2.2.2 Illustrative Example. Optimization Problem: Unconstrained .. 35
2.2.3 Illustrative Example. Optimization Problem: Equality and Inequality Constraints 35
2.2.4 Linear Optimization Problems 37
2.2.5 Illustrative Example. LP Problem: Primal-Dual Formulation .. 38
2.3 Karush-Kuhn-Tucker Conditions .. 39
2.3.1 Illustrative Example. KKT Conditions: Equality Constraints .. 40
2.3.2 Illustrative Example. KKT Conditions: Equality and Inequality Constraints 41
2.4 Constraint Qualifications .. 42
2.4.1 Illustrative Example. Constraint Qualification: Regular Solution 43
2.4.2 Illustrative Example. Constraint Qualification: Non-Regular Solution 43
2.5 Sufficiency Conditions .. 44
2.5.1 Illustrative Example. Sufficiency Conditions ... 45
2.6 Mixed Linear Complementarity Problem, MLCP ... 46
2.6.1 Illustrative Example. MLCP ... 46
2.7 Equilibrium Problems, EP .. 47
2.7.1 Illustrative Example. Equilibrium Conditions: No Constraints 49
2.7.2 Illustrative Example. Equilibrium Conditions: Only Equality Constraints 50
2.7.3 Illustrative Example. Equilibrium Conditions: Equality and Inequality Constraints 50
2.7.4 Illustrative Example. Linear Equilibrium Problem .. 52
2.8 Mathematical Programs with Equilibrium Constraints, MPEC .. 53
2.8.1 Illustrative Example. MPEC: Only Equality Constraints ... 56
2.8.2 Illustrative Example. MPEC: Both Equality and Inequality Constraints 58
2.9 Equilibrium Problems with Equilibrium Constraints, EPEC .. 60
2.9.1 Illustrative Example. EPEC: Only Equality Constraints .. 62
2.9.2 Illustrative Example. EPEC: Both Equality and Inequality Constraints 64
2.10 Non-Convexity and Non-Regularity Issues ... 66
2.11 Summary ... 67
2.12 Exercises ... 68

References ... 69
3 Some Microeconomic Principles

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>Basics of Supply and Demand</td>
<td>72</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Supply Curves</td>
<td>72</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Demand Curves</td>
<td>75</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Notion of Equilibrium as Intersection of Supply and Demand Curves</td>
<td>78</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>Illustrative Example. Equilibrium in the Coal Market</td>
<td>79</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>Illustrative Example. Changes in Consumers’ and Producers’ Surpluses Due to a Cartel</td>
<td>80</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Non-Price Influences: Shifting Supply and Demand Curves</td>
<td>81</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Multicommodity Equilibrium</td>
<td>83</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>Illustrative Example. Simultaneous Equilibrium of Coal and Wood Markets</td>
<td>84</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Estimation of Parameters of Demand and Supply Functions</td>
<td>84</td>
</tr>
<tr>
<td>3.2.6.1</td>
<td>Top-Down or Statistical Estimation on Observations</td>
<td>84</td>
</tr>
<tr>
<td>3.2.6.2</td>
<td>Bottom-Up or Process-Based Estimation</td>
<td>86</td>
</tr>
<tr>
<td>3.2.6.3</td>
<td>Auctions</td>
<td>87</td>
</tr>
<tr>
<td>3.3</td>
<td>Social Welfare Maximization</td>
<td>88</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Definition of Social Welfare in Single Commodity Models: Consumers’ Plus Producers’ Surpluses</td>
<td>88</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Equilibrium as Maximization of Social Welfare in Single Commodity Models</td>
<td>89</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Illustrative Example. Equilibrium in Coal Market as Social Welfare Maximization</td>
<td>90</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Pareto Efficiency Versus Social Welfare Optimization</td>
<td>90</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Social Welfare in Multicommodity Models</td>
<td>91</td>
</tr>
<tr>
<td>3.3.4.1</td>
<td>Possible Difficulty to Integrate Inverse Demand Functions in Multicommodity Models</td>
<td>91</td>
</tr>
<tr>
<td>3.3.4.2</td>
<td>Illustrative Example. Impossibility of Integrating Inverse Demand Functions for Coal and Wood</td>
<td>92</td>
</tr>
<tr>
<td>3.3.4.3</td>
<td>Measuring Changes in Social Welfare in Multicommodity Models</td>
<td>93</td>
</tr>
<tr>
<td>3.3.4.4</td>
<td>Illustrative Example. Changes in Consumers’ Surplus, for Wood and Coal, Due to a Tax on Coal</td>
<td>93</td>
</tr>
<tr>
<td>3.4</td>
<td>Modeling Individual Players in Single Commodity Markets</td>
<td>94</td>
</tr>
</tbody>
</table>
3.4.1 Profit-Maximization Problem for Price-Taking Firms, and Form of Equilibrium Problem 94
3.4.2 Perfect Versus Imperfect Competition 97
 3.4.2.1 Illustrative Example. Three Price-Taking Firms: Social Welfare Maximization Model 98
 3.4.2.2 Illustrative Example. Three Price-Taking Firms: Complementarity Model 100
 3.4.2.3 Monopoly Model 101
 3.4.2.4 Illustrative Example. Three Firms Merged as One Firm: Monopoly Model 102
 3.4.2.5 Nash-Cournot Model 103
 3.4.2.6 Illustrative Example. Nash-Cournot Model of Three Firms: Complementarity Model 104
 3.4.2.7 Illustrative Example. Nash-Cournot Model of Three Firms: Optimization Model if Demand is Linear 107
 3.4.2.8 Illustrative Example. Mixed Behaviors: Firm 1 as Cournot, Firms 2 and 3 as Price-Takers 108
 3.4.2.9 Illustrative Example. Mixed Behaviors: Firms 1 and 2 as Cournot, Firm 3 as Price-Taker 108
 3.4.2.10 Bertrand Game 109
 3.4.2.11 Illustrative Example. Bertrand Model of Coal Market 109
 3.4.2.12 Cartels .. 110
3.4.3 Nash Versus Generalized Nash Equilibria 111
 3.4.3.1 Illustrative Example. Generalized Nash Model for Coal Market: Limit on Coal Yard, with Government Allocation of Coal Yard Shares 114
 3.4.3.2 Illustrative Example. Generalized Nash Model for Coal Market: Limit on Coal Yard, with Trading of Shares and Equal Marginal Utilities of Yard Shares 115
 3.4.3.3 Illustrative Example. Generalized Nash Model for Coal Market: Limit on Coal Yard, with Auctioning of Shares and Unequal Marginal Utilities 117
3.5 Multi-Level Games .. 118
 3.5.1 Stackelberg Leader-Follower Games (MPECs) 118
 3.5.1.1 Illustrative Example. Stackelberg MPEC with Firm 2 as Leader 119
 3.5.1.2 Illustrative Example. Stackelberg MPEC with Firms 1 and 2 Merged as One Leader 119
4 Equilibria and Complementarity Problems

4.1 Introduction ... 127
4.2 Economics and Engineering Equilibria 129
 4.2.1 Equilibria in Dominant Actions 129
 4.2.1.1 Illustrative Example. Energy Production
 Duopoly .. 129
 4.2.1.2 Illustrative Example. Energy Production
 Duopoly, β Changed from 1.5 to 2) 130
 4.2.2 Nash Equilibria 131
 4.2.2.1 Illustrative Example. Energy Production
 Duopoly, Nash Equilibrium 131
 4.2.2.2 Illustrative Example. Energy Production
 Duopoly, $\beta = 1$, Additional Costs 132
 4.2.3 Types of Game Theory Problems Considered 132
 4.2.4 Mixed Versus Pure Equilibria 133
 4.2.4.1 Illustrative Example. Energy Production
 Bimatrix Game, Version 1 135
 4.2.4.2 Illustrative Example. Energy Production
 Bimatrix Game, Version 2 136
 4.3 Duality in Optimization Versus Equilibria 137
 4.3.1 Linear Programs as Equilibrium Problems 137
 4.3.1.1 Illustrative Example. Energy Production
 Optimization Problem, One Player 138
 4.3.2 Nonlinear Programs as Equilibrium Problems 140
 4.4 More About the Connection Between Optimization and
 Equilibrium Problems 141
 4.4.1 Spatial Price Equilibrium Problem 142
 4.4.1.1 Illustrative Example. Spatial Price
 Equilibrium for Energy Products 143
 4.4.2 Optimization Problems from Equilibrium Conditions? 146
 4.4.2.1 Illustrative Example. Extended Energy
 Production Optimization Problem 148
 4.4.2.2 Illustrative Example. Extended Energy
 Production Optimization Derived from MCP 150
 4.4.3 Equilibria with No Corresponding KKT-Based
 Optimization Problem 151
 4.4.3.1 Illustrative Example. Spatial Price
 Equilibrium, Version 2 153
4.5 Selected Existence/Uniqueness Results for Equilibrium Problems .. 155
4.6 Extensions to Equilibrium Problems ... 161
 4.6.1 Overview ... 161
 4.6.1.1 Illustrative Example. Integer-Constrained Spatial Price Equilibrium 162
 4.6.2 Discretely-Constrained Mixed Linear Complementarity Problem .. 162
 4.6.2.1 Illustrative Example. Integer-Constrained Network Equilibrium 164
 4.6.3 Stochastic Equilibria ... 166
 4.6.3.1 Generator f’s Problem .. 167
 4.6.3.2 Grid Owner’s Problem .. 169
 4.6.3.3 Market Clearing .. 169
4.7 Summary .. 170
4.8 Appendix: Computational Issues for Selected Problems ... 170
 4.8.1 Computation of Nash Equilibrium Based on the Range for the Parameters 170
 4.8.2 Computations for Price Functions in Spatial Price Equilibrium-Version 2 172
 4.8.3 Uniqueness of Spatial Price Equilibrium Version 2 Solution .. 173
4.9 Exercises .. 174

References .. 177

5 Variational Inequality Problems ... 181
 5.1 Introduction .. 181
 5.2 Formulation of Variational Inequality Problems ... 182
 5.2.1 Optimization Problem as a VI Problem ... 182
 5.2.2 VI Formulation of Nash Equilibrium: No Linking Constraints ... 183
 5.2.2.1 Illustrative Example. Nash-Cournot Model of Coal Market from Chapter 3 185
 5.2.3 VI Formulation of Generalized Nash Equilibrium With Linking Constraints: A Special Case .. 186
 5.2.3.1 Illustrative Example. Nash-Cournot Model of Coal Market with Coal Yard Limit from Chapter 3 .. 189
 5.2.3.2 Illustrative Example. Competitive Equilibrium of Two Related Markets: Coal and Wood from Chapter 3 ... 190
 5.2.3.3 Illustrative Example. PIESS Multicommodity Competitive Equilibrium Model from Chapter 1 ... 193
5.3 Relations between Variational Inequality and Complementarity Problems

5.3.1 Any Complementarity Problem Has an Equivalent Variational Inequality Problem

5.3.1.1 Illustrative Example. NCP and Two VI Forms for Coal Yard Model

5.3.2 Any Variational Inequality Problem Has an Equivalent Complementarity Problem

5.3.2.1 Illustrative Example. Comparison of MCP and VI Forms of Coal Market Model with Coal Yard Limits

5.3.3 Alternative Equivalent Forms of Variational Inequality Problems

5.3.3.1 Alternative Form of VI for Nash Equilibrium with Linking Constraints

5.3.3.2 Illustrative Example. Alternative VI for Nash-Cournot Model of Coal Market with Yard Limit

5.4 Generalized Nash Equilibrium as Quasi-variational Inequality Problem

5.4.1 Some Important Properties of Quasi-variational Inequality Problems

5.4.1.1 The VI Solution is a QVI Solution: Linking Duals are Equal

5.4.1.2 Illustrative Example. Simple Electric Capacity Market Model with High Cost Green Energy and Equal Prices for All

5.4.1.3 Modified VI: First Price-Directed Search for QVI Solutions

5.4.1.4 Illustrative Example. Electric Capacity Market Model with Subsidized Green Energy

5.4.1.5 Modified VI: Second Price-Directed Search for QVI Solutions

5.4.1.6 Illustrative Example. Electric Capacity Market Model with Green Price a Multiple of Conventional Price

5.4.1.7 Modified VI: Resource-Directed Search for QVI Solutions

5.4.1.8 Illustrative Example. Electric Capacity Market Model with Quotas for Green and Conventional

5.5 Summary

5.6 Exercises
6 Optimization Problems Constrained by Complementarity and Other Optimization Problems

6.1 Introduction
- **Practical Interest**: 221
- **Structure and Basic Classification**: 222

6.2 Optimization Problems Constrained by Other Optimization Problems, OPcOP
- **General Formulation**: 223
- **Illustrative Example. Strategic Offering, OPcOP**: 226
- **Illustrative Example. Vulnerability Assessment, OPcOP**: 229
- **Illustrative Example. Transmission Investment, OPcOP**: 231
- **Basic Assumption: Constraining Problems are Convex**: 235
- **Mathematical Program with Complementarity Constraints, MPCC**: 235
- **Illustrative Example. Vulnerability Assessment, MPCC**: 236
- **Mathematical Program with Equilibrium Constraints, MPEC**: 237
- **Illustrative Example. Strategic Offering, MPEC**: 237
- **Illustrative Example. Transmission Investment, MPEC**: 238
- **Stochastic OPcOPs**: 239
- **Illustrative Example. Strategic Offering, sOPcOP**: 240

6.3 Optimization Problems Constrained by Linear Problems, OPcLP
- **Mathematical Program with Primal and Dual Constraints, MPPDC**: 242
- **Illustrative Example. Strategic Offering, MPPDC**: 243
- **Illustrative Example. Vulnerability Assessment, MPPDC**: 244
- **Illustrative Example. Transmission Investment, MPPDC**: 246
- **Mathematical Program with Complementarity Constraints, MPCC**: 247
- **Stochastic OPcLPs**: 248
- **Illustrative Example. Transmission Investment, sOPcLP**: 249

6.4 Transforming an MPCC/MPEC/MPPDC into a MILP
- **Fortuny-Amat McCarl Linearization**: 250
- **SOS1 and Penalty Function Linearization**: 251
- **Other Linearizations**: 251
6.4.3.1 Illustrative Example. Strategic Offering:
Exact Linear Transformation 252
6.5 Writing and Solving the KKTs of an MPPDC 253
6.5.1 KKTs of an MPPDC 253
6.5.2 Illustrative Example. Strategic Offering, KKTs 254
6.5.3 Reformulating an MCP as an Optimization Problem . 256
6.5.4 Illustrative Example. Strategic Offering: MCP
Optimization Problem 257
6.6 Summary .. 258
6.7 Exercises .. 258

References .. 261

7 Equilibrium Problems with Equilibrium Constraints 263
7.1 Introduction .. 263
7.2 The EPEC Problem ... 264
7.2.1 Problem Statement and Diagonalization Algorithm .. 264
7.2.2 Diagonalization Applied to EPEC 267
7.3 Energy Applications of EPECs 271
7.4 EPEC Power Market Model 1: Strategic Quantity Decisions
by Generators ... 274
7.4.1 Model Formulation 274
7.4.1.1 Model Structural Assumptions 274
7.4.1.2 Consumer ... 276
7.4.1.3 Transmission Provider 277
7.4.1.4 Follower Equilibrium 277
7.4.1.5 Generator (Leader) MPEC 278
7.4.1.6 EPEC ... 279
7.4.2 Illustrative Example 279
7.4.2.1 Assumptions ... 279
7.4.2.2 Follower Problem 280
7.4.2.3 Leader Problems 281
7.4.2.4 EPEC Statement and Analysis 282
7.4.2.5 Attempted Solution by Diagonalization 285
7.4.2.6 Mixed Strategy Solution 286
7.4.2.7 Comparison of Outcomes of Alternative
Game Formulations ... 287
7.4.2.8 Sensitivity Case: Single Oligopolist 288
7.4.2.9 Sensitivity Case: Transmission Expansion 289
7.4.2.10 Summary of Cournot EPEC Example 290
7.5 EPEC Power Market Model 2: Strategic Offering by
Generators ... 291
7.5.1 Model Formulation 291
7.5.1.1 Structural Assumptions 291
7.5.1.2 Auctioneer (Transmission Provider) 292
8.2.2.2.1 Illustrative Example. Matrix splitting for two-commodity model: \(B = \text{diagonal part of } M \) 336

8.2.2.2 Illustrative Example. Matrix splitting for two-commodity model: symmetric \(B \) 337

8.2.2.3 Convergence of Matrix Splitting Algorithms for the LCP 338

8.2.2.3 Other Iterative Methods for LCPs 340

8.3 Algorithms for NCP Models 340

8.3.1 Newton's Method for Systems of Smooth Equations 342

8.3.1.1 Undamped Newton Method for Smooth Equations 343

8.3.1.1.1 Illustrative Example. Solving two equations in two unknowns by Newton's method 343

8.3.1.1.2 Convergence of the Undamped Newton Method for Smooth Equations 344

8.3.1.2 Damped Newton Methods for Smooth Equations 345

8.3.1.2.1 Illustrative Example. Damping Procedures to Accelerate Convergence 345

8.3.1.2.2 Convergence of the Damped Newton Method for Smooth Equations 347

8.3.2 Newton's Method for the NCP 349

8.3.2.1 Constructing an Approximate LCP 349

8.3.2.2 Solving the Approximate LCP 350

8.3.2.3 Getting Started: Solving the First Approximate LCP 351

8.3.2.4 Two Examples Without Damping 352

8.3.2.4.1 Illustrative Example. PATH method for two-commodity LCP 352

8.3.2.4.2 Illustrative Example. PATH method for two-commodity NCP 353

8.3.2.5 Damping in the Newton Method for NCPs 355

8.3.2.5.1 Illustrative Example. Min-based merit function for two-commodity NCP 356

8.3.2.5.2 Path Search between Previous Iterate and Newton Point 356

8.3.2.6 Summary and Overview of Other Features of the PATH Algorithm 358
8.4 Algorithms for VI Models .. 359
8.4.1 Solve Equivalent KKT System as MCP 359
8.4.2 Iterative Methods: Sequential Optimization 360
 8.4.2.1 Project Independence Evaluation System (PIES) 360
 8.4.2.1.1 Illustrative Example. Simple PIES model and algorithm 362
 8.4.2.1.2 PIES-q Algorithm .. 364
 8.4.2.1.3 Convergence of PIES and PIES-q Algorithms 364
 8.4.2.2 A Nonlinear Approximation of G – Diagonalization Method 365
 8.4.2.2.1 Illustrative Example. The PIES-q algorithm as diagonalization method on a VI 366
 8.4.2.3 Symmetric Linear Approximations of G 367
 8.4.2.4 Convergence of Diagonalization and Symmetric Linear Approximation 367

8.5 Summary ... 368

8.6 Appendix: Introduction to Theory for PATH and Other NCP Algorithms 369
 8.6.1 Projection Mappings .. 370
 8.6.1.1 Illustrative Example. Projection Mapping for $B = \mathbb{R}^n_+$ 370
 8.6.1.2 Illustrative Example. Projection Mapping for B as a Rectangular Box 371
 8.6.2 NCP Reformulated as Nonsmooth Equation Using Projection Mapping 371
 8.6.2.1 Illustrative Example. Illustration of Theorem 8.3 with $x \neq z$ 372
 8.6.2.2 Illustrative Example. Illustration of Theorem 8.3 with $x = z$ 372
 8.6.3 Some Useful Merit Functions and Corresponding Nonsmooth Equations 373
 8.6.3.1 Merit Function Based on Min Function 373
 8.6.3.2 Merit Function Based on Norm of the Normal Map 374
 8.6.3.3 Merit Function Based on Fischer-Burmeister Function 374
 8.6.3.3.1 Illustrative Example. Fischer-Burmeister-based merit function for two-commodity NCP 375
 8.6.3.4 Merit Function Based on Plus Function 375
 8.6.4 Damped Newton Method for NCP as Nonsmooth Equation 376
8.6.5 Convergence of the PATH Algorithm

Page 377

8.6.6 Other Methods to Solve NCPs

Page 377

8.7 Exercises

Page 378

References

Page 383

9 Some Advanced Algorithms for VI Decomposition, MPCCs and EPECs

Introduction

Page 385

9.2 Decomposition Algorithms for VIs

- **9.2.1 Illustrative Example. Dantzig-Wolfe Decomposition of a Simple LP**

 Page 386

- **9.2.2 Illustrative Example. Simplified Stochastic Power Model from Chapters 4 and 5**

 Page 392

- **9.2.3 Dantzig-Wolfe Decomposition of VIs**

 Page 394

 - **9.2.3.1 Some Computational Enhancements to Dantzig-Wolfe Decomposition of VIs**

 Page 397

- **9.2.4 Illustrative Example. Dantzig-Wolfe Decomposition of Simplified Stochastic Power Model**

 Page 398

- **9.2.5 Simplicial Decomposition of VIs**

 Page 400

 - **9.2.5.1 Some Computational Enhancements to Simplicial Decomposition of VIs**

 Page 402

- **9.2.6 Illustrative Example. Simplicial Decomposition of Simplified Stochastic Power Model**

 Page 403

- **9.2.7 Benders Decomposition of VIs**

 Page 404

 - **9.2.7.1 Illustrative Example. Benders Decomposition of a Simple LP**

 Page 405

 - **9.2.7.2 General Development of Benders Decomposition for VIs**

 Page 406

 - **9.2.7.3 Illustrative Example. Benders Decomposition of Simplified Stochastic Power Model**

 Page 407

- **9.2.8 Cobweb Decomposition Method - No Master Problem**

 Page 412

9.3 Algorithms for Mathematical Programs with Complementarity Constraints

- **9.3.1 Why Are MPCCs Difficult to Solve?**

 Page 415

- **9.3.2 Applying Standard NLP Algorithms to MPCCs**

 Page 417

 - **9.3.2.1 Regularization of Complementarity Constraints**

 Page 418

 - **9.3.2.2 Illustrative Example. Regularization Applied to the Strategic Offer MPCC**

 Page 419

 - **9.3.2.3 Penalization of Complementarity Constraints**

 Page 420

 - **9.3.2.4 Illustrative Example. Penalization Applied to the Strategic Offer MPCC**

 Page 421

 - **9.3.2.5 Sequential Quadratic Programming**

 Page 422

 - **9.3.2.6 Illustrative Example. SQP Applied to the Strategic Offer MPCC**

 Page 423
9.3.2.7 Some Practical Advice 420
9.3.3 Some Other Methods for MPCCs 420
9.4 Algorithms for Equilibrium Programs with Equilibrium
Constraints (EPECs) .. 422
9.4.1 Diagonalization Method for EPECs 423
9.4.2 NLP Reformulation of EPECs 424
9.4.3 Illustrative Example. A simple 2-Leader, 1-Follower
EPEC ... 424
9.5 Summary .. 429
9.6 Exercises .. 429

References ... 431

10 Natural Gas Market Modeling 433
10.1 Introduction ... 433
10.2 Natural Gas Market Models 435
10.3 Engineering Considerations 439
10.4 The Natural Gas Supply Chain and the Various Market Agents 440
10.4.1 Sectoral and Seasonal Aspects and Gas Storage
Operator ... 441
10.4.2 Capacity Expansion and Multi-Year Perspective 443
10.4.3 Representation of Consumers and Strategic Versus
Non-Strategic Players .. 443
10.4.4 Additional Players and Engineering Aspects 445
10.4.5 Suppliers ... 445
10.4.5.1 Production .. 445
10.4.5.2 Delivering Gas to the Market 448
10.4.5.3 Supplier's Problem (Version 1: Production
and Export Functions) ... 450
10.4.5.4 Storage Operations 452
10.4.5.5 Supplier's Problem (Version 2: Production,
Export and Storage Functions) 454
10.4.6 Transportation .. 456
10.4.7 A Model for the Whole Market 457
10.4.8 Illustrative Example. Small Natural Gas Network
Equilibrium .. 459
10.4.8.1 Overview .. 459
10.4.8.2 Base Case .. 461
10.4.8.3 Analysis of Storage 465
10.4.8.4 Analysis of Total Gas Reserves Constraint 466
10.4.8.5 Analysis of Contract Sales 468
10.5 Summary .. 469
10.6 Exercises .. 470

References ... 473
11 Electricity and Environmental Markets ... 477
 11.1 Introduction .. 477
 11.2 Transmission-Constrained Electricity Markets 479
 11.2.1 Short-Run, Perfectly Competitive Market 480
 11.2.2 Illustrative Example. Transmission-Constrained
 Perfect Competition Equilibrium ... 485
 11.2.3 Oligopolistic Market: A Cournot Model 489
 11.2.4 Illustrative Example. Transmission-Constrained
 Cournot Equilibrium ... 495
 11.3 Environmental Markets: Emissions Trading 497
 11.3.1 A Simple Model of Emissions Trading among
 Producers .. 499
 11.3.2 Illustrative Example. Simple Source-Based
 Emissions Trading Equilibrium ... 501
 11.3.3 A Simple Model of Emissions Trading among
 Load-Serving Entities .. 503
 11.3.4 Illustrative Example. Simple Load-Based Market
 Equilibrium .. 504
 11.3.5 Model Analysis: Equivalence of Source-Based and
 Load Based Trading .. 506
 11.4 Summary ... 507
 11.5 Exercises ... 508

References ... 511

12 Multicommodity Equilibrium Models: Accounting for
 Demand-Side Linkages ... 515
 12.1 Introduction .. 515
 12.2 Linkages among Multiple Energy Markets 516
 12.3 Demand Relations over Time .. 520
 12.3.1 Regulated Vertically Integrated Utility Model 521
 12.3.2 Unbundled Power Market with and without
 Cross-Price Elasticities .. 525
 12.4 Multi-Sector Models with Demand Linkages 530
 12.4.1 The Project Independence Evaluation System 530
 12.4.2 PIES Model Components .. 532
 12.4.2.1 Consumers ... 533
 12.4.2.2 Fuel Producers ... 534
 12.4.2.3 Oil Refiners .. 536
 12.4.2.4 Shippers ... 538
 12.4.2.5 Market Clearing .. 539
 12.4.3 Assembling and Solving the PIES Model 540
 12.4.3.1 Market Equilibrium LCP ... 540
 12.4.3.2 Solution Approaches ... 542