.2.10	A non-equalizing strategy is uniformly optimal.	73
		2.2.11	A stationary uniformly ε -optimal selector does not	
			exist (positive model)	75
		2.2.12	A stationary uniformly ε -optimal selector does not	
			exist (negative model)	77
		2.2.13	Finite-action negative model where a stationary	
			uniformly ε -optimal selector does not exist	80
		2.2.14	Nearly uniformly optimal selectors in negative	
			models	83
		2.2.15	Semi-continuous models and the blackmailer's	
			dilemma	85
		2.2.16	Not a semi-continuous model	88
		2.2.17	The Bellman function is non-measurable and no	
			one strategy is uniformly ε -optimal $\ldots \ldots \ldots$	91
		2.2.18	A randomized strategy is better than any selector	
			(finite action space)	92
		2.2.19	The fluid approximation does not work	94
		2.2.20	The fluid approximation: refined model	97
		2.2.21	Occupation measures: phantom solutions	101
		2.2.22	Occupation measures in transient models	104
		2.2.23	Occupation measures and duality	107

Contents

		2.2.24	Occupation measures: compactness	109
		2.2.25	The bold strategy in gambling is not optimal	
			$(house limit) \dots \dots$	112
		2.2.26	The bold strategy in gambling is not optimal	
			(inflation)	115
		2.2.27	Search strategy for a moving target	119
		2.2.28	The three-way duel ("Truel")	122
3.	Homogeneous Infinite-Horizon Models: Discounted Loss			127
	3.1	Prelim	inaries	127
	3.2	Exam	bles	128
		3.2.1	Phantom solutions of the optimality equation	128
		3.2.2	When value iteration is not successful: positive	
			model	130
		3.2.3	A non-optimal strategy $\hat{\pi}$ for which $v^{\hat{\pi}}$ solves the	100
		0.2.0	optimality equation x_x and x_y between the	132
		3.2.4	The single conserving strategy is not equalizing	102
		0.211	and not optimal	134
		3.2.5	Value iteration and convergence of strategies	135
		3.2.6	Value iteration in countable models	137
		3.2.7	The Bellman function is non-measurable and no	
		0.2.1	one strategy is uniformly ε -optimal	140
		3.2.8	No one selector is uniformly ε -optimal.	141
		3.2.9	Myopic strategies	141
		3 2 10	Stable and unstable controllers for linear systems	143
		3 2 11	Incorrect optimal actions in the model with partial	110
		0.2.11	information	146
		3212	Occupation measures and stationary strategies	140
		3913	Constrained optimization and the Bellman	110
		0.2.10	principle	152
		3911	Constrained optimization and Lagrange	102
		0.2.14	multipliers	153
		3915	Constrained optimization: multiple solutions	157
		3 2 16	Weighted discounted loss and $(N \infty)$ -stationary	101
		0.2.10	selectors	158
		2917	Non-constant discounting	160
		J.4.17 2910	The nearly optimal strategy is not Rischwell	100
		0.2.10	ontimal	163
		2 9 10	Blackwall optimal strategies and opportunity loss	164
		5.2.19	Diackweit optimial strategies and opportunity loss	104

		3.2.20	Blackwell optimal and <i>n</i> -discount optimal strategies	165
		3.2.21	No Blackwell (Maitra) optimal strategies	168
		3.2.22	Optimal strategies as $\beta \rightarrow 1-$ and MDPs with the average loss $-I$	171
		3.2.23	Optimal strategies as $\beta \rightarrow 1-$ and MDPs with the average loss – II	172
4.	Hom	ogonoous	Infinite Horizon Models: Average Loss and	
	Ot	her Crite	eria	177
	4.1	Prelim	inaries	177
	4.2	Examp	oles	179
		4.2.1	Why lim sup?	179
		4.2.2	AC-optimal non-canonical strategies	181
		4.2.3	Canonical triplets and canonical equations	183
		4.2.4	Multiple solutions to the canonical equations in	
			finite models	186
		4.2.5	No AC-optimal strategies	187
		4.2.6	Canonical equations have no solutions: the finite	
			action space	188
		4.2.7	No AC- ε -optimal stationary strategies in a finite	
			state model	19
		4.2.8	No AC-optimal strategies in a finite-state semi-	
			continuous model	19:
		4.2.9	Semi-continuous models and the sufficiency of	
			stationary selectors	194
		4.2.10	No AC-optimal stationary strategies in a unichain	
			model with a finite action space	19
		4.2.11	No AC- ε -optimal stationary strategies in a finite	
			action model	19
		4.2.12	No AC- ε -optimal Markov strategies	19
		4.2.13	Singular perturbation of an MDP	20
		4.2.14	Blackwell optimal strategies and AC-optimality	20;
		4.2.15	Strategy iteration in a unichain model	204
		4.2.16	Unichain strategy iteration in a finite	
			communicating model	20'
		4.2.17	Strategy iteration in semi-continuous models	20
		4.2.18	When value iteration is not successful	21
		4.2.19	The finite-horizon approximation does not work	21
			action oppionistic doos not work t	

Contents

	4.2.20	The linear programming approach to finite models	215
	4.2.21	Linear programming for infinite models	219
	4.2.22	Linear programs and expected frequencies in finite	
		models	223
	4.2.23	Constrained optimization	225
	4.2.24	AC-optimal, bias optimal, overtaking optimal and	
		opportunity-cost optimal strategies: periodic	
		model	229
	4.2.25	AC-optimal and average-overtaking optimal	
	1000		232
	4.2.26	Blackwell optimal, bias optimal, average-	00 r
	4 9 97	overtaking optimal and AC-optimal strategies	235
	4.2.27	Nearly optimal and average-overtaking optimal	000
	1 9 90	strategies	238
	4.2.28	Strong-overtaking/average optimal, overtaking	
		optimal, AC-optimal strategies and minimal	ചാവ
	4 9 90	Opportunity loss	239
	4.2.29	Strong-overtaking optimal and strong -overtaking	949
	4 9 90	Perrondo's periodox	242
	4.2.30	An optimal correctory in a queueing system	241
	4.2.01	All optimal service strategy in a queueing system	245
Afterword	l		253
Appendix	A Bo	rel Spaces and Other Theoretical Issues	257
A.1	Main (Concepts	257
A.2	Probal	bility Measures on Borel Spaces	260
A.3	Semi-c	ontinuous Functions and Measurable Selection	263
A.4	Abelia	n (Tauberian) Theorem	265
Appendix	B Pro	oofs of Auxiliary Statements	267
ppondin			
Notation			281
List of the	e Main	Statements	283
Biblicana	ha		285
Divitograp	тy		200
Index			291