Contents

Part I Revisiting Two Classic Results in Dynamic Portfolio Management

1	Mer	ton's Optimal Dynamic Portfolio Revisited	3		
	1.1	Merton's Optimal Portfolio Problem	3		
		1.1.1 Problem and Notation	3		
		1.1.2 Solution	6		
		1.1.3 Logarithmic Utility Functions	8		
	1.2	A Discrete-Time Model	9		
		1.2.1 Problem and Notation	9		
		1.2.2 Solution	11		
		1.2.3 Market Models	15		
2	Option Pricing: Classic Results				
	2.1	Introduction	17		
	2.2	Problem Formulation			
	2.3	Stop-Loss Strategy			
	2.4	Black-Scholes Theory	21		
		2.4.1 Black–Scholes Equation	21		
		2.4.2 Proof of Lemma	22		
	2.5	Digital Options	25		

Part II Hedging in Interval Models

3	Introduction			
	3.1	Why Hedge?	31	
	3.2	A Simplistic Hedging Scheme: The Stop-Loss Strategy	33	
	3.3	Risk-Free Hedging in the Binomial Tree Model	34	
	3.4	Relationship with the Continuous-Time		
		Black-Scholes-Merton Model	38	

	3.5	Risk A	ssessment Models	41			
		3.5.1	Current Models	41			
		3.5.2	Interval Model	42			
4	Fair	Price In	tervals	45			
	4.1		rice Interval of an Option: The General				
			te-Time Case	45			
	4.2		rice Intervals in Interval Models	47			
		4.2.1	Fair Price Interval	47			
		4.2.2	Characterization of the Fair Price Interval				
			in Terms of Strategies	48			
		4.2.3	Example	51			
		4.2.4	Characterization of Fair Price Interval				
			in Terms of Martingale Measures	52			
	4.3	Comp	utation of the Fair Price Interval for Path-Independent				
		-	gies	54			
	4.4	-	Case Analysis	57			
		4.4.1	Introduction	57			
		4.4.2	A Nonextremal Path with Worst-Case Cost	59			
		4.4.3	Worst Cases in Interval Models Versus Tree Models	60			
5	Optimal Hedging Under Robust-Cost Constraints						
2	5.1		action	65 65			
	5.2		of Cost Constraints on Admissible Strategies	66			
	5.2 5.3		ating Maximum Profit Under a Cost Constraint	67			
	5.4		Extensions				
	5.4	5.4.1	Loss/Profit Ratio	72 73			
		5.4.2	Maximum Expected Profit Under a Cost Constraint	76			
	5.5		ary	77			
_			•				
6	Арр	endix: P	roofs	79			
Par	rt III	Robust	Control Approach to Option Pricing				
_							
7			and Discrete-Time Option Pricing				
			Market Model	91			
	7.1		action	91			
		7.1.1	A New Theory of Option Pricing?	92			
		7.1.2	Related Contributions	93			
	7.2		ing	94			
		7.2.1	Contingent Claims	94			
		7.2.2	Market	95			
		7.2.3	Portfolio	97			
		7.2.4	Hedging	99			
		7.2.5	Conclusion: A Minimax Dynamic Game	101			

	7.3	Extensions					
		7.3.1	American Options	104			
		7.3.2	Delayed Information	105			
8							
U	8.1		uction and Main Results	107 107			
	0.1	8.1.1	Vanilla Options	107			
		8.1.2	Terminal Payment	107			
		8.1.3	Main Results	108			
		8.1.4	Joshua Transformation and the DQVI	110			
	8.2		stric Approach	114			
	0.2	8.2.1	Geometric Formulation	118			
		8.2.2	Primary Field and Dispersal Manifold \mathcal{D}	121			
		8.2.3	Equivocal Manifold &	121			
		8.2.4	Focal Manifold \mathscr{F}	129			
		8.2.5	Synthesis: Representation Formula	133			
	8.3		ity Solution	140			
	0.5	8.3.1	Uniqueness	141			
		8.3.2	Verification of Representation Formula	142			
	8.4		te Trading and Fast Algorithm	155			
	0.4	8.4.1		156			
		8.4.1	Dynamic Programming and Algorithms Convergence	161			
		0.4.2		101			
9	Digit	al Optio	ns	167			
	9.1	Introdu	action and Main Results	167			
		9.1.1	Digital Options	167			
		9.1.2	Main Results	168			
	9.2	Geome	etric Approach	173			
		9.2.1	Trivial Regions	173			
		9.2.2	Region of Interest	175			
		9.2.3	Synthesis	184			
	9.3	Viscosi	ty Solution	186			
		9.3.1	The Discontinuity	186			
		9.3.2	Continuous Regions	189			
	9.4	Discret	e Trading and Algorithms	192			
		9.4.1	Algorithms	192			
		9.4.2	Convergence	194			
10	Volid	a 4 *am	-	199			
10	10.1		ical Results and Comparisons	199			
	10.1	10.1.1	Numerical Computations	199			
			Numerical Comparison with Black–Scholes	200			
		10.1.2	Explaining the Volatility Smile	200			
	10.2	10.1.3	red Strengths and Weaknesses	202			
	10.2	-	Strict Mathematical Properties	204			
		10.2.1		204			
	10.2	10.2.2	Robustness	205			
	10.3	Conclus	sion	411			

Part IV Game-Theoretic Analysis of Rainbow Options in Incomplete Markets

11		duction			
	11.1 11.2	Introduction to Game-Theoretic Pricing Related Works			
12	Eme	rgence of Risk-Neutral Probabilities			
	from	a Game-Theoretic Origin	221		
	12.1	Geometric Risk-Neutral Probabilities			
		and Their Extreme Points	221		
	12.2	Game-Theoretic Origin of Risk-Neutral Laws: Preliminaries	226		
	12.3	Game-Theoretic Origin of Risk-Neutral Laws: Main Result	233		
	12.4	Nonlinear Extension	237		
	12.5	Infinite-Dimensional Setting and Finite-Dimensional Projections	240		
	12.6	Extension to a Random Geometry	243		
	12.7	Mixed Strategies with Linear Constraints	245		
13	Rain	bow Options in Discrete Time, I	249		
	13.1	Colored European Options as a Game Against Nature	249		
	13.2	Nonexpansion and Homogeneity of Solutions	253		
	13.3	Submodular Payoffs: Two Colors	254		
	13.4	Submodular Payoffs: Three or More Colors	256		
	13.5	Transaction Costs	258		
14		bow Options in Discrete Time, II	261		
	14.1	Rainbow American Options and Real Options	261		
	14.2	Path Dependence and Other Modifications	262		
	14.3	Upper and Lower Values for Intrinsic Risk	264		
	14.4	Cash-Back Methodology for Dealing with Intrinsic Risk	266		
	14.5	Degenerate or Random Geometry of Nonsimultaneous Jumps	267		
	14.6	Stochastic Interest Rates and Stochastic Volatility	269		
	14.7	Identification of Pre-Markov Chains	270		
15	Continuous-Time Limits				
	15.1	Nonlinear Black–Scholes Equation	273		
	15.2	An Example with Two Colors	275		
	15.3	Transaction Costs in Continuous Time	278		
	15.4	Models with Stochastic Volatility	280		
	15.5	Fractional Dynamics	281		
16		it Derivatives	285		
	16.1	Basic Model with No Simultaneous Jumps	285		
	16.2	Simultaneous Jumps: Completion by Tranching	288		
	16.3	Mean-Field Limit, Fluctuations, and Stochastic Law			
		of Large Numbers	288		

Part V Viability Approach to Complex Option Pricing and Portfolio Insurance

17	Computational Methods Based on the Guaranteed					
	Capt		in Algorithm	293 293		
	17,1	17.1.1	Classical Option Evaluation	293 293		
		17.1.1	Limits of Classic Evaluation Methods	293 294		
	17.2		namic System Underlying Financial Instruments	294		
	17.2	17.2.1	State and Control Variables	294		
		17.2.1	Viability Constraints and Target			
		17.2.2	Uncertainty of the Environment	295		
		17.2.3	Differential and Discrete Games Describing	291		
		17.2.4	Portfolio Evolution	297		
		17.2.5	Guaranteed Capture Basin Algorithm			
		17.2.6	Approximation of Valuation Function			
		17.2.7	Implementing the Guaranteed Capture Basin	500		
		17.2.7	Method to Evaluate a European Call	301		
	17.3	Extensi	ion of Capture Basin Methods to Evaluate	201		
			ex Instruments	302		
		17.3.1	Taking into Account Transaction Costs			
			and Constraints	303		
		17.3.2	Approximation of Valuation Function			
			in the Presence of Transaction Costs	305		
		17.3.3	Bermuda and Capped-Style Options: Two			
			Examples of Constrained and Multitarget Problems	307		
	17.4	Evaluat	tion of Complex Financial Instruments			
			mpulse Systems	309		
		17.4.1	Hybrid Dynamic Systems and Viability Concepts	310		
		17.4.2	Guaranteed Hybrid Capture Basin Algorithm	311		
		17.4.3	Evaluation of Barrier Options	312		
		17.4.4	Evaluation of Options Using NGARCH			
			Uncertainty Correction and in the Presence			
			of Transaction Costs	314		
18	Asset	and Lia	bility Insurance Management (ALIM)			
-	for Risk Eradication					
	18.1		ction	319		
	18.2	VPPI ir	n Summer 2011 Crisis	324		
		18.2.1	Inputs	324		
		18.2.2	Outputs	326		
		18.2.3	Flow Chart of VPPI Software	329		

	18.3	Uncertainties		330
		18.3.1	Stochastic Uncertainty	331
		18.3.2	Tychastic Uncertainty	332
		18.3.3	Historic Differential Inclusions	333
		18.3.4	Nature and Measures of Insurance	334
	18.4	Compar	ring VPPI and CPPI	335
Refe	References			337
				245
Index				345